A novel cooling geometry for subsea variable speed drives
Experimental and theoretical analyses are conducted to evaluate the passive cooling performance of a novel geometry for subsea variable speed drives, a common piece of equipment in deep-sea oil exploration. Relying on the sea water as a low-temperature thermal reservoir, the new design forms an encl...
Saved in:
Published in | Applied thermal engineering Vol. 185; p. 116483 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
25.02.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Experimental and theoretical analyses are conducted to evaluate the passive cooling performance of a novel geometry for subsea variable speed drives, a common piece of equipment in deep-sea oil exploration. Relying on the sea water as a low-temperature thermal reservoir, the new design forms an enclosed, annular space with centrally located modular boards that compose the power electronics inverter. Buoyancy-induced motion of a dielectric coolant conveys the heat dissipated by the electronic boards to the sea water through the outer and innermost walls of the annular enclosure. A thermal network model is implemented and used to optimize the enclosure geometry through a genetic algorithm, which served as a reference for a scaled experimental setup. A Computational Fluid Dynamics (CFD) simulation of the conjugate heat transfer yielded temperature distributions on the electronic boards and temperature and fluid velocity fields inside the enclosure. A comparison between the experimental data and the modeling results indicated a good agreement, with average RMS deviations of a modified Nusselt number of 7.0% and 8.5% for the thermal network and CFD analysis, respectively. For a 140-W operating point dissipation rate in the scaled test setup, the thermal network and the CFD models presented maximal deviations of 4°C and 2.3°C with respect to the heat sink temperature measurements.
•Natural circulation cooling of a dielectric oil in an annular enclosure is studied.•Experiment was designed based on a thermal network (TN) model and genetic algorithms.•Oil velocities and circuit board temperature distribution were determined via CFD.•TN and CFD predicted the Nusselt number with RMS deviations of 7.0% and 8.5%•New geometry is a promising compact solution for subsea applications. |
---|---|
AbstractList | Experimental and theoretical analyses are conducted to evaluate the passive cooling performance of a novel geometry for subsea variable speed drives, a common piece of equipment in deep-sea oil exploration. Relying on the sea water as a low-temperature thermal reservoir, the new design forms an enclosed, annular space with centrally located modular boards that compose the power electronics inverter. Buoyancy-induced motion of a dielectric coolant conveys the heat dissipated by the electronic boards to the sea water through the outer and innermost walls of the annular enclosure. A thermal network model is implemented and used to optimize the enclosure geometry through a genetic algorithm, which served as a reference for a scaled experimental setup. A Computational Fluid Dynamics (CFD) simulation of the conjugate heat transfer yielded temperature distributions on the electronic boards and temperature and fluid velocity fields inside the enclosure. A comparison between the experimental data and the modeling results indicated a good agreement, with average RMS deviations of a modified Nusselt number of 7.0% and 8.5% for the thermal network and CFD analysis, respectively. For a 140-W operating point dissipation rate in the scaled test setup, the thermal network and the CFD models presented maximal deviations of 4°C and 2.3°C with respect to the heat sink temperature measurements. Experimental and theoretical analyses are conducted to evaluate the passive cooling performance of a novel geometry for subsea variable speed drives, a common piece of equipment in deep-sea oil exploration. Relying on the sea water as a low-temperature thermal reservoir, the new design forms an enclosed, annular space with centrally located modular boards that compose the power electronics inverter. Buoyancy-induced motion of a dielectric coolant conveys the heat dissipated by the electronic boards to the sea water through the outer and innermost walls of the annular enclosure. A thermal network model is implemented and used to optimize the enclosure geometry through a genetic algorithm, which served as a reference for a scaled experimental setup. A Computational Fluid Dynamics (CFD) simulation of the conjugate heat transfer yielded temperature distributions on the electronic boards and temperature and fluid velocity fields inside the enclosure. A comparison between the experimental data and the modeling results indicated a good agreement, with average RMS deviations of a modified Nusselt number of 7.0% and 8.5% for the thermal network and CFD analysis, respectively. For a 140-W operating point dissipation rate in the scaled test setup, the thermal network and the CFD models presented maximal deviations of 4°C and 2.3°C with respect to the heat sink temperature measurements. •Natural circulation cooling of a dielectric oil in an annular enclosure is studied.•Experiment was designed based on a thermal network (TN) model and genetic algorithms.•Oil velocities and circuit board temperature distribution were determined via CFD.•TN and CFD predicted the Nusselt number with RMS deviations of 7.0% and 8.5%•New geometry is a promising compact solution for subsea applications. |
ArticleNumber | 116483 |
Author | Militão, Lucas A. Rambo, Carlos R. Machado, Douglas M. Fernandes, Caio D. Barbosa Jr, Jader R. Heldwein, Marcelo L. da Silva, Alexandre K. dos Santos, Diego |
Author_xml | – sequence: 1 givenname: Lucas A. orcidid: 0000-0003-0768-5009 surname: Militão fullname: Militão, Lucas A. organization: Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil – sequence: 2 givenname: Caio D. orcidid: 0000-0002-0716-6850 surname: Fernandes fullname: Fernandes, Caio D. organization: Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil – sequence: 3 givenname: Diego orcidid: 0000-0001-8725-5943 surname: dos Santos fullname: dos Santos, Diego organization: Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil – sequence: 4 givenname: Douglas M. orcidid: 0000-0002-3975-9191 surname: Machado fullname: Machado, Douglas M. organization: Department of Automation and Systems Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil – sequence: 5 givenname: Marcelo L. surname: Heldwein fullname: Heldwein, Marcelo L. organization: Department of Electrical Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil – sequence: 6 givenname: Carlos R. surname: Rambo fullname: Rambo, Carlos R. organization: Department of Electrical Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil – sequence: 7 givenname: Alexandre K. surname: da Silva fullname: da Silva, Alexandre K. organization: Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil – sequence: 8 givenname: Jader R. surname: Barbosa Jr fullname: Barbosa Jr, Jader R. email: jrb@polo.ufsc.br organization: Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil |
BookMark | eNqNkM9LwzAUx4NMcJv-DwG9duZX0xS8jOFUGHjRc0iT15nRNTXpCvvv7agXb57eg_f9wfss0KwNLSD0QMmKEiofDyvTdU3_BfFoGmj3K0bYeKJSKH6F5lQVPMslkbNx53mZCU7pDVqkdCCEMlWIOSrXuA0DNNiG0Ph2j_cQjtDHM65DxOlUJTB4MNGbqgGcOgCHXfQDpFt0XZsmwd3vXKLP7fPH5jXbvb-8bda7zPJc9RllthRcyWqsc5Y440TOitqymuScFUIwxo11knEnK0OIUaWyDph1hVHGMr5E91NuF8P3CVKvD-EU27FSM1FSSTmnclQ9TSobQ0oRat1FfzTxrCnRF1j6oP_C0hdYeoI12reTHcZPBg9RJ-uhteB8BNtrF_z_gn4AbCB8qA |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2023_121512 crossref_primary_10_1016_j_tsep_2024_102383 |
Cites_doi | 10.1016/j.ijheatmasstransfer.2003.07.007 10.1016/j.applthermaleng.2017.06.058 10.2118/154399-PA 10.1080/10789669.2007.10391459 10.1002/aic.690210330 10.1016/j.ijheatmasstransfer.2017.08.114 10.1115/1.3450224 10.1049/iet-rpg.2014.0112 10.4043/29656-MS 10.1016/0017-9310(75)90222-7 10.2514/2.6660 10.1016/j.applthermaleng.2013.10.065 10.1016/j.ijheatmasstransfer.2010.05.016 10.1109/TMECH.2014.2336791 10.4043/29550-MS 10.1109/TSTE.2015.2425045 10.1115/1.2188953 10.1016/0017-9310(85)90065-1 10.2514/3.249 10.1115/1.2911412 10.4043/26170-MS 10.1109/ACCESS.2018.2879273 10.1016/0894-1777(88)90043-X 10.24295/CPSSTPEA.2017.00024 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Feb 25, 2021 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Feb 25, 2021 |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.applthermaleng.2020.116483 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5606 |
ExternalDocumentID | 10_1016_j_applthermaleng_2020_116483 S1359431120339582 |
Genre | Feature |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AAXKI AAYXX ABXDB ACNNM ADMUD AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION EJD FGOYB HZ~ R2- RIG SEW 7TB 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c358t-12c94386b874dc0dad4527fc2f0532744223acd623d6ba00a898cde2cd7a8ac23 |
IEDL.DBID | .~1 |
ISSN | 1359-4311 |
IngestDate | Thu Oct 10 16:01:20 EDT 2024 Thu Sep 26 19:02:28 EDT 2024 Fri Feb 23 02:48:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep-sea oil exploration Thermal management Equivalent thermal network Computational Fluid Dynamics Frequency inverter Heat transfer augmentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-12c94386b874dc0dad4527fc2f0532744223acd623d6ba00a898cde2cd7a8ac23 |
ORCID | 0000-0002-3975-9191 0000-0001-8725-5943 0000-0002-0716-6850 0000-0003-0768-5009 |
PQID | 2491613316 |
PQPubID | 2045278 |
ParticipantIDs | proquest_journals_2491613316 crossref_primary_10_1016_j_applthermaleng_2020_116483 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2020_116483 |
PublicationCentury | 2000 |
PublicationDate | 2021-02-25 |
PublicationDateYYYYMMDD | 2021-02-25 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Wani, Shipurkar, Dong, Polinder (b21) 2018; 6 Boe (b9) 2011 Moffat (b35) 1988; 1 Zhai, Zhang, Zhang, Chen (b38) 2007; 13 Baudoin, Saury, Boström (b20) 2017; 124 Abdollahzadeh, Esmaeilpour, Vizinho, Younesi, Pàscoa (b39) 2017; 115 Teertstra, Yovanovich, Culham (b34) 2005; 128 H.E. Parente, An integrated power solution for enabling large-scale subsea processing: A base case for subsea standalone variable speed drive in Brazil, in: OTC Brasil - Offshore Technology Conference, Rio de Janeiro, Brazil, 2015, p. 9. Pittini, Hernes (b6) 2012 Bakka, Hilditch, Olsen (b15) 2001 Churchill, Chu (b23) 1975; 18 da Silva, Lorente, Bejan (b11) 2004; 47 Baudoin, Boström, Leijon (b19) 2016; 7 Lee, Yovanovich, Jafarpur (b27) 1991; 5 S. Ingebrigtsen, S. Vatland, J. Pretlove, H. Nesheim, et al. ABB Subsea Power JIP–Going the distance, in: Offshore Technology Conference, Houston, Texas, 2019, p. 11. Henkes, Hoogendoorn (b41) 1994; 116 da Silva, Gosselin (b12) 2010; 53 Ellison (b29) 2010 Rajashekara, Krishnamoorthy, Naik (b4) 2017; 2 Warrington, Powe (b10) 1985; 28 Bergman, Lavine, Incropera, Dewitt (b26) 2011 Rohsenow, Hartnett, Cho (b30) 1998 Python Software Foundation, Python language reference, version 2.7 Boe (b8) 2010 Propst (b37) 2017 Baudoin, Boström (b18) 2015; 9 Churchill, Churchill (b28) 1975; 21 Lloyd, Moran (b25) 1974; 96 (b40) 2020 Franchi (b5) 2009 . Bejan (b14) 2004 Toma, Mànuel-Làzaro, Nogueras, Rio (b17) 2015; 20 Yovanovich, Teertstra, Muzychka (b24) 2002; 16 Haupt (b33) 2004 H. Lendenmann, T. Laneryd, E. Virtanen, R. Cagienard, T. Wagner, K. Missing, Shallow water testing of 9 - 12 MVA variable speed drive for subsea installation, in: Offshore Technology Conference, Houston, Texas, 2019, p. 15. B. Henri, N. Truls, H. Terence, Ormen Lange Subsea Compression Station pilot, in: Petroleum and Chemical Industry Conference Europe - Electrical and Instrumentation Applications, PCIC Europe, Oslo, Norway, 2010, p. 9. Bejan (b13) 2000 Teertstra, Yovanovich, Culham (b22) 2004 Baïri, Zarco-Pernia, García de María (b16) 2014; 63 (b31) 2018 (b36) 2015 10.1016/j.applthermaleng.2020.116483_b3 Wani (10.1016/j.applthermaleng.2020.116483_b21) 2018; 6 10.1016/j.applthermaleng.2020.116483_b2 10.1016/j.applthermaleng.2020.116483_b7 Moffat (10.1016/j.applthermaleng.2020.116483_b35) 1988; 1 Haupt (10.1016/j.applthermaleng.2020.116483_b33) 2004 da Silva (10.1016/j.applthermaleng.2020.116483_b12) 2010; 53 Bejan (10.1016/j.applthermaleng.2020.116483_b13) 2000 Teertstra (10.1016/j.applthermaleng.2020.116483_b22) 2004 Boe (10.1016/j.applthermaleng.2020.116483_b9) 2011 Churchill (10.1016/j.applthermaleng.2020.116483_b28) 1975; 21 Baudoin (10.1016/j.applthermaleng.2020.116483_b19) 2016; 7 Pittini (10.1016/j.applthermaleng.2020.116483_b6) 2012 Lloyd (10.1016/j.applthermaleng.2020.116483_b25) 1974; 96 Ellison (10.1016/j.applthermaleng.2020.116483_b29) 2010 Abdollahzadeh (10.1016/j.applthermaleng.2020.116483_b39) 2017; 115 Bakka (10.1016/j.applthermaleng.2020.116483_b15) 2001 Propst (10.1016/j.applthermaleng.2020.116483_b37) 2017 Baudoin (10.1016/j.applthermaleng.2020.116483_b20) 2017; 124 da Silva (10.1016/j.applthermaleng.2020.116483_b11) 2004; 47 10.1016/j.applthermaleng.2020.116483_b32 (10.1016/j.applthermaleng.2020.116483_b36) 2015 Rohsenow (10.1016/j.applthermaleng.2020.116483_b30) 1998 (10.1016/j.applthermaleng.2020.116483_b31) 2018 Baudoin (10.1016/j.applthermaleng.2020.116483_b18) 2015; 9 Franchi (10.1016/j.applthermaleng.2020.116483_b5) 2009 Boe (10.1016/j.applthermaleng.2020.116483_b8) 2010 Warrington (10.1016/j.applthermaleng.2020.116483_b10) 1985; 28 Rajashekara (10.1016/j.applthermaleng.2020.116483_b4) 2017; 2 Toma (10.1016/j.applthermaleng.2020.116483_b17) 2015; 20 Zhai (10.1016/j.applthermaleng.2020.116483_b38) 2007; 13 Henkes (10.1016/j.applthermaleng.2020.116483_b41) 1994; 116 Churchill (10.1016/j.applthermaleng.2020.116483_b23) 1975; 18 Yovanovich (10.1016/j.applthermaleng.2020.116483_b24) 2002; 16 (10.1016/j.applthermaleng.2020.116483_b40) 2020 Bergman (10.1016/j.applthermaleng.2020.116483_b26) 2011 10.1016/j.applthermaleng.2020.116483_b1 Bejan (10.1016/j.applthermaleng.2020.116483_b14) 2004 Teertstra (10.1016/j.applthermaleng.2020.116483_b34) 2005; 128 Lee (10.1016/j.applthermaleng.2020.116483_b27) 1991; 5 Baïri (10.1016/j.applthermaleng.2020.116483_b16) 2014; 63 |
References_xml | – volume: 18 start-page: 1049 year: 1975 end-page: 1053 ident: b23 article-title: Correlating equations for laminar and turbulent free convection from a horizontal cylinder publication-title: Int. J. Heat Mass Transfer contributor: fullname: Chu – year: 2000 ident: b13 article-title: Shape and Structure: From Engineering to Nature contributor: fullname: Bejan – year: 1998 ident: b30 article-title: Handbook of Heat Transfer contributor: fullname: Cho – year: 2015 ident: b36 article-title: ANSYS Fluent Theory Guide, release 15.1 – volume: 115 start-page: 1288 year: 2017 end-page: 1308 ident: b39 article-title: Assessment of RANS turbulence models for numerical study of laminar-turbulent transition in convection heat transfer publication-title: Int. J. Heat Mass Transfer contributor: fullname: Pàscoa – volume: 116 start-page: 400 year: 1994 end-page: 408 ident: b41 article-title: Scaling of the turbulent natural convection flow in a heated square cavity publication-title: J. Heat Transfer contributor: fullname: Hoogendoorn – volume: 16 start-page: 116 year: 2002 end-page: 121 ident: b24 article-title: Natural convection inside vertical isothermal ducts of constant arbitrary cross section publication-title: J. Thermophys. Heat Transfer contributor: fullname: Muzychka – volume: 2 start-page: 259 year: 2017 end-page: 266 ident: b4 article-title: Electrification of subsea systems: Requirements and challenges in power distribution and conversion publication-title: CPSS Trans. Power Electron. Appl. contributor: fullname: Naik – year: 2001 ident: b15 article-title: Passive thermal transfer of subsea electronics contributor: fullname: Olsen – volume: 47 start-page: 203 year: 2004 end-page: 214 ident: b11 article-title: Optimal distribution of discrete heat sources on a wall with natural convection publication-title: Int. J. Heat Mass Transfer contributor: fullname: Bejan – volume: 63 start-page: 304 year: 2014 end-page: 322 ident: b16 article-title: A review on natural convection in enclosures for engineering applications. The particular case of the parallelogrammic diode cavity publication-title: Appl. Therm. Eng. contributor: fullname: García de María – volume: 9 start-page: 389 year: 2015 end-page: 395 ident: b18 article-title: Thermal modelling of a passively cooled inverter for wave power publication-title: IET Renew. Power Gener. contributor: fullname: Boström – volume: 7 start-page: 436 year: 2016 end-page: 445 ident: b19 article-title: Thermal rating of a submerged substation for wave power publication-title: IEEE Trans. Sustain. Energy contributor: fullname: Leijon – year: 2011 ident: b9 article-title: Subsea electronic system contributor: fullname: Boe – start-page: 443 year: 2004 end-page: 453 ident: b22 article-title: Models and experiments for laminar natural convection from heated bodies in enclosures publication-title: ASME 2004 Heat Transfer/Fluids Engineering Summer Conference, Vol. 1 contributor: fullname: Culham – year: 2010 ident: b8 article-title: Variable speed drive for subsea applications contributor: fullname: Boe – volume: 21 start-page: 604 year: 1975 end-page: 606 ident: b28 article-title: A comprehensive correlating equation for heat and component transfer by free convection publication-title: AIChE J. contributor: fullname: Churchill – year: 2018 ident: b31 – year: 2004 ident: b33 article-title: Practical Genetic Algorithms contributor: fullname: Haupt – volume: 53 start-page: 3969 year: 2010 end-page: 3976 ident: b12 article-title: Volumetric maximization of coolant usage in closed self-driven circuits publication-title: Int. J. Heat Mass Transfer contributor: fullname: Gosselin – year: 2009 ident: b5 article-title: Frequency inverters: Theory and applications (In Portuguese) contributor: fullname: Franchi – year: 2020 ident: b40 – volume: 20 start-page: 1301 year: 2015 end-page: 1309 ident: b17 article-title: Study on heat dissipation and cooling optimization of the junction box of OBSEA seafloor observatory publication-title: IEEE/ASME Trans. Mechatronics contributor: fullname: Rio – volume: 5 start-page: 208 year: 1991 end-page: 216 ident: b27 article-title: Effects of geometry and orientation on laminar natural convection from isothermal bodies publication-title: J. Thermophys. Heat Transfer contributor: fullname: Jafarpur – year: 2010 ident: b29 article-title: Thermal Computations for Electronics: Conductive, Radiative, and Convective Air Cooling contributor: fullname: Ellison – volume: 28 start-page: 319 year: 1985 end-page: 330 ident: b10 article-title: The transfer of heat by natural convection between bodies and their enclosures publication-title: Int. J. Heat Mass Transfer contributor: fullname: Powe – year: 2011 ident: b26 article-title: Fundamentals of Heat and Mass Transfer contributor: fullname: Dewitt – start-page: 47 year: 2012 end-page: 52 ident: b6 article-title: Pressure tolerant power electronics for deep and ultradeep water publication-title: Oil Gas Facil. contributor: fullname: Hernes – volume: 96 start-page: 443 year: 1974 end-page: 447 ident: b25 article-title: Natural convection adjacent to horizontal surface of various planforms publication-title: J. Heat Transfer contributor: fullname: Moran – year: 2017 ident: b37 article-title: CFD Analysis Methods for Systems Driven by Natural Convection, Master of Science, Department of Mechanical Engineering contributor: fullname: Propst – volume: 124 start-page: 975 year: 2017 end-page: 985 ident: b20 article-title: Optimized distribution of a large number of power electronics components cooled by conjugate turbulent natural convection publication-title: Appl. Therm. Eng. contributor: fullname: Boström – volume: 1 start-page: 3 year: 1988 end-page: 17 ident: b35 article-title: Describing the uncertainties in experimental results publication-title: Exp. Therm Fluid Sci. contributor: fullname: Moffat – year: 2004 ident: b14 article-title: Convection Heat Transfer contributor: fullname: Bejan – volume: 128 start-page: 157 year: 2005 end-page: 165 ident: b34 article-title: Modeling of natural convection in electronic enclosures publication-title: J. Electron. Packag. contributor: fullname: Culham – volume: 13 start-page: 853 year: 2007 end-page: 870 ident: b38 article-title: Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 1 – Summary of prevalent turbulence models publication-title: HVAC & R Res. contributor: fullname: Chen – volume: 6 start-page: 67543 year: 2018 end-page: 67554 ident: b21 article-title: A study on passive cooling in subsea power electronics publication-title: IEEE Access contributor: fullname: Polinder – year: 2010 ident: 10.1016/j.applthermaleng.2020.116483_b29 contributor: fullname: Ellison – year: 2020 ident: 10.1016/j.applthermaleng.2020.116483_b40 – volume: 47 start-page: 203 year: 2004 ident: 10.1016/j.applthermaleng.2020.116483_b11 article-title: Optimal distribution of discrete heat sources on a wall with natural convection publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2003.07.007 contributor: fullname: da Silva – volume: 124 start-page: 975 year: 2017 ident: 10.1016/j.applthermaleng.2020.116483_b20 article-title: Optimized distribution of a large number of power electronics components cooled by conjugate turbulent natural convection publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.06.058 contributor: fullname: Baudoin – start-page: 47 year: 2012 ident: 10.1016/j.applthermaleng.2020.116483_b6 article-title: Pressure tolerant power electronics for deep and ultradeep water publication-title: Oil Gas Facil. doi: 10.2118/154399-PA contributor: fullname: Pittini – year: 2018 ident: 10.1016/j.applthermaleng.2020.116483_b31 – volume: 13 start-page: 853 year: 2007 ident: 10.1016/j.applthermaleng.2020.116483_b38 article-title: Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 1 – Summary of prevalent turbulence models publication-title: HVAC & R Res. doi: 10.1080/10789669.2007.10391459 contributor: fullname: Zhai – volume: 21 start-page: 604 year: 1975 ident: 10.1016/j.applthermaleng.2020.116483_b28 article-title: A comprehensive correlating equation for heat and component transfer by free convection publication-title: AIChE J. doi: 10.1002/aic.690210330 contributor: fullname: Churchill – ident: 10.1016/j.applthermaleng.2020.116483_b32 – volume: 115 start-page: 1288 year: 2017 ident: 10.1016/j.applthermaleng.2020.116483_b39 article-title: Assessment of RANS turbulence models for numerical study of laminar-turbulent transition in convection heat transfer publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2017.08.114 contributor: fullname: Abdollahzadeh – volume: 96 start-page: 443 year: 1974 ident: 10.1016/j.applthermaleng.2020.116483_b25 article-title: Natural convection adjacent to horizontal surface of various planforms publication-title: J. Heat Transfer doi: 10.1115/1.3450224 contributor: fullname: Lloyd – start-page: 443 year: 2004 ident: 10.1016/j.applthermaleng.2020.116483_b22 article-title: Models and experiments for laminar natural convection from heated bodies in enclosures contributor: fullname: Teertstra – volume: 9 start-page: 389 year: 2015 ident: 10.1016/j.applthermaleng.2020.116483_b18 article-title: Thermal modelling of a passively cooled inverter for wave power publication-title: IET Renew. Power Gener. doi: 10.1049/iet-rpg.2014.0112 contributor: fullname: Baudoin – ident: 10.1016/j.applthermaleng.2020.116483_b1 doi: 10.4043/29656-MS – volume: 18 start-page: 1049 year: 1975 ident: 10.1016/j.applthermaleng.2020.116483_b23 article-title: Correlating equations for laminar and turbulent free convection from a horizontal cylinder publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(75)90222-7 contributor: fullname: Churchill – year: 2000 ident: 10.1016/j.applthermaleng.2020.116483_b13 contributor: fullname: Bejan – volume: 16 start-page: 116 year: 2002 ident: 10.1016/j.applthermaleng.2020.116483_b24 article-title: Natural convection inside vertical isothermal ducts of constant arbitrary cross section publication-title: J. Thermophys. Heat Transfer doi: 10.2514/2.6660 contributor: fullname: Yovanovich – volume: 63 start-page: 304 year: 2014 ident: 10.1016/j.applthermaleng.2020.116483_b16 article-title: A review on natural convection in enclosures for engineering applications. The particular case of the parallelogrammic diode cavity publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.10.065 contributor: fullname: Baïri – volume: 53 start-page: 3969 year: 2010 ident: 10.1016/j.applthermaleng.2020.116483_b12 article-title: Volumetric maximization of coolant usage in closed self-driven circuits publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2010.05.016 contributor: fullname: da Silva – year: 2004 ident: 10.1016/j.applthermaleng.2020.116483_b14 contributor: fullname: Bejan – volume: 20 start-page: 1301 year: 2015 ident: 10.1016/j.applthermaleng.2020.116483_b17 article-title: Study on heat dissipation and cooling optimization of the junction box of OBSEA seafloor observatory publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2014.2336791 contributor: fullname: Toma – year: 2004 ident: 10.1016/j.applthermaleng.2020.116483_b33 contributor: fullname: Haupt – ident: 10.1016/j.applthermaleng.2020.116483_b2 doi: 10.4043/29550-MS – volume: 7 start-page: 436 year: 2016 ident: 10.1016/j.applthermaleng.2020.116483_b19 article-title: Thermal rating of a submerged substation for wave power publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2015.2425045 contributor: fullname: Baudoin – volume: 128 start-page: 157 year: 2005 ident: 10.1016/j.applthermaleng.2020.116483_b34 article-title: Modeling of natural convection in electronic enclosures publication-title: J. Electron. Packag. doi: 10.1115/1.2188953 contributor: fullname: Teertstra – year: 2015 ident: 10.1016/j.applthermaleng.2020.116483_b36 – volume: 28 start-page: 319 year: 1985 ident: 10.1016/j.applthermaleng.2020.116483_b10 article-title: The transfer of heat by natural convection between bodies and their enclosures publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(85)90065-1 contributor: fullname: Warrington – volume: 5 start-page: 208 year: 1991 ident: 10.1016/j.applthermaleng.2020.116483_b27 article-title: Effects of geometry and orientation on laminar natural convection from isothermal bodies publication-title: J. Thermophys. Heat Transfer doi: 10.2514/3.249 contributor: fullname: Lee – volume: 116 start-page: 400 year: 1994 ident: 10.1016/j.applthermaleng.2020.116483_b41 article-title: Scaling of the turbulent natural convection flow in a heated square cavity publication-title: J. Heat Transfer doi: 10.1115/1.2911412 contributor: fullname: Henkes – ident: 10.1016/j.applthermaleng.2020.116483_b3 doi: 10.4043/26170-MS – year: 2011 ident: 10.1016/j.applthermaleng.2020.116483_b9 contributor: fullname: Boe – year: 2010 ident: 10.1016/j.applthermaleng.2020.116483_b8 contributor: fullname: Boe – year: 2001 ident: 10.1016/j.applthermaleng.2020.116483_b15 contributor: fullname: Bakka – volume: 6 start-page: 67543 year: 2018 ident: 10.1016/j.applthermaleng.2020.116483_b21 article-title: A study on passive cooling in subsea power electronics publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2879273 contributor: fullname: Wani – volume: 1 start-page: 3 year: 1988 ident: 10.1016/j.applthermaleng.2020.116483_b35 article-title: Describing the uncertainties in experimental results publication-title: Exp. Therm Fluid Sci. doi: 10.1016/0894-1777(88)90043-X contributor: fullname: Moffat – volume: 2 start-page: 259 year: 2017 ident: 10.1016/j.applthermaleng.2020.116483_b4 article-title: Electrification of subsea systems: Requirements and challenges in power distribution and conversion publication-title: CPSS Trans. Power Electron. Appl. doi: 10.24295/CPSSTPEA.2017.00024 contributor: fullname: Rajashekara – year: 2017 ident: 10.1016/j.applthermaleng.2020.116483_b37 contributor: fullname: Propst – ident: 10.1016/j.applthermaleng.2020.116483_b7 – year: 1998 ident: 10.1016/j.applthermaleng.2020.116483_b30 contributor: fullname: Rohsenow – year: 2011 ident: 10.1016/j.applthermaleng.2020.116483_b26 contributor: fullname: Bergman – year: 2009 ident: 10.1016/j.applthermaleng.2020.116483_b5 contributor: fullname: Franchi |
SSID | ssj0012874 |
Score | 2.383526 |
Snippet | Experimental and theoretical analyses are conducted to evaluate the passive cooling performance of a novel geometry for subsea variable speed drives, a common... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 116483 |
SubjectTerms | Boards Computational Fluid Dynamics Cooling Cooling rate Deep sea Deep-sea oil exploration Deviation Enclosures Equivalent thermal network Fluid flow Frequency inverter Genetic algorithms Geometry Heat sinks Heat transfer augmentation Low temperature Mathematical models Oil exploration Seawater Studies Thermal management Variable speed drives Velocity distribution |
Title | A novel cooling geometry for subsea variable speed drives |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2020.116483 https://www.proquest.com/docview/2491613316 |
Volume | 185 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KguhBfGK1lj30GpvsbpLNSUqxVMVetNDbstndlIp90NaCF3-7M2miVhAEryFkN18m33yTzIOQBlgB1zxMPJElsSe0cV4SM-E53zFhTRTp_IPbQy_q9sXdIBxUSLushcG0yoL715yes3VxpFmg2ZyNRs3HAJYA9xcwn_MklMjDAtwf2PTV-2eaR4D93POgC_cDZ--QxleOF_4kRp011ji2BKJFhhwSCcl_c1M_CDv3Qp0Dsl_IR9pa7_CQVNzkiOx9ayp4TJIWnUxX7oWaKQ7kGdKhm47dcv5GQZ_SBRCF03QFITIWTdHFDNwXtXPsPntC-p2bp3bXKwYkeIaHcukFzAACMkrhHq3xrbYiZHFmWIbzHmIhwPdrY0Hh2CjVvq9lIo11zNhYS20YPyVbk-nEnRGaSD-xWYpz5zMRS6Dj1Lo4xX6kMYg8VyVhiYearftgqDJB7Flt4qgQR7XGsUquS_DUxnNVQNl_vEKtxFwV79dCQdAIUpXzIDr_9wIXZJdhogrWqYc1srWcv7pLUBrLtJ6bUp1st27vu70PIYDULg |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6Kgo-D-MRq1T30GpvsbpLNSUqxVK1ebKG3ZbO7EcU-aGvBi7_dmTTxBYLgNYTs5svkm2-SeRBSByvgmoeJJ7Ik9oQ2zktiJjznOyasiSKdf3C7vYs6fXE9CAcV0iprYTCtsuD-JafnbF0caRRoNiaPj437AJYA9xcwn_MklMDDqwL1MRj1-dtHnkeADd3zqAs3BKevkfpnkhf-JUahNdQ4twTCRYYkEgnJf_NTPxg7d0PtbbJV6EfaXG5xh1TcaJdsfukquEeSJh2NF-6ZmjFO5HmgD248dPPpKwWBSmfAFE7TBcTIWDVFZxPwX9ROsf3sPum3L3utjldMSPAMD-XcC5gBCGSUwj1a41ttRcjizLAMBz7EQoDz18aCxLFRqn1fy0Qa65ixsZbaMH5AVkbjkTskNJF-YrMUB89nIpbAx6l1cYoNSWNQea5KwhIPNVk2wlBlhtiT-o6jQhzVEscquSjBU98erALO_uMVaiXmqnjBZgqiRtCqnAfR0b8XOCPrnd5tV3Wv7m6OyQbDrBUsWg9rZGU-fXEnIDvm6WluVu88BtXH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+cooling+geometry+for+subsea+variable+speed+drives&rft.jtitle=Applied+thermal+engineering&rft.au=Milit%C3%A3o%2C+Lucas+A.&rft.au=Fernandes%2C+Caio+D.&rft.au=dos+Santos%2C+Diego&rft.au=Machado%2C+Douglas+M.&rft.date=2021-02-25&rft.issn=1359-4311&rft.volume=185&rft.spage=116483&rft_id=info:doi/10.1016%2Fj.applthermaleng.2020.116483&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2020_116483 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |