Transposable elements in the transcriptome of the velvetbean caterpillar Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Erebidae)
Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data relat...
Saved in:
Published in | Genome Vol. 66; no. 6; pp. 116 - 130 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Canada
NRC Research Press
01.06.2023
Canadian Science Publishing NRC Research Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data related to the identification and characterization of TEs present in the transcriptome of Anticarsia gemmatalis. Approximately, 835 transcripts showed significant similarity to TEs and (or) characteristic domains. Retrotransposons accounted for 71.2% (595 sequences) of the identified elements, while DNA transposons were less abundant, with 240 annotations (28.8%). TEs were classified into 30 superfamilies, with SINE3/5S and Gypsy being the most abundant. Based on the sequences of TEs found in the transcriptome, we were able to locate conserved regions in the chromosomes of this species. The analysis of differential expression of TEs in susceptible and resistant strains, challenged and not challenged with Bacillus thuringiensis ( Bt) from in silico analysis, indicated that exposure to Bt can regulate the transcription of mobile genetic elements in the velvetbean caterpillar. Thus, these data contribute significantly to the knowledge of the structure and composition of these elements in the genome of this species, and suggest the role of stress on their expression. |
---|---|
AbstractList | Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data related to the identification and characterization of TEs present in the transcriptome of Anticarsia gemmatalis. Approximately, 835 transcripts showed significant similarity to TEs and (or) characteristic domains. Retrotransposons accounted for 71.2% (595 sequences) of the identified elements, while DNA transposons were less abundant, with 240 annotations (28.8%). TEs were classified into 30 superfamilies, with SINE3/5S and Gypsy being the most abundant. Based on the sequences of TEs found in the transcriptome, we were able to locate conserved regions in the chromosomes of this species. The analysis of differential expression of TEs in susceptible and resistant strains, challenged and not challenged with Bacillus thuringiensis (Bt) from in silico analysis, indicated that exposure to Bt can regulate the transcription of mobile genetic elements in the velvetbean caterpillar. Thus, these data contribute significantly to the knowledge of the structure and composition of these elements in the genome of this species, and suggest the role of stress on their expression. Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data related to the identification and characterization of TEs present in the transcriptome of Anticarsia gemmatalis. Approximately, 835 transcripts showed significant similarity to TEs and (or) characteristic domains. Retrotransposons accounted for 71.2% (595 sequences) of the identified elements, while DNA transposons were less abundant, with 240 annotations (28.8%). TEs were classified into 30 superfamilies, with SINE3/5S and Gypsy being the most abundant. Based on the sequences of TEs found in the transcriptome, we were able to locate conserved regions in the chromosomes of this species. The analysis of differential expression of TEs in susceptible and resistant strains, challenged and not challenged with Bacillus thuringiensis (Bt) from in silico analysis, indicated that exposure to Bt can regulate the transcription of mobile genetic elements in the velvetbean caterpillar. Thus, these data contribute significantly to the knowledge of the structure and composition of these elements in the genome of this species, and suggest the role of stress on their expression. Key words: Bt resistance, chromosomes, differential expression, DNA transposons, mobile genetic elements, retrotransposons, transcripts Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data related to the identification and characterization of TEs present in the transcriptome of Anticarsia gemmatalis. Approximately, 835 transcripts showed significant similarity to TEs and (or) characteristic domains. Retrotransposons accounted for 71.2% (595 sequences) of the identified elements, while DNA transposons were less abundant, with 240 annotations (28.8%). TEs were classified into 30 superfamilies, with SINE3/5S and Gypsy being the most abundant. Based on the sequences of TEs found in the transcriptome, we were able to locate conserved regions in the chromosomes of this species. The analysis of differential expression of TEs in susceptible and resistant strains, challenged and not challenged with Bacillus thuringiensis (Bt) from in silico analysis, indicated that exposure to Bt can regulate the transcription of mobile genetic elements in the velvetbean caterpillar. Thus, these data contribute significantly to the knowledge of the structure and composition of these elements in the genome of this species, and suggest the role of stress on their expression.Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data related to the identification and characterization of TEs present in the transcriptome of Anticarsia gemmatalis. Approximately, 835 transcripts showed significant similarity to TEs and (or) characteristic domains. Retrotransposons accounted for 71.2% (595 sequences) of the identified elements, while DNA transposons were less abundant, with 240 annotations (28.8%). TEs were classified into 30 superfamilies, with SINE3/5S and Gypsy being the most abundant. Based on the sequences of TEs found in the transcriptome, we were able to locate conserved regions in the chromosomes of this species. The analysis of differential expression of TEs in susceptible and resistant strains, challenged and not challenged with Bacillus thuringiensis (Bt) from in silico analysis, indicated that exposure to Bt can regulate the transcription of mobile genetic elements in the velvetbean caterpillar. Thus, these data contribute significantly to the knowledge of the structure and composition of these elements in the genome of this species, and suggest the role of stress on their expression. Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data related to the identification and characterization of TEs present in the transcriptome of Approximately, 835 transcripts showed significant similarity to TEs and (or) characteristic domains. Retrotransposons accounted for 71.2% (595 sequences) of the identified elements, while DNA transposons were less abundant, with 240 annotations (28.8%). TEs were classified into 30 superfamilies, with and being the most abundant. Based on the sequences of TEs found in the transcriptome, we were able to locate conserved regions in the chromosomes of this species. The analysis of differential expression of TEs in susceptible and resistant strains, challenged and not challenged with ( ) from in silico analysis, indicated that exposure to can regulate the transcription of mobile genetic elements in the velvetbean caterpillar. Thus, these data contribute significantly to the knowledge of the structure and composition of these elements in the genome of this species, and suggest the role of stress on their expression. |
Audience | Academic |
Author | de Souza, Rogério Fernandes da Rosa, Renata Dionisio, Jaqueline Fernanda Pezenti, Larissa Forim Sosa-Gómez, Daniel Ricardo |
Author_xml | – sequence: 1 givenname: Larissa Forim surname: Pezenti fullname: Pezenti, Larissa Forim – sequence: 2 givenname: Jaqueline Fernanda orcidid: 0000-0002-1954-6471 surname: Dionisio fullname: Dionisio, Jaqueline Fernanda – sequence: 3 givenname: Daniel Ricardo surname: Sosa-Gómez fullname: Sosa-Gómez, Daniel Ricardo – sequence: 4 givenname: Rogério Fernandes surname: de Souza fullname: de Souza, Rogério Fernandes – sequence: 5 givenname: Renata orcidid: 0000-0003-4258-7244 surname: da Rosa fullname: da Rosa, Renata |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36971261$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1rFTEUhoNU7G116VaCblpwaj7mI9PdpVRbuCBoXYckc3JNmclMk9yie39Wd_1jZrRar1yyCJw85835eA_Qnh89IPSSkhNKeftuDb5ghLGCkLp-gha0FKTgnNE9tCCC04I1bb2PDmK8JoQS3tJnaJ_XbUNZTRfox1VQPk5jVLoHDD0M4FPEzuP0FXCaH01wUxoHwKP9FbyF_haSBuWxUQnC5PpeBbz0yRkVolN4DcOgkupdxBf3d9pDeIupoAIfrWBy3TjlLHWKzwNo1yk4fo6eWtVHePFwH6Iv78-vzi6K1ccPl2fLVWF4JVJBKdOlLYXWquqEsIoTU9pG8JIzzSpVN8yQzlptSspMa7kSjHZaiaqqO9E0_BAd_dadwnizgZjk4KKBXL6HcRNlHhVtSEU4y-ib_9DrcRN8rk6yrMpaXtf8kVqrHqTzdswTM7OoXDZVXgKty_nbYgeVF5en0OdtWpfDW_zrHbyZ3I38FzrZAeXTweDMTtXjrYTMJPiW1moTo7z8_GmbffXQ_UYP0MkpuEGF7_KPbx5bMmGMMYD9i1AiZ1_K3J6cfSlnX_KfzUnRpg |
Cites_doi | 10.2174/138920210790886871 10.1126/science.1089670 10.1093/bioinformatics/btl158 10.1016/j.ibmb.2008.05.012 10.1038/nrg3030 10.14411/eje.2014.052 10.1038/jid.2014.371 10.1016/S0959-437X(05)80108-X 10.1186/gb-2006-7-11-r112 10.1016/0168-9525(89)90039-5 10.1186/s13100-021-00259-7 10.1186/s13100-017-0090-3 10.1093/molbev/msg048 10.1186/1755-8166-6-54 10.1186/s12864-017-4050-6 10.1093/nar/gkt1223 10.1006/anbo.1998.0746 10.1371/journal.pone.0230244 10.1007/s11295-014-0733-1 10.1038/443521a 10.1016/j.gene.2012.07.042 10.3390/life12040521 10.1111/j.1365-2583.2011.01127.x 10.1186/s13100-022-00263-5 10.1093/nar/gku1179 10.1126/science.1178534 10.1186/s13059-014-0550-8 10.1038/nbt1180 10.1093/nar/22.22.4673 10.1093/nar/gkab828 10.1016/j.cbpc.2020.108718 10.1371/journal.pone.0257996 10.1093/gbe/evab231 10.1007/s13258-018-0648-6 10.1186/s13100-015-0041-9 10.1093/bib/bbm048 10.1371/journal.pone.0040532 10.1093/bioinformatics/btu170 10.1186/s13100-019-0165-4 10.1007/s10709-017-9964-z 10.1146/annurev.genom.8.080706.092416 10.1186/1759-8753-4-21 10.1007/s10709-009-9424-5 10.1093/molbev/msy096 10.1038/nature06341 10.1038/nbt.1883 10.1093/nar/gkq1061 10.1186/1471-2164-11-601 10.1007/s004380050467 10.1146/annurev.micro.53.1.245 10.1371/journal.pgen.1006108 10.1093/nar/gkh454 10.1186/1472-6750-6-27 10.1186/1745-6150-4-41 10.1186/s12864-015-1499-z 10.1007/s10528-009-9325-4 10.1186/s13059-016-0881-8 10.1371/journal.pone.0030770 10.15252/embr.201642743 10.1093/nar/30.1.281 10.1007/s10709-012-9686-1 10.1038/nmeth.1923 10.1073/pnas.2006106117 10.1016/j.cub.2012.04.025 10.1111/mec.12170 10.1016/j.gene.2015.02.058 10.1016/j.ympev.2015.03.009 10.1038/35087627 10.1016/j.ygeno.2021.05.012 10.1038/nrg2165-c4 10.1093/nar/gkm286 10.1093/nar/gkr367 10.1007/s10142-017-0545-0 10.1016/j.virol.2017.05.019 10.1093/bioinformatics/bti610 10.1186/s13100-022-00270-6 10.1093/jee/69.4.487 10.1111/j.1432-1033.1995.tb20774.x 10.1073/pnas.1921046117 10.1186/1471-2164-6-107 10.1186/s13100-016-0059-7 10.1371/journal.pone.0137050 10.1016/j.fsi.2007.05.001 10.1007/s00438-017-1291-7 10.1186/s12862-018-1324-9 10.1007/s10709-014-9805-2 10.3390/insects13050396 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 NRC Research Press 2023 Published by NRC Research Press |
Copyright_xml | – notice: COPYRIGHT 2023 NRC Research Press – notice: 2023 Published by NRC Research Press |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7SS 7TK 7TM 7U9 8FD FR3 H94 K9. P64 RC3 7X8 |
DOI | 10.1139/gen-2022-0066 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Entomology Abstracts MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1480-3321 |
EndPage | 130 |
ExternalDocumentID | A753211647 36971261 10_1139_gen_2022_0066 |
Genre | Journal Article |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GroupedDBID | -ET -~X 00T 0R~ 29H 2QL 36B 4.4 4IJ 5GY 5RE 5RP AAHBH AAYXX ABDBF ABJNI ACGFO ACGFS ACGOD ACNCT ACPRK ACUHS AEGXH AENEX AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS APEBS CITATION CS3 D8U DATHI DU5 EAD EAP EBD EBS ECC EDH EMB EMK EMOBN EPL EST ESX F5P GJPHO HZ~ IAG IAO ICQ IGS IHR INH INR IOF IPNFZ ISN ISR ITC L7B MV1 NRXXU NYCZX O9- ONR PV9 QF4 QM4 QM9 QN7 QO4 QRP RIG RRP RZL SV3 TR2 TUS U5U ~02 ~KM CGR CUY CVF ECM EIF NPM 7SS 7TK 7TM 7U9 8FD FR3 H94 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c358t-112b4f48bba5d88fa30c4f783432b25a672c0dffbc412c9f3a821dba8556d8773 |
ISSN | 0831-2796 1480-3321 |
IngestDate | Thu Jul 10 22:36:35 EDT 2025 Mon Jun 30 08:51:23 EDT 2025 Wed Mar 19 02:14:42 EDT 2025 Fri Mar 14 03:22:06 EDT 2025 Tue Jun 10 15:44:12 EDT 2025 Sat Mar 08 18:55:47 EST 2025 Wed Mar 05 05:55:42 EST 2025 Mon Jul 21 05:58:46 EDT 2025 Thu Jul 10 07:46:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Bt resistance transcripts chromosomes DNA transposons differential expression mobile genetic elements retrotransposons |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c358t-112b4f48bba5d88fa30c4f783432b25a672c0dffbc412c9f3a821dba8556d8773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4258-7244 0000-0002-1954-6471 |
PMID | 36971261 |
PQID | 2821293663 |
PQPubID | 34326 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2791705032 proquest_journals_2821293663 gale_infotracmisc_A753211647 gale_infotracgeneralonefile_A753211647 gale_infotraccpiq_753211647 gale_infotracacademiconefile_A753211647 gale_incontextgauss_ISR_A753211647 pubmed_primary_36971261 crossref_primary_10_1139_gen_2022_0066 |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada – name: Ottawa |
PublicationTitle | Genome |
PublicationTitleAlternate | Genome |
PublicationYear | 2023 |
Publisher | NRC Research Press Canadian Science Publishing NRC Research Press |
Publisher_xml | – name: NRC Research Press – name: Canadian Science Publishing NRC Research Press |
References | refg47/ref47 refg40/ref40 refg65/ref65 refg18/ref18 refg22/ref22 refg83/ref83 refg36/ref36 Schwarzacher T. (refg75/ref75) 2000; 85 refg76/ref76 refg51/ref51 refg72/ref72 refg11/ref11 refg25/ref25 refg6/ref6 refg15/ref15 refg29/ref29 refg43/ref43 refg80/ref80 refg79/ref79 refg26/ref26 refg14/ref14 refg5/ref5 refg54/ref54 refg68/ref68 refg57/ref57 refg37/ref37 refg19/ref19 refg21/ref21 refg7/ref7 refg4/ref4 refg46/ref46 refg48/ref48 refg10/ref10 refg1/ref1 refg82/ref82 refg32/ref32 refg86/ref86 refg89/ref89 refg35/ref35 refg59/ref59 refg61/ref61 refg53/ref53 refg78/ref78 refg42/ref42 refg24/ref24 refg16/ref16 refg50/ref50 refg64/ref64 refg67/ref67 refg13/ref13 refg27/ref27 refg56/ref56 refg74/ref74 refg20/ref20 refg85/ref85 refg38/ref38 refg45/ref45 refg49/ref49 refg31/ref31 refg9/ref9 refg34/ref34 refg71/ref71 refg88/ref88 refg52/ref52 refg8/ref8 refg60/ref60 refg63/ref63 refg2/ref2 refg23/ref23 refg17/ref17 refg30/ref30 refg84/ref84 refg66/ref66 refg12/ref12 refg28/ref28 refg41/ref41 refg55/ref55 refg39/ref39 refg3/ref3 refg69/ref69 refg62/ref62 refg87/ref87 refg44/ref44 refg81/ref81 refg58/ref58 refg73/ref73 refg33/ref33 refg70/ref70 |
References_xml | – ident: refg60/ref60 doi: 10.2174/138920210790886871 – ident: refg40/ref40 doi: 10.1126/science.1089670 – ident: refg47/ref47 doi: 10.1093/bioinformatics/btl158 – ident: refg63/ref63 doi: 10.1016/j.ibmb.2008.05.012 – ident: refg46/ref46 doi: 10.1038/nrg3030 – ident: refg64/ref64 doi: 10.14411/eje.2014.052 – ident: refg39/ref39 doi: 10.1038/jid.2014.371 – ident: refg22/ref22 doi: 10.1016/S0959-437X(05)80108-X – ident: refg7/ref7 doi: 10.1186/gb-2006-7-11-r112 – ident: refg21/ref21 doi: 10.1016/0168-9525(89)90039-5 – ident: refg29/ref29 doi: 10.1186/s13100-021-00259-7 – ident: refg3/ref3 doi: 10.1186/s13100-017-0090-3 – ident: refg17/ref17 doi: 10.1093/molbev/msg048 – ident: refg62/ref62 doi: 10.1186/1755-8166-6-54 – ident: refg56/ref56 doi: 10.1186/s12864-017-4050-6 – ident: refg19/ref19 doi: 10.1093/nar/gkt1223 – ident: refg72/ref72 doi: 10.1006/anbo.1998.0746 – ident: refg51/ref51 doi: 10.1371/journal.pone.0230244 – ident: refg84/ref84 doi: 10.1007/s11295-014-0733-1 – ident: refg8/ref8 doi: 10.1038/443521a – ident: refg12/ref12 doi: 10.1016/j.gene.2012.07.042 – ident: refg33/ref33 doi: 10.3390/life12040521 – ident: refg80/ref80 doi: 10.1111/j.1365-2583.2011.01127.x – ident: refg4/ref4 doi: 10.1186/s13100-022-00263-5 – ident: refg27/ref27 doi: 10.1093/nar/gku1179 – ident: refg74/ref74 doi: 10.1126/science.1178534 – ident: refg50/ref50 doi: 10.1186/s13059-014-0550-8 – ident: refg69/ref69 doi: 10.1038/nbt1180 – ident: refg81/ref81 doi: 10.1093/nar/22.22.4673 – ident: refg70/ref70 doi: 10.1093/nar/gkab828 – ident: refg78/ref78 doi: 10.1016/j.cbpc.2020.108718 – ident: refg1/ref1 doi: 10.1371/journal.pone.0257996 – ident: refg59/ref59 doi: 10.1093/gbe/evab231 – ident: refg87/ref87 doi: 10.1007/s13258-018-0648-6 – ident: refg2/ref2 doi: 10.1186/s13100-015-0041-9 – ident: refg6/ref6 doi: 10.1093/bib/bbm048 – ident: refg37/ref37 doi: 10.1371/journal.pone.0040532 – ident: refg9/ref9 doi: 10.1093/bioinformatics/btu170 – ident: refg32/ref32 doi: 10.1186/s13100-019-0165-4 – ident: refg18/ref18 doi: 10.1007/s10709-017-9964-z – ident: refg38/ref38 doi: 10.1146/annurev.genom.8.080706.092416 – ident: refg45/ref45 doi: 10.1186/1759-8753-4-21 – ident: refg61/ref61 doi: 10.1007/s10709-009-9424-5 – ident: refg42/ref42 doi: 10.1093/molbev/msy096 – ident: refg13/ref13 doi: 10.1038/nature06341 – ident: refg30/ref30 doi: 10.1038/nbt.1883 – ident: refg48/ref48 doi: 10.1093/nar/gkq1061 – ident: refg83/ref83 doi: 10.1186/1471-2164-11-601 – ident: refg68/ref68 doi: 10.1007/s004380050467 – ident: refg34/ref34 doi: 10.1146/annurev.micro.53.1.245 – ident: refg11/ref11 doi: 10.1371/journal.pgen.1006108 – ident: refg52/ref52 doi: 10.1093/nar/gkh454 – ident: refg73/ref73 doi: 10.1186/1472-6750-6-27 – ident: refg49/ref49 doi: 10.1186/1745-6150-4-41 – ident: refg57/ref57 doi: 10.1186/s12864-015-1499-z – ident: refg79/ref79 doi: 10.1007/s10528-009-9325-4 – ident: refg15/ref15 doi: 10.1186/s13059-016-0881-8 – ident: refg54/ref54 doi: 10.1371/journal.pone.0030770 – ident: refg28/ref28 doi: 10.15252/embr.201642743 – ident: refg53/ref53 doi: 10.1093/nar/30.1.281 – ident: refg58/ref58 doi: 10.1007/s10709-012-9686-1 – ident: refg44/ref44 doi: 10.1038/nmeth.1923 – ident: refg71/ref71 doi: 10.1073/pnas.2006106117 – ident: refg23/ref23 doi: 10.1016/j.cub.2012.04.025 – ident: refg10/ref10 doi: 10.1111/mec.12170 – ident: refg36/ref36 doi: 10.1016/j.gene.2015.02.058 – ident: refg67/ref67 doi: 10.1016/j.ympev.2015.03.009 – ident: refg43/ref43 doi: 10.1038/35087627 – ident: refg66/ref66 doi: 10.1016/j.ygeno.2021.05.012 – ident: refg85/ref85 doi: 10.1038/nrg2165-c4 – ident: refg88/ref88 doi: 10.1093/nar/gkm286 – ident: refg20/ref20 doi: 10.1093/nar/gkr367 – ident: refg26/ref26 doi: 10.1007/s10142-017-0545-0 – ident: refg55/ref55 doi: 10.1016/j.virol.2017.05.019 – ident: refg14/ref14 doi: 10.1093/bioinformatics/bti610 – volume: 85 start-page: 97 year: 2000 ident: refg75/ref75 publication-title: Heredity – ident: refg76/ref76 doi: 10.1186/s13100-022-00270-6 – ident: refg31/ref31 doi: 10.1093/jee/69.4.487 – ident: refg5/ref5 doi: 10.1111/j.1432-1033.1995.tb20774.x – ident: refg24/ref24 doi: 10.1073/pnas.1921046117 – ident: refg41/ref41 doi: 10.1186/1471-2164-6-107 – ident: refg25/ref25 doi: 10.1186/s13100-016-0059-7 – ident: refg82/ref82 doi: 10.1371/journal.pone.0137050 – ident: refg16/ref16 doi: 10.1016/j.fsi.2007.05.001 – ident: refg35/ref35 doi: 10.1007/s00438-017-1291-7 – ident: refg65/ref65 doi: 10.1186/s12862-018-1324-9 – ident: refg86/ref86 doi: 10.1007/s10709-014-9805-2 – ident: refg89/ref89 doi: 10.3390/insects13050396 |
SSID | ssj0010391 |
Score | 2.3729866 |
Snippet | Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a... |
SourceID | proquest gale pubmed crossref |
SourceType | Aggregation Database Index Database |
StartPage | 116 |
SubjectTerms | Agricultural pests Animals Annotations Anticarsia gemmatalis Caterpillars Chromosomes Deoxyribonucleic acid DNA DNA Transposable Elements Eukaryotes Gene sequencing Genetic aspects Genetic research Genetic transcription Genomes Lepidoptera Lepidoptera - genetics Moths - genetics Nucleotide sequence Transcriptome Transcriptomes Transposons |
Title | Transposable elements in the transcriptome of the velvetbean caterpillar Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Erebidae) |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36971261 https://www.proquest.com/docview/2821293663 https://www.proquest.com/docview/2791705032 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VVqBeEG9CC1oQKqDUJd51_ODWlrYBCQ60lXqzdtfryBKxg51Uomf-Fdz4Y8x4_SxFAi5W5Bk7zs6XeaznQchzV9tgRgNhjWLGLUdJafnaxRwxrrwocGLlYjXyh4_u5NR5fzY-W1n53slaWi7kjrq4sq7kf6QK50CuWCX7D5Jtbgon4DPIF44gYTj-nYxNZ_KiLH_SJhG8qDMXF0gsdUI2a1IBzvXnc72QuP2OqVD5HIcO5dhCAISVF4kYTvVsJsq2iMMJvkXf25dVTQxYab-cAKLnSZTNsXQZ9xMOci2TSDTdnSpP90indSOEUvNeYFqSqcQGvVKI4WGWJ7PGj8Zt4SIxr4EE2KrS-602uRvLcQw_1Toqn4rPzNa3KZHH_gAA9axmjPTwOFteGMc4m5psgDzJ6jvq3m4H421W1o42GtrxwXBwU1Zdq3AzuKWCalcf26aQ83c7wbHNKogP8ATRODpeXT5YvfmsBA13A89mrt2ayyaJsSZdI2sMYhRQsmu7e2_3DtfaARqBXbd15cHr3retkxv19T2P6LJfcCnaKb2ek1vkZhWu0F2DvdtkRad3yHUzwPTrXfKti0BaI5AmKQWw0R4CaRaXJ1sE0g4CaYtA2iKQTn7-QPRtU8QefdlB3hta4-7VPXJ6eHCyP7GquR6W4mN_YYGLL53Y8aUU48j3Y8FHyolx4gtnko2F6zE1iuJYKsdmKoi58JkdSeGPx27kex6_T1bTLNUPCYWAWsWauTLCCukREyqKbT2KPB2PI9uNB2SrXttwbtq3hGXYy4MQ5BGiPEKUx4A8w5UPsSVKijlXU7EsivDd8adwFyJ6ZmPfvQF5UTHFGSyhElUJCzwLdlHrcW70ONU8-RJ2qFs96tR0mL_qNps9RlD9qk-ucRJWaqkIGSwW-PAQSQzI04aMV2I6ZaqzJfB4AbbRGnE2IA8MvprlqWH56I-UDbLe_jU3yeoiX-rH4Jov5JPqL_ALkRzkBg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transposable+elements+in+the+transcriptome+of+the+velvetbean+caterpillar+Anticarsia+gemmatalis+H%C3%BCbner%2C+1818+%28Lepidoptera%3A+Erebidae%29&rft.jtitle=Genome&rft.au=Pezenti%2C+Larissa+Forim&rft.au=Dionisio%2C+Jaqueline+Fernanda&rft.au=Sosa-G%C3%B3mez%2C+Daniel+Ricardo&rft.au=de+Souza%2C+Rog%C3%A9rio+Fernandes&rft.date=2023-06-01&rft.eissn=1480-3321&rft.volume=66&rft.issue=6&rft.spage=116&rft_id=info:doi/10.1139%2Fgen-2022-0066&rft_id=info%3Apmid%2F36971261&rft.externalDocID=36971261 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0831-2796&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0831-2796&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0831-2796&client=summon |