Transposable elements in the transcriptome of the velvetbean caterpillar Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Erebidae)

Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data relat...

Full description

Saved in:
Bibliographic Details
Published inGenome Vol. 66; no. 6; pp. 116 - 130
Main Authors Pezenti, Larissa Forim, Dionisio, Jaqueline Fernanda, Sosa-Gómez, Daniel Ricardo, de Souza, Rogério Fernandes, da Rosa, Renata
Format Journal Article
LanguageEnglish
Published Canada NRC Research Press 01.06.2023
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data related to the identification and characterization of TEs present in the transcriptome of Anticarsia gemmatalis. Approximately, 835 transcripts showed significant similarity to TEs and (or) characteristic domains. Retrotransposons accounted for 71.2% (595 sequences) of the identified elements, while DNA transposons were less abundant, with 240 annotations (28.8%). TEs were classified into 30 superfamilies, with SINE3/5S and Gypsy being the most abundant. Based on the sequences of TEs found in the transcriptome, we were able to locate conserved regions in the chromosomes of this species. The analysis of differential expression of TEs in susceptible and resistant strains, challenged and not challenged with Bacillus thuringiensis ( Bt) from in silico analysis, indicated that exposure to Bt can regulate the transcription of mobile genetic elements in the velvetbean caterpillar. Thus, these data contribute significantly to the knowledge of the structure and composition of these elements in the genome of this species, and suggest the role of stress on their expression.
AbstractList Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data related to the identification and characterization of TEs present in the transcriptome of Anticarsia gemmatalis. Approximately, 835 transcripts showed significant similarity to TEs and (or) characteristic domains. Retrotransposons accounted for 71.2% (595 sequences) of the identified elements, while DNA transposons were less abundant, with 240 annotations (28.8%). TEs were classified into 30 superfamilies, with SINE3/5S and Gypsy being the most abundant. Based on the sequences of TEs found in the transcriptome, we were able to locate conserved regions in the chromosomes of this species. The analysis of differential expression of TEs in susceptible and resistant strains, challenged and not challenged with Bacillus thuringiensis (Bt) from in silico analysis, indicated that exposure to Bt can regulate the transcription of mobile genetic elements in the velvetbean caterpillar. Thus, these data contribute significantly to the knowledge of the structure and composition of these elements in the genome of this species, and suggest the role of stress on their expression.
Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data related to the identification and characterization of TEs present in the transcriptome of Anticarsia gemmatalis. Approximately, 835 transcripts showed significant similarity to TEs and (or) characteristic domains. Retrotransposons accounted for 71.2% (595 sequences) of the identified elements, while DNA transposons were less abundant, with 240 annotations (28.8%). TEs were classified into 30 superfamilies, with SINE3/5S and Gypsy being the most abundant. Based on the sequences of TEs found in the transcriptome, we were able to locate conserved regions in the chromosomes of this species. The analysis of differential expression of TEs in susceptible and resistant strains, challenged and not challenged with Bacillus thuringiensis (Bt) from in silico analysis, indicated that exposure to Bt can regulate the transcription of mobile genetic elements in the velvetbean caterpillar. Thus, these data contribute significantly to the knowledge of the structure and composition of these elements in the genome of this species, and suggest the role of stress on their expression. Key words: Bt resistance, chromosomes, differential expression, DNA transposons, mobile genetic elements, retrotransposons, transcripts
Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data related to the identification and characterization of TEs present in the transcriptome of Anticarsia gemmatalis. Approximately, 835 transcripts showed significant similarity to TEs and (or) characteristic domains. Retrotransposons accounted for 71.2% (595 sequences) of the identified elements, while DNA transposons were less abundant, with 240 annotations (28.8%). TEs were classified into 30 superfamilies, with SINE3/5S and Gypsy being the most abundant. Based on the sequences of TEs found in the transcriptome, we were able to locate conserved regions in the chromosomes of this species. The analysis of differential expression of TEs in susceptible and resistant strains, challenged and not challenged with Bacillus thuringiensis (Bt) from in silico analysis, indicated that exposure to Bt can regulate the transcription of mobile genetic elements in the velvetbean caterpillar. Thus, these data contribute significantly to the knowledge of the structure and composition of these elements in the genome of this species, and suggest the role of stress on their expression.Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data related to the identification and characterization of TEs present in the transcriptome of Anticarsia gemmatalis. Approximately, 835 transcripts showed significant similarity to TEs and (or) characteristic domains. Retrotransposons accounted for 71.2% (595 sequences) of the identified elements, while DNA transposons were less abundant, with 240 annotations (28.8%). TEs were classified into 30 superfamilies, with SINE3/5S and Gypsy being the most abundant. Based on the sequences of TEs found in the transcriptome, we were able to locate conserved regions in the chromosomes of this species. The analysis of differential expression of TEs in susceptible and resistant strains, challenged and not challenged with Bacillus thuringiensis (Bt) from in silico analysis, indicated that exposure to Bt can regulate the transcription of mobile genetic elements in the velvetbean caterpillar. Thus, these data contribute significantly to the knowledge of the structure and composition of these elements in the genome of this species, and suggest the role of stress on their expression.
Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data related to the identification and characterization of TEs present in the transcriptome of Approximately, 835 transcripts showed significant similarity to TEs and (or) characteristic domains. Retrotransposons accounted for 71.2% (595 sequences) of the identified elements, while DNA transposons were less abundant, with 240 annotations (28.8%). TEs were classified into 30 superfamilies, with and being the most abundant. Based on the sequences of TEs found in the transcriptome, we were able to locate conserved regions in the chromosomes of this species. The analysis of differential expression of TEs in susceptible and resistant strains, challenged and not challenged with ( ) from in silico analysis, indicated that exposure to can regulate the transcription of mobile genetic elements in the velvetbean caterpillar. Thus, these data contribute significantly to the knowledge of the structure and composition of these elements in the genome of this species, and suggest the role of stress on their expression.
Audience Academic
Author de Souza, Rogério Fernandes
da Rosa, Renata
Dionisio, Jaqueline Fernanda
Pezenti, Larissa Forim
Sosa-Gómez, Daniel Ricardo
Author_xml – sequence: 1
  givenname: Larissa Forim
  surname: Pezenti
  fullname: Pezenti, Larissa Forim
– sequence: 2
  givenname: Jaqueline Fernanda
  orcidid: 0000-0002-1954-6471
  surname: Dionisio
  fullname: Dionisio, Jaqueline Fernanda
– sequence: 3
  givenname: Daniel Ricardo
  surname: Sosa-Gómez
  fullname: Sosa-Gómez, Daniel Ricardo
– sequence: 4
  givenname: Rogério Fernandes
  surname: de Souza
  fullname: de Souza, Rogério Fernandes
– sequence: 5
  givenname: Renata
  orcidid: 0000-0003-4258-7244
  surname: da Rosa
  fullname: da Rosa, Renata
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36971261$$D View this record in MEDLINE/PubMed
BookMark eNptkk1rFTEUhoNU7G116VaCblpwaj7mI9PdpVRbuCBoXYckc3JNmclMk9yie39Wd_1jZrRar1yyCJw85835eA_Qnh89IPSSkhNKeftuDb5ghLGCkLp-gha0FKTgnNE9tCCC04I1bb2PDmK8JoQS3tJnaJ_XbUNZTRfox1VQPk5jVLoHDD0M4FPEzuP0FXCaH01wUxoHwKP9FbyF_haSBuWxUQnC5PpeBbz0yRkVolN4DcOgkupdxBf3d9pDeIupoAIfrWBy3TjlLHWKzwNo1yk4fo6eWtVHePFwH6Iv78-vzi6K1ccPl2fLVWF4JVJBKdOlLYXWquqEsIoTU9pG8JIzzSpVN8yQzlptSspMa7kSjHZaiaqqO9E0_BAd_dadwnizgZjk4KKBXL6HcRNlHhVtSEU4y-ib_9DrcRN8rk6yrMpaXtf8kVqrHqTzdswTM7OoXDZVXgKty_nbYgeVF5en0OdtWpfDW_zrHbyZ3I38FzrZAeXTweDMTtXjrYTMJPiW1moTo7z8_GmbffXQ_UYP0MkpuEGF7_KPbx5bMmGMMYD9i1AiZ1_K3J6cfSlnX_KfzUnRpg
Cites_doi 10.2174/138920210790886871
10.1126/science.1089670
10.1093/bioinformatics/btl158
10.1016/j.ibmb.2008.05.012
10.1038/nrg3030
10.14411/eje.2014.052
10.1038/jid.2014.371
10.1016/S0959-437X(05)80108-X
10.1186/gb-2006-7-11-r112
10.1016/0168-9525(89)90039-5
10.1186/s13100-021-00259-7
10.1186/s13100-017-0090-3
10.1093/molbev/msg048
10.1186/1755-8166-6-54
10.1186/s12864-017-4050-6
10.1093/nar/gkt1223
10.1006/anbo.1998.0746
10.1371/journal.pone.0230244
10.1007/s11295-014-0733-1
10.1038/443521a
10.1016/j.gene.2012.07.042
10.3390/life12040521
10.1111/j.1365-2583.2011.01127.x
10.1186/s13100-022-00263-5
10.1093/nar/gku1179
10.1126/science.1178534
10.1186/s13059-014-0550-8
10.1038/nbt1180
10.1093/nar/22.22.4673
10.1093/nar/gkab828
10.1016/j.cbpc.2020.108718
10.1371/journal.pone.0257996
10.1093/gbe/evab231
10.1007/s13258-018-0648-6
10.1186/s13100-015-0041-9
10.1093/bib/bbm048
10.1371/journal.pone.0040532
10.1093/bioinformatics/btu170
10.1186/s13100-019-0165-4
10.1007/s10709-017-9964-z
10.1146/annurev.genom.8.080706.092416
10.1186/1759-8753-4-21
10.1007/s10709-009-9424-5
10.1093/molbev/msy096
10.1038/nature06341
10.1038/nbt.1883
10.1093/nar/gkq1061
10.1186/1471-2164-11-601
10.1007/s004380050467
10.1146/annurev.micro.53.1.245
10.1371/journal.pgen.1006108
10.1093/nar/gkh454
10.1186/1472-6750-6-27
10.1186/1745-6150-4-41
10.1186/s12864-015-1499-z
10.1007/s10528-009-9325-4
10.1186/s13059-016-0881-8
10.1371/journal.pone.0030770
10.15252/embr.201642743
10.1093/nar/30.1.281
10.1007/s10709-012-9686-1
10.1038/nmeth.1923
10.1073/pnas.2006106117
10.1016/j.cub.2012.04.025
10.1111/mec.12170
10.1016/j.gene.2015.02.058
10.1016/j.ympev.2015.03.009
10.1038/35087627
10.1016/j.ygeno.2021.05.012
10.1038/nrg2165-c4
10.1093/nar/gkm286
10.1093/nar/gkr367
10.1007/s10142-017-0545-0
10.1016/j.virol.2017.05.019
10.1093/bioinformatics/bti610
10.1186/s13100-022-00270-6
10.1093/jee/69.4.487
10.1111/j.1432-1033.1995.tb20774.x
10.1073/pnas.1921046117
10.1186/1471-2164-6-107
10.1186/s13100-016-0059-7
10.1371/journal.pone.0137050
10.1016/j.fsi.2007.05.001
10.1007/s00438-017-1291-7
10.1186/s12862-018-1324-9
10.1007/s10709-014-9805-2
10.3390/insects13050396
ContentType Journal Article
Copyright COPYRIGHT 2023 NRC Research Press
2023 Published by NRC Research Press
Copyright_xml – notice: COPYRIGHT 2023 NRC Research Press
– notice: 2023 Published by NRC Research Press
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7SS
7TK
7TM
7U9
8FD
FR3
H94
K9.
P64
RC3
7X8
DOI 10.1139/gen-2022-0066
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Entomology Abstracts



MEDLINE - Academic
CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1480-3321
EndPage 130
ExternalDocumentID A753211647
36971261
10_1139_gen_2022_0066
Genre Journal Article
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID -ET
-~X
00T
0R~
29H
2QL
36B
4.4
4IJ
5GY
5RE
5RP
AAHBH
AAYXX
ABDBF
ABJNI
ACGFO
ACGFS
ACGOD
ACNCT
ACPRK
ACUHS
AEGXH
AENEX
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
APEBS
CITATION
CS3
D8U
DATHI
DU5
EAD
EAP
EBD
EBS
ECC
EDH
EMB
EMK
EMOBN
EPL
EST
ESX
F5P
GJPHO
HZ~
IAG
IAO
ICQ
IGS
IHR
INH
INR
IOF
IPNFZ
ISN
ISR
ITC
L7B
MV1
NRXXU
NYCZX
O9-
ONR
PV9
QF4
QM4
QM9
QN7
QO4
QRP
RIG
RRP
RZL
SV3
TR2
TUS
U5U
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TK
7TM
7U9
8FD
FR3
H94
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c358t-112b4f48bba5d88fa30c4f783432b25a672c0dffbc412c9f3a821dba8556d8773
ISSN 0831-2796
1480-3321
IngestDate Thu Jul 10 22:36:35 EDT 2025
Mon Jun 30 08:51:23 EDT 2025
Wed Mar 19 02:14:42 EDT 2025
Fri Mar 14 03:22:06 EDT 2025
Tue Jun 10 15:44:12 EDT 2025
Sat Mar 08 18:55:47 EST 2025
Wed Mar 05 05:55:42 EST 2025
Mon Jul 21 05:58:46 EDT 2025
Thu Jul 10 07:46:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Bt resistance
transcripts
chromosomes
DNA transposons
differential expression
mobile genetic elements
retrotransposons
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-112b4f48bba5d88fa30c4f783432b25a672c0dffbc412c9f3a821dba8556d8773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4258-7244
0000-0002-1954-6471
PMID 36971261
PQID 2821293663
PQPubID 34326
PageCount 15
ParticipantIDs proquest_miscellaneous_2791705032
proquest_journals_2821293663
gale_infotracmisc_A753211647
gale_infotracgeneralonefile_A753211647
gale_infotraccpiq_753211647
gale_infotracacademiconefile_A753211647
gale_incontextgauss_ISR_A753211647
pubmed_primary_36971261
crossref_primary_10_1139_gen_2022_0066
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Ottawa
PublicationTitle Genome
PublicationTitleAlternate Genome
PublicationYear 2023
Publisher NRC Research Press
Canadian Science Publishing NRC Research Press
Publisher_xml – name: NRC Research Press
– name: Canadian Science Publishing NRC Research Press
References refg47/ref47
refg40/ref40
refg65/ref65
refg18/ref18
refg22/ref22
refg83/ref83
refg36/ref36
Schwarzacher T. (refg75/ref75) 2000; 85
refg76/ref76
refg51/ref51
refg72/ref72
refg11/ref11
refg25/ref25
refg6/ref6
refg15/ref15
refg29/ref29
refg43/ref43
refg80/ref80
refg79/ref79
refg26/ref26
refg14/ref14
refg5/ref5
refg54/ref54
refg68/ref68
refg57/ref57
refg37/ref37
refg19/ref19
refg21/ref21
refg7/ref7
refg4/ref4
refg46/ref46
refg48/ref48
refg10/ref10
refg1/ref1
refg82/ref82
refg32/ref32
refg86/ref86
refg89/ref89
refg35/ref35
refg59/ref59
refg61/ref61
refg53/ref53
refg78/ref78
refg42/ref42
refg24/ref24
refg16/ref16
refg50/ref50
refg64/ref64
refg67/ref67
refg13/ref13
refg27/ref27
refg56/ref56
refg74/ref74
refg20/ref20
refg85/ref85
refg38/ref38
refg45/ref45
refg49/ref49
refg31/ref31
refg9/ref9
refg34/ref34
refg71/ref71
refg88/ref88
refg52/ref52
refg8/ref8
refg60/ref60
refg63/ref63
refg2/ref2
refg23/ref23
refg17/ref17
refg30/ref30
refg84/ref84
refg66/ref66
refg12/ref12
refg28/ref28
refg41/ref41
refg55/ref55
refg39/ref39
refg3/ref3
refg69/ref69
refg62/ref62
refg87/ref87
refg44/ref44
refg81/ref81
refg58/ref58
refg73/ref73
refg33/ref33
refg70/ref70
References_xml – ident: refg60/ref60
  doi: 10.2174/138920210790886871
– ident: refg40/ref40
  doi: 10.1126/science.1089670
– ident: refg47/ref47
  doi: 10.1093/bioinformatics/btl158
– ident: refg63/ref63
  doi: 10.1016/j.ibmb.2008.05.012
– ident: refg46/ref46
  doi: 10.1038/nrg3030
– ident: refg64/ref64
  doi: 10.14411/eje.2014.052
– ident: refg39/ref39
  doi: 10.1038/jid.2014.371
– ident: refg22/ref22
  doi: 10.1016/S0959-437X(05)80108-X
– ident: refg7/ref7
  doi: 10.1186/gb-2006-7-11-r112
– ident: refg21/ref21
  doi: 10.1016/0168-9525(89)90039-5
– ident: refg29/ref29
  doi: 10.1186/s13100-021-00259-7
– ident: refg3/ref3
  doi: 10.1186/s13100-017-0090-3
– ident: refg17/ref17
  doi: 10.1093/molbev/msg048
– ident: refg62/ref62
  doi: 10.1186/1755-8166-6-54
– ident: refg56/ref56
  doi: 10.1186/s12864-017-4050-6
– ident: refg19/ref19
  doi: 10.1093/nar/gkt1223
– ident: refg72/ref72
  doi: 10.1006/anbo.1998.0746
– ident: refg51/ref51
  doi: 10.1371/journal.pone.0230244
– ident: refg84/ref84
  doi: 10.1007/s11295-014-0733-1
– ident: refg8/ref8
  doi: 10.1038/443521a
– ident: refg12/ref12
  doi: 10.1016/j.gene.2012.07.042
– ident: refg33/ref33
  doi: 10.3390/life12040521
– ident: refg80/ref80
  doi: 10.1111/j.1365-2583.2011.01127.x
– ident: refg4/ref4
  doi: 10.1186/s13100-022-00263-5
– ident: refg27/ref27
  doi: 10.1093/nar/gku1179
– ident: refg74/ref74
  doi: 10.1126/science.1178534
– ident: refg50/ref50
  doi: 10.1186/s13059-014-0550-8
– ident: refg69/ref69
  doi: 10.1038/nbt1180
– ident: refg81/ref81
  doi: 10.1093/nar/22.22.4673
– ident: refg70/ref70
  doi: 10.1093/nar/gkab828
– ident: refg78/ref78
  doi: 10.1016/j.cbpc.2020.108718
– ident: refg1/ref1
  doi: 10.1371/journal.pone.0257996
– ident: refg59/ref59
  doi: 10.1093/gbe/evab231
– ident: refg87/ref87
  doi: 10.1007/s13258-018-0648-6
– ident: refg2/ref2
  doi: 10.1186/s13100-015-0041-9
– ident: refg6/ref6
  doi: 10.1093/bib/bbm048
– ident: refg37/ref37
  doi: 10.1371/journal.pone.0040532
– ident: refg9/ref9
  doi: 10.1093/bioinformatics/btu170
– ident: refg32/ref32
  doi: 10.1186/s13100-019-0165-4
– ident: refg18/ref18
  doi: 10.1007/s10709-017-9964-z
– ident: refg38/ref38
  doi: 10.1146/annurev.genom.8.080706.092416
– ident: refg45/ref45
  doi: 10.1186/1759-8753-4-21
– ident: refg61/ref61
  doi: 10.1007/s10709-009-9424-5
– ident: refg42/ref42
  doi: 10.1093/molbev/msy096
– ident: refg13/ref13
  doi: 10.1038/nature06341
– ident: refg30/ref30
  doi: 10.1038/nbt.1883
– ident: refg48/ref48
  doi: 10.1093/nar/gkq1061
– ident: refg83/ref83
  doi: 10.1186/1471-2164-11-601
– ident: refg68/ref68
  doi: 10.1007/s004380050467
– ident: refg34/ref34
  doi: 10.1146/annurev.micro.53.1.245
– ident: refg11/ref11
  doi: 10.1371/journal.pgen.1006108
– ident: refg52/ref52
  doi: 10.1093/nar/gkh454
– ident: refg73/ref73
  doi: 10.1186/1472-6750-6-27
– ident: refg49/ref49
  doi: 10.1186/1745-6150-4-41
– ident: refg57/ref57
  doi: 10.1186/s12864-015-1499-z
– ident: refg79/ref79
  doi: 10.1007/s10528-009-9325-4
– ident: refg15/ref15
  doi: 10.1186/s13059-016-0881-8
– ident: refg54/ref54
  doi: 10.1371/journal.pone.0030770
– ident: refg28/ref28
  doi: 10.15252/embr.201642743
– ident: refg53/ref53
  doi: 10.1093/nar/30.1.281
– ident: refg58/ref58
  doi: 10.1007/s10709-012-9686-1
– ident: refg44/ref44
  doi: 10.1038/nmeth.1923
– ident: refg71/ref71
  doi: 10.1073/pnas.2006106117
– ident: refg23/ref23
  doi: 10.1016/j.cub.2012.04.025
– ident: refg10/ref10
  doi: 10.1111/mec.12170
– ident: refg36/ref36
  doi: 10.1016/j.gene.2015.02.058
– ident: refg67/ref67
  doi: 10.1016/j.ympev.2015.03.009
– ident: refg43/ref43
  doi: 10.1038/35087627
– ident: refg66/ref66
  doi: 10.1016/j.ygeno.2021.05.012
– ident: refg85/ref85
  doi: 10.1038/nrg2165-c4
– ident: refg88/ref88
  doi: 10.1093/nar/gkm286
– ident: refg20/ref20
  doi: 10.1093/nar/gkr367
– ident: refg26/ref26
  doi: 10.1007/s10142-017-0545-0
– ident: refg55/ref55
  doi: 10.1016/j.virol.2017.05.019
– ident: refg14/ref14
  doi: 10.1093/bioinformatics/bti610
– volume: 85
  start-page: 97
  year: 2000
  ident: refg75/ref75
  publication-title: Heredity
– ident: refg76/ref76
  doi: 10.1186/s13100-022-00270-6
– ident: refg31/ref31
  doi: 10.1093/jee/69.4.487
– ident: refg5/ref5
  doi: 10.1111/j.1432-1033.1995.tb20774.x
– ident: refg24/ref24
  doi: 10.1073/pnas.1921046117
– ident: refg41/ref41
  doi: 10.1186/1471-2164-6-107
– ident: refg25/ref25
  doi: 10.1186/s13100-016-0059-7
– ident: refg82/ref82
  doi: 10.1371/journal.pone.0137050
– ident: refg16/ref16
  doi: 10.1016/j.fsi.2007.05.001
– ident: refg35/ref35
  doi: 10.1007/s00438-017-1291-7
– ident: refg65/ref65
  doi: 10.1186/s12862-018-1324-9
– ident: refg86/ref86
  doi: 10.1007/s10709-014-9805-2
– ident: refg89/ref89
  doi: 10.3390/insects13050396
SSID ssj0010391
Score 2.3729866
Snippet Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a...
SourceID proquest
gale
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage 116
SubjectTerms Agricultural pests
Animals
Annotations
Anticarsia gemmatalis
Caterpillars
Chromosomes
Deoxyribonucleic acid
DNA
DNA Transposable Elements
Eukaryotes
Gene sequencing
Genetic aspects
Genetic research
Genetic transcription
Genomes
Lepidoptera
Lepidoptera - genetics
Moths - genetics
Nucleotide sequence
Transcriptome
Transcriptomes
Transposons
Title Transposable elements in the transcriptome of the velvetbean caterpillar Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Erebidae)
URI https://www.ncbi.nlm.nih.gov/pubmed/36971261
https://www.proquest.com/docview/2821293663
https://www.proquest.com/docview/2791705032
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VVqBeEG9CC1oQKqDUJd51_ODWlrYBCQ60lXqzdtfryBKxg51Uomf-Fdz4Y8x4_SxFAi5W5Bk7zs6XeaznQchzV9tgRgNhjWLGLUdJafnaxRwxrrwocGLlYjXyh4_u5NR5fzY-W1n53slaWi7kjrq4sq7kf6QK50CuWCX7D5Jtbgon4DPIF44gYTj-nYxNZ_KiLH_SJhG8qDMXF0gsdUI2a1IBzvXnc72QuP2OqVD5HIcO5dhCAISVF4kYTvVsJsq2iMMJvkXf25dVTQxYab-cAKLnSZTNsXQZ9xMOci2TSDTdnSpP90indSOEUvNeYFqSqcQGvVKI4WGWJ7PGj8Zt4SIxr4EE2KrS-602uRvLcQw_1Toqn4rPzNa3KZHH_gAA9axmjPTwOFteGMc4m5psgDzJ6jvq3m4H421W1o42GtrxwXBwU1Zdq3AzuKWCalcf26aQ83c7wbHNKogP8ATRODpeXT5YvfmsBA13A89mrt2ayyaJsSZdI2sMYhRQsmu7e2_3DtfaARqBXbd15cHr3retkxv19T2P6LJfcCnaKb2ek1vkZhWu0F2DvdtkRad3yHUzwPTrXfKti0BaI5AmKQWw0R4CaRaXJ1sE0g4CaYtA2iKQTn7-QPRtU8QefdlB3hta4-7VPXJ6eHCyP7GquR6W4mN_YYGLL53Y8aUU48j3Y8FHyolx4gtnko2F6zE1iuJYKsdmKoi58JkdSeGPx27kex6_T1bTLNUPCYWAWsWauTLCCukREyqKbT2KPB2PI9uNB2SrXttwbtq3hGXYy4MQ5BGiPEKUx4A8w5UPsSVKijlXU7EsivDd8adwFyJ6ZmPfvQF5UTHFGSyhElUJCzwLdlHrcW70ONU8-RJ2qFs96tR0mL_qNps9RlD9qk-ucRJWaqkIGSwW-PAQSQzI04aMV2I6ZaqzJfB4AbbRGnE2IA8MvprlqWH56I-UDbLe_jU3yeoiX-rH4Jov5JPqL_ALkRzkBg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transposable+elements+in+the+transcriptome+of+the+velvetbean+caterpillar+Anticarsia+gemmatalis+H%C3%BCbner%2C+1818+%28Lepidoptera%3A+Erebidae%29&rft.jtitle=Genome&rft.au=Pezenti%2C+Larissa+Forim&rft.au=Dionisio%2C+Jaqueline+Fernanda&rft.au=Sosa-G%C3%B3mez%2C+Daniel+Ricardo&rft.au=de+Souza%2C+Rog%C3%A9rio+Fernandes&rft.date=2023-06-01&rft.eissn=1480-3321&rft.volume=66&rft.issue=6&rft.spage=116&rft_id=info:doi/10.1139%2Fgen-2022-0066&rft_id=info%3Apmid%2F36971261&rft.externalDocID=36971261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0831-2796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0831-2796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0831-2796&client=summon