Application of an improved U-Net with image-to-image translation and transfer learning in peach orchard segmentation

•The semantic segmentation model U-Net is improved for peach orchard segmentation.•CycleGAN and transfer learning improve the accuracy of peach orchard segmentation.•Coupling UAV data with satellite images enables large-scale mapping of peach orchard. Peach cultivation holds a significant economic i...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 130; p. 103871
Main Authors Cheng, Jiayu, Zhu, Yihang, Zhao, Yiying, Li, Tong, Chen, Miaojin, Sun, Qinan, Gu, Qing, Zhang, Xiaobin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The semantic segmentation model U-Net is improved for peach orchard segmentation.•CycleGAN and transfer learning improve the accuracy of peach orchard segmentation.•Coupling UAV data with satellite images enables large-scale mapping of peach orchard. Peach cultivation holds a significant economic importance, and obtaining the spatial distribution of peach orchards is helpful for yield prediction and precision agriculture. In this study, we introduce a new U-Net semantic segmentation model, utilizing ResNet50 as a backbone network, augmented with an Efficient Multi-Scale Attention (EMA) mechanism module and a LayerScale adaptive scaling parameter. To address style differences between images from Unmanned Aerial Vehicle (UAV), Google Earth, and Sentinel-2 satellite, we incorporate Cycle-Consistent Generative Adversarial Networks (CycleGAN). This synthesis ensures that UAV images conform to a comparable style found in Google Earth and Sentinel-2 images, while feature details of high spatial resolution UAV images are transferred to Google Earth and Sentinel-2 images through transfer learning. The results demonstrate that using ResNet50 as a backbone network for the U-Net model yields higher accuracy compared to using VGG16 for the U-Net model. Specifically, the Mean Intersection over Union (MIoU) values for UAV and Sentinel-2 images are higher by 0.49 % and 0.95 %, respectively. The MIoU values for UAV, Google Earth, and Sentinel-2 images increased by 0.87 %, 1.71 %, and 1.74 %, respectively, with the introduction of EMA. Additionally, with the introduction of LayerScale adaptive scaling parameters, the MIoU values increased by 0.31 %, 0.33 %, and 1.44 %, respectively, further enhancing the segmentation accuracy of the model. After applying CycleGAN and transfer learning, the MIoU increased by 1.02 %, 0.15 %, and 1.57 % for UAV, Google Earth, and Sentinel-2 images, respectively, resulting in MIoU values of 97.39 %, 92.08 %, and 84.54 %. The comparative analysis with DeepLabV3+, PSPNet, and HRNet models demonstrates the superior mapping performance of the proposed method. Moreover, the method exhibits good generalization and mapping speed across six test sites in the research area. Overall, this approach ensures high precision and efficiency in peach orchard mapping, accommodating various spatial resolutions, and holds potential for addressing diverse requirements in peach orchard mapping applications.
AbstractList Peach cultivation holds a significant economic importance, and obtaining the spatial distribution of peach orchards is helpful for yield prediction and precision agriculture. In this study, we introduce a new U-Net semantic segmentation model, utilizing ResNet50 as a backbone network, augmented with an Efficient Multi-Scale Attention (EMA) mechanism module and a LayerScale adaptive scaling parameter. To address style differences between images from Unmanned Aerial Vehicle (UAV), Google Earth, and Sentinel-2 satellite, we incorporate Cycle-Consistent Generative Adversarial Networks (CycleGAN). This synthesis ensures that UAV images conform to a comparable style found in Google Earth and Sentinel-2 images, while feature details of high spatial resolution UAV images are transferred to Google Earth and Sentinel-2 images through transfer learning. The results demonstrate that using ResNet50 as a backbone network for the U-Net model yields higher accuracy compared to using VGG16 for the U-Net model. Specifically, the Mean Intersection over Union (MIoU) values for UAV and Sentinel-2 images are higher by 0.49 % and 0.95 %, respectively. The MIoU values for UAV, Google Earth, and Sentinel-2 images increased by 0.87 %, 1.71 %, and 1.74 %, respectively, with the introduction of EMA. Additionally, with the introduction of LayerScale adaptive scaling parameters, the MIoU values increased by 0.31 %, 0.33 %, and 1.44 %, respectively, further enhancing the segmentation accuracy of the model. After applying CycleGAN and transfer learning, the MIoU increased by 1.02 %, 0.15 %, and 1.57 % for UAV, Google Earth, and Sentinel-2 images, respectively, resulting in MIoU values of 97.39 %, 92.08 %, and 84.54 %. The comparative analysis with DeepLabV3+, PSPNet, and HRNet models demonstrates the superior mapping performance of the proposed method. Moreover, the method exhibits good generalization and mapping speed across six test sites in the research area. Overall, this approach ensures high precision and efficiency in peach orchard mapping, accommodating various spatial resolutions, and holds potential for addressing diverse requirements in peach orchard mapping applications.
•The semantic segmentation model U-Net is improved for peach orchard segmentation.•CycleGAN and transfer learning improve the accuracy of peach orchard segmentation.•Coupling UAV data with satellite images enables large-scale mapping of peach orchard. Peach cultivation holds a significant economic importance, and obtaining the spatial distribution of peach orchards is helpful for yield prediction and precision agriculture. In this study, we introduce a new U-Net semantic segmentation model, utilizing ResNet50 as a backbone network, augmented with an Efficient Multi-Scale Attention (EMA) mechanism module and a LayerScale adaptive scaling parameter. To address style differences between images from Unmanned Aerial Vehicle (UAV), Google Earth, and Sentinel-2 satellite, we incorporate Cycle-Consistent Generative Adversarial Networks (CycleGAN). This synthesis ensures that UAV images conform to a comparable style found in Google Earth and Sentinel-2 images, while feature details of high spatial resolution UAV images are transferred to Google Earth and Sentinel-2 images through transfer learning. The results demonstrate that using ResNet50 as a backbone network for the U-Net model yields higher accuracy compared to using VGG16 for the U-Net model. Specifically, the Mean Intersection over Union (MIoU) values for UAV and Sentinel-2 images are higher by 0.49 % and 0.95 %, respectively. The MIoU values for UAV, Google Earth, and Sentinel-2 images increased by 0.87 %, 1.71 %, and 1.74 %, respectively, with the introduction of EMA. Additionally, with the introduction of LayerScale adaptive scaling parameters, the MIoU values increased by 0.31 %, 0.33 %, and 1.44 %, respectively, further enhancing the segmentation accuracy of the model. After applying CycleGAN and transfer learning, the MIoU increased by 1.02 %, 0.15 %, and 1.57 % for UAV, Google Earth, and Sentinel-2 images, respectively, resulting in MIoU values of 97.39 %, 92.08 %, and 84.54 %. The comparative analysis with DeepLabV3+, PSPNet, and HRNet models demonstrates the superior mapping performance of the proposed method. Moreover, the method exhibits good generalization and mapping speed across six test sites in the research area. Overall, this approach ensures high precision and efficiency in peach orchard mapping, accommodating various spatial resolutions, and holds potential for addressing diverse requirements in peach orchard mapping applications.
ArticleNumber 103871
Author Zhang, Xiaobin
Li, Tong
Cheng, Jiayu
Sun, Qinan
Gu, Qing
Zhu, Yihang
Chen, Miaojin
Zhao, Yiying
Author_xml – sequence: 1
  givenname: Jiayu
  surname: Cheng
  fullname: Cheng, Jiayu
  organization: College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou, China
– sequence: 2
  givenname: Yihang
  surname: Zhu
  fullname: Zhu, Yihang
  organization: Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
– sequence: 3
  givenname: Yiying
  surname: Zhao
  fullname: Zhao, Yiying
  organization: Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
– sequence: 4
  givenname: Tong
  surname: Li
  fullname: Li, Tong
  organization: College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou, China
– sequence: 5
  givenname: Miaojin
  surname: Chen
  fullname: Chen, Miaojin
  organization: Fenghua Peach Research Institute, Ningbo, China
– sequence: 6
  givenname: Qinan
  surname: Sun
  fullname: Sun, Qinan
  organization: Fenghua Peach Research Institute, Ningbo, China
– sequence: 7
  givenname: Qing
  surname: Gu
  fullname: Gu, Qing
  email: guq@zaas.ac.cn
  organization: College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou, China
– sequence: 8
  givenname: Xiaobin
  surname: Zhang
  fullname: Zhang, Xiaobin
  email: zhangxb@zaas.ac.cn
  organization: Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
BookMark eNp9kEtLxTAQhbNQ8PkD3OUP9DpJ0xeuRHyB6Ma7DmMy6U2pSUmD4r-33opLVzNz4DucOSfsIMRAjF0I2AgQ9eWwGbDfSJBqucu2EQfsWFR1V7SqlEfsZJ4HANE0dXvM8vU0jd5g9jHw6DgG7t-nFD_I8m3xTJl_-rxbNOypyLHYLzwnDPO4QhjsejtKfCRMwYee-8AnQrPjMZkdJstn6t8p5D1zxg4djjOd_85Ttr27fb15KJ5e7h9vrp8KU1ZtLgRAB0S1BVlS10LXdZUCV1m0UloJJQpTO1DKgWlR1EYYqsGVgFa9VSDKU_a4-tqIg57SEj596Yhe74WYeo0pezOSlo5aJStCsKCgcUjQGAlNKyxVCuXiJVYvk-I8J3J_fgL0T-160Evt-qd2vda-MFcrQ8uTH56Sno2nYMj6RCYvKfw_9Dfl949Q
Cites_doi 10.1016/j.compag.2019.105194
10.1016/j.scienta.2022.111390
10.3390/rs14091977
10.1016/j.ecoinf.2022.101733
10.1109/JSEN.2023.3271391
10.1109/ICCV.2017.244
10.1016/j.agrformet.2020.108240
10.3390/rs14133227
10.1007/s11119-020-09777-5
10.3390/rs15102500
10.1038/s41598-023-34379-2
10.3390/land11071078
10.1007/978-981-15-6318-8_32
10.1002/rse2.264
10.1002/jsfa.10696
10.5194/isprs-archives-XLII-3-W6-573-2019
10.1016/j.autcon.2021.104110
10.1007/978-3-319-24574-4_28
10.1007/978-3-030-01234-2_49
10.3390/rs16010036
10.1109/ICASSP49357.2023.10096516
10.3390/rs15071838
10.1016/j.asoc.2023.110511
10.1016/j.scienta.2022.110899
10.3390/rs15133283
10.1007/s11119-022-09932-0
10.1080/15481603.2023.2206539
10.1080/01431161.2020.1757782
10.5194/isprs-archives-XLVIII-M-1-2023-491-2023
10.1109/CVPR.2019.00584
10.1109/CVPR.2017.660
10.1016/j.compag.2023.108204
10.3390/rs15174156
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jag.2024.103871
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID oai_doaj_org_article_2fe8425ea0d0407fae07c20781de54a2
10_1016_j_jag_2024_103871
S1569843224002255
GroupedDBID 0SF
29J
4.4
5GY
6I.
AAFTH
AAHBH
AALRI
AAQXK
AAXKI
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ACLVX
ACRLP
ACSBN
ADBBV
ADMUD
ADVLN
AFJKZ
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EFJIC
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c358t-10090ee6d023e980999540f5dad22d203a1c6f044f0c8a16c1ce60f30ad4b5013
IEDL.DBID AIKHN
ISSN 1569-8432
IngestDate Tue Oct 22 15:11:21 EDT 2024
Wed Oct 23 14:16:43 EDT 2024
Sat Oct 19 15:54:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Google Earth
Unmanned aerial vehicle
Semantic segmentation
Remote sensing
Peach orchard mapping
Sentinel-2
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-10090ee6d023e980999540f5dad22d203a1c6f044f0c8a16c1ce60f30ad4b5013
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1569843224002255
ParticipantIDs doaj_primary_oai_doaj_org_article_2fe8425ea0d0407fae07c20781de54a2
crossref_primary_10_1016_j_jag_2024_103871
elsevier_sciencedirect_doi_10_1016_j_jag_2024_103871
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wu, Jia, Yang, Zhang, Dai, Zhou (b0185) 2023; 15
Yadav, Thomasson, Hardin, Searcy, Braga Neto, Popescu, Martin, Rodriguez, Meza, Enciso (b0200) 2023; 204
Zheng, Chen (b0230) 2021; 35
Nasiri, Deljouei, Moradi, Sadeghi, Borz (b0115) 2022; 14
Kavzoglu, T., Bilucan, F. and Teke, A., 2020. Comparison of support vector machines, random forest and decision tree methods for classification of sentinel-2A image using different band combinations, 41st Asian Conference on Remote Sensing (ACRS 2020), pp. 1-8.
Panella, F., Lipani, A. and Boehm, J., 2022. Semantic segmentation of cracks: Data challenges and architecture. Automat. Constr. 135: 104110.
Wu, Xiao, Yang, Wang, Steiner, Bajgain (b0190) 2021; 297
Hu, Zhang, Zhao, Yang, Chen, Zhou, Chen (b0055) 2022; 60
Sun, K., Xiao, B., Liu, D. and Wang, J., 2019. Deep high-resolution representation learning for human pose estimation, Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 5693-5703.
Hao, Yin, Li, Zhang, Yang (b0050) 2023; 15
Dalagnol, Wagner, Emilio, Streher, Galvão, Ometto, Aragao (b0035) 2022; 8
Chen, Zhao (b0020) 2022; 113
Li, Zhang (b0095) 2022; 11
Zhang, Wang, Liu, Zhao, Lu, Qu, Tian, Su, Luo, Yang (b0220) 2023; 15
Kumar, A., Razi, R., Singh, A. and Das, H., 2020. Res-vgg: A novel model for plant disease detection by fusing vgg16 and resnet models, International Conference on Machine Learning, Image Processing, Network Security and Data Sciences. Springer, pp. 383-400.
Zhu, J.Y., Park, T., Isola, P. and Efros, A.A., 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks, Proceedings of the IEEE international conference on computer vision, pp. 2223-2232.
Zhang, Hu, Wu, Liu, Yang, Tang (b0215) 2023; 213
Ronneberger, O., Fischer, P. and Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation, Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer, pp. 234-241.
Xu, Ye, Mei, Shen, Sun, Wang, Yang (b0195) 2023; 23
Yu, Zha, Sun, Li, Jin, Zhu, Bian, Ma, Zeng, Su (b0210) 2023; 24
Neetu and Ray, S., 2019. Exploring machine learning classification algorithms for crop classification using Sentinel 2 data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42: 573-578.
Ghassemi, Shoeibi, Khodatars, Heras, Rahimi, Zare, Zhang, Pachori, Gorriz (b0045) 2023; 144
Toosi, Javan, Samadzadegan, Mehravar, Kurban, Azadi (b0155) 2022; 70
Li, Luo, Ji, Zhang, Lu (b0090) 2020; 41
Luo, Yang, Yuan, Gou, Li (b0100) 2023
da Silva Junior, Leonel-Junior, Rossi, Correia Filho, de Barros Santiago, de Oliveira-Júnior, Teodoro, Lima, Capristo-Silva (b0030) 2020; 169
Ouyang, D., He, S., Zhang, G., Luo, M., Guo, H., Zhan, J. and Huang, Z., 2023. Efficient Multi-Scale Attention Module with Cross-Spatial Learning, ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 1-5.
Touvron, Cord, Jégou (b0160) 2022
Wang, Hu, Shi, Hou, Xu, Zhang (b0180) 2023; 13
Kalinaki, Malik, Lai (b0070) 2023; 122
Zhao, H., Shi, J., Qi, X., Wang, X. and Jia, J., 2017. Pyramid scene parsing network, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881-2890.
Atif, Bhuyan, Ahamed (b0010) 2019
Iglesias, Echeverria (b0060) 2022; 296
Çolak, Sunar (b0025) 2023; 48
Dhanya, Subeesh, Kushwaha, Vishwakarma, Kumar, Ritika, Singh (b0040) 2022; 6
Wang, Ding, Ran, Qin, Liu, Li (b0170) 2023; 15
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F. and Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation, Proceedings of the European conference on computer vision (ECCV), pp. 801-818.
Yang, She, Huang, Yang, Zhang, Zhang, Hong, Zhang (b0205) 2022; 70
Aliabad, Malamiri, Shojaei, Sarsangi, Ferreira, Kalantari (b0005) 2022; 14
Jo, Park, Sitokonstantinou, Kim, Lee, Koukos, Lee (b0065) 2023; 60
Osco, Nogueira, Marques Ramos, Faita Pinheiro, Furuya, Gonçalves, de Castro Jorge, Marcato Junior, dos Santos (b0125) 2021; 22
Moisa, Tiye, Dejene, Gemeda (b0110) 2022; 6
Ullah, Bais (b0165) 2022; 6
Li, Liu, Ge, Yuan, Zhang, Liu (b0085) 2023; 16
Sharifi (b0145) 2021; 101
Manganaris, Minas, Cirilli, Torres, Bassi, Costa (b0105) 2022; 305
10.1016/j.jag.2024.103871_b0075
10.1016/j.jag.2024.103871_b0130
10.1016/j.jag.2024.103871_b0150
Hu (10.1016/j.jag.2024.103871_b0055) 2022; 60
Dalagnol (10.1016/j.jag.2024.103871_b0035) 2022; 8
Iglesias (10.1016/j.jag.2024.103871_b0060) 2022; 296
Li (10.1016/j.jag.2024.103871_b0095) 2022; 11
Aliabad (10.1016/j.jag.2024.103871_b0005) 2022; 14
Ghassemi (10.1016/j.jag.2024.103871_b0045) 2023; 144
Wu (10.1016/j.jag.2024.103871_b0185) 2023; 15
Li (10.1016/j.jag.2024.103871_b0085) 2023; 16
Çolak (10.1016/j.jag.2024.103871_b0025) 2023; 48
Nasiri (10.1016/j.jag.2024.103871_b0115) 2022; 14
Osco (10.1016/j.jag.2024.103871_b0125) 2021; 22
Touvron (10.1016/j.jag.2024.103871_b0160) 2022
10.1016/j.jag.2024.103871_b0135
10.1016/j.jag.2024.103871_b0015
Kalinaki (10.1016/j.jag.2024.103871_b0070) 2023; 122
Zheng (10.1016/j.jag.2024.103871_b0230) 2021; 35
10.1016/j.jag.2024.103871_b0235
Sharifi (10.1016/j.jag.2024.103871_b0145) 2021; 101
Xu (10.1016/j.jag.2024.103871_b0195) 2023; 23
Wang (10.1016/j.jag.2024.103871_b0180) 2023; 13
10.1016/j.jag.2024.103871_b0140
Luo (10.1016/j.jag.2024.103871_b0100) 2023
Manganaris (10.1016/j.jag.2024.103871_b0105) 2022; 305
10.1016/j.jag.2024.103871_b0080
Zhang (10.1016/j.jag.2024.103871_b0220) 2023; 15
Ullah (10.1016/j.jag.2024.103871_b0165) 2022; 6
Zhang (10.1016/j.jag.2024.103871_b0215) 2023; 213
Atif (10.1016/j.jag.2024.103871_b0010) 2019
Dhanya (10.1016/j.jag.2024.103871_b0040) 2022; 6
Li (10.1016/j.jag.2024.103871_b0090) 2020; 41
Moisa (10.1016/j.jag.2024.103871_b0110) 2022; 6
Wang (10.1016/j.jag.2024.103871_b0170) 2023; 15
Jo (10.1016/j.jag.2024.103871_b0065) 2023; 60
Yadav (10.1016/j.jag.2024.103871_b0200) 2023; 204
Chen (10.1016/j.jag.2024.103871_b0020) 2022; 113
Yang (10.1016/j.jag.2024.103871_b0205) 2022; 70
10.1016/j.jag.2024.103871_b0225
da Silva Junior (10.1016/j.jag.2024.103871_b0030) 2020; 169
Wu (10.1016/j.jag.2024.103871_b0190) 2021; 297
Yu (10.1016/j.jag.2024.103871_b0210) 2023; 24
Hao (10.1016/j.jag.2024.103871_b0050) 2023; 15
10.1016/j.jag.2024.103871_b0120
Toosi (10.1016/j.jag.2024.103871_b0155) 2022; 70
References_xml – volume: 113
  year: 2022
  ident: b0020
  article-title: Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine
  publication-title: Int. J. Appl. Earth Obs.
  contributor:
    fullname: Zhao
– volume: 48
  start-page: 491
  year: 2023
  end-page: 496
  ident: b0025
  article-title: Cycle-Gan based feature translation for optical-Sar data in burned area mapping
  publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci.
  contributor:
    fullname: Sunar
– volume: 11
  start-page: 1078
  year: 2022
  ident: b0095
  article-title: Identifying peach trees in cultivated land using U-Net algorithm
  publication-title: Land
  contributor:
    fullname: Zhang
– volume: 101
  start-page: 891
  year: 2021
  end-page: 896
  ident: b0145
  article-title: Yield prediction with machine learning algorithms and satellite images
  publication-title: J. Sci. Food Agr.
  contributor:
    fullname: Sharifi
– volume: 23
  start-page: 13680
  year: 2023
  end-page: 13691
  ident: b0195
  article-title: Cross-attention guided group aggregation network for cropland change detection
  publication-title: IEEE Sens. J.
  contributor:
    fullname: Yang
– volume: 296
  year: 2022
  ident: b0060
  article-title: Current situation, trends and challenges for efficient and sustainable peach production
  publication-title: Sci. Hortic.
  contributor:
    fullname: Echeverria
– volume: 35
  start-page: 1
  year: 2021
  end-page: 8
  ident: b0230
  article-title: High spatial resolution remote sensing image segmentation based on the multiclassification model and the binary classification model
  publication-title: Neural Comput. Appl.
  contributor:
    fullname: Chen
– volume: 24
  start-page: 92
  year: 2023
  end-page: 113
  ident: b0210
  article-title: Deep convolutional neural networks for estimating maize above-ground biomass using multi-source UAV images: A comparison with traditional machine learning algorithms
  publication-title: Precis. Agric.
  contributor:
    fullname: Su
– volume: 60
  start-page: 2206539
  year: 2023
  ident: b0065
  article-title: Recurrent U-Net based dynamic paddy rice mapping in South Korea with enhanced data compatibility to support agricultural decision making
  publication-title: Gisci. Remote Sens.
  contributor:
    fullname: Lee
– volume: 15
  start-page: 3283
  year: 2023
  ident: b0170
  article-title: Automatic pear extraction from high-resolution images by a visual attention mechanism network
  publication-title: Remote Sens.
  contributor:
    fullname: Li
– volume: 8
  start-page: 601
  year: 2022
  end-page: 614
  ident: b0035
  article-title: Canopy palm cover across the Brazilian Amazon forests mapped with airborne LiDAR data and deep learning
  publication-title: Remote Sens. Ecol. Con.
  contributor:
    fullname: Aragao
– volume: 305
  year: 2022
  ident: b0105
  article-title: Peach for the future: A specialty crop revisited
  publication-title: Sci. Hortic.
  contributor:
    fullname: Costa
– start-page: 1
  year: 2019
  end-page: 6
  ident: b0010
  article-title: A review on semantic segmentation from a modern perspective, 2019 international conference on electrical, electronics and computer engineering (UPCON)
  publication-title: IEEE
  contributor:
    fullname: Ahamed
– volume: 6
  start-page: 34
  year: 2022
  end-page: 46
  ident: b0110
  article-title: Land suitability analysis for maize production using geospatial technologies in the Didessa watershed, Ethiopia
  publication-title: Artif. Intell. Agric.
  contributor:
    fullname: Gemeda
– volume: 14
  start-page: 1977
  year: 2022
  ident: b0115
  article-title: Land use and land cover mapping using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A comparison of two composition methods
  publication-title: Remote Sens.
  contributor:
    fullname: Borz
– start-page: 516
  year: 2022
  end-page: 533
  ident: b0160
  article-title: Deit iii: Revenge of the vit
  publication-title: Eur. Conf. Comput. Vis. Springer
  contributor:
    fullname: Jégou
– volume: 169
  year: 2020
  ident: b0030
  article-title: Mapping soybean planting area in midwest Brazil with remotely sensed images and phenology-based algorithm using the Google Earth Engine platform
  publication-title: Comput. Electron. Agr.
  contributor:
    fullname: Capristo-Silva
– volume: 13
  start-page: 7600
  year: 2023
  ident: b0180
  article-title: A deep learning method for optimizing semantic segmentation accuracy of remote sensing images based on improved UNet
  publication-title: Sci. Rep.
  contributor:
    fullname: Zhang
– volume: 297
  year: 2021
  ident: b0190
  article-title: Spatial-temporal dynamics of maize and soybean planted area, harvested area, gross primary production, and grain production in the Contiguous United States during 2008–2018
  publication-title: Agr. Forest Meteorol.
  contributor:
    fullname: Bajgain
– volume: 16
  start-page: 36
  year: 2023
  ident: b0085
  article-title: Extracting citrus-growing regions by multiscale UNet using Sentinel-2 satellite imagery
  publication-title: Remote Sens.
  contributor:
    fullname: Liu
– volume: 6
  start-page: 211
  year: 2022
  end-page: 229
  ident: b0040
  article-title: Deep learning based computer vision approaches for smart agricultural applications
  publication-title: Artif. Intell. Agric.
  contributor:
    fullname: Singh
– volume: 213
  year: 2023
  ident: b0215
  article-title: Large-scale apple orchard mapping from multi-source data using the semantic segmentation model with image-to-image translation and transfer learning
  publication-title: Comput. Electron. Agr.
  contributor:
    fullname: Tang
– year: 2023
  ident: b0100
  article-title: Semantic segmentation of agricultural images: A survey
  publication-title: Inform. Process. Agric.
  contributor:
    fullname: Li
– volume: 60
  start-page: 1
  year: 2022
  end-page: 13
  ident: b0055
  article-title: A robust deep learning approach for the quantitative characterization and clustering of peach tree crowns based on UAV images
  publication-title: IEEE t. Geosci. Remote
  contributor:
    fullname: Chen
– volume: 14
  start-page: 3227
  year: 2022
  ident: b0005
  article-title: Investigating the ability to identify new constructions in urban areas using images from unmanned aerial vehicles, Google Earth, and Sentinel-2
  publication-title: Remote Sens.
  contributor:
    fullname: Kalantari
– volume: 6
  start-page: 189
  year: 2022
  end-page: 198
  ident: b0165
  article-title: Evaluation of model generalization for growing plants using conditional learning
  publication-title: Artif. Intelli. Agric.
  contributor:
    fullname: Bais
– volume: 15
  start-page: 2500
  year: 2023
  ident: b0185
  article-title: Economic fruit forest classification based on improved U-Net model in UAV multispectral imagery
  publication-title: Remote Sens.
  contributor:
    fullname: Zhou
– volume: 22
  start-page: 1171
  year: 2021
  end-page: 1188
  ident: b0125
  article-title: Semantic segmentation of citrus-orchard using deep neural networks and multispectral UAV-based imagery
  publication-title: Precis. Agric.
  contributor:
    fullname: dos Santos
– volume: 70
  year: 2022
  ident: b0155
  article-title: Citrus orchard mapping in Juybar, Iran: Analysis of NDVI time series and feature fusion of multi-source satellite imageries
  publication-title: Ecol. Inform.
  contributor:
    fullname: Azadi
– volume: 15
  start-page: 1838
  year: 2023
  ident: b0050
  article-title: A multi-objective semantic segmentation algorithm based on improved U-Net networks
  publication-title: Remote Sens.
  contributor:
    fullname: Yang
– volume: 70
  year: 2022
  ident: b0205
  article-title: Extraction of soybean planting area based on feature fusion technology of multi-source low altitude unmanned aerial vehicle images
  publication-title: Ecol. Infrom.
  contributor:
    fullname: Zhang
– volume: 122
  year: 2023
  ident: b0070
  article-title: FCD-AttResU-Net: An improved forest change detection in Sentinel-2 satellite images using attention residual U-Net
  publication-title: Int. J. Appl. Earth Obs.
  contributor:
    fullname: Lai
– volume: 204
  year: 2023
  ident: b0200
  article-title: Detecting volunteer cotton plants in a corn field with deep learning on UAV remote-sensing imagery
  publication-title: Comput. Electron. Agr.
  contributor:
    fullname: Enciso
– volume: 144
  year: 2023
  ident: b0045
  article-title: Automatic diagnosis of covid-19 from ct images using cyclegan and transfer learning
  publication-title: Appl. Soft. Comput.
  contributor:
    fullname: Gorriz
– volume: 15
  start-page: 4156
  year: 2023
  ident: b0220
  article-title: A lightweight winter wheat planting area extraction model based on improved DeepLabv3+ and CBAM
  publication-title: Remote Sens.
  contributor:
    fullname: Yang
– volume: 41
  start-page: 7343
  year: 2020
  end-page: 7367
  ident: b0090
  article-title: Evaluating generative adversarial networks based image-level domain transfer for multi-source remote sensing image segmentation and object detection
  publication-title: Int. J. Remote Sens.
  contributor:
    fullname: Lu
– volume: 169
  year: 2020
  ident: 10.1016/j.jag.2024.103871_b0030
  article-title: Mapping soybean planting area in midwest Brazil with remotely sensed images and phenology-based algorithm using the Google Earth Engine platform
  publication-title: Comput. Electron. Agr.
  doi: 10.1016/j.compag.2019.105194
  contributor:
    fullname: da Silva Junior
– volume: 6
  start-page: 189
  year: 2022
  ident: 10.1016/j.jag.2024.103871_b0165
  article-title: Evaluation of model generalization for growing plants using conditional learning
  publication-title: Artif. Intelli. Agric.
  contributor:
    fullname: Ullah
– volume: 305
  year: 2022
  ident: 10.1016/j.jag.2024.103871_b0105
  article-title: Peach for the future: A specialty crop revisited
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2022.111390
  contributor:
    fullname: Manganaris
– volume: 14
  start-page: 1977
  issue: 9
  year: 2022
  ident: 10.1016/j.jag.2024.103871_b0115
  article-title: Land use and land cover mapping using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A comparison of two composition methods
  publication-title: Remote Sens.
  doi: 10.3390/rs14091977
  contributor:
    fullname: Nasiri
– volume: 70
  year: 2022
  ident: 10.1016/j.jag.2024.103871_b0155
  article-title: Citrus orchard mapping in Juybar, Iran: Analysis of NDVI time series and feature fusion of multi-source satellite imageries
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2022.101733
  contributor:
    fullname: Toosi
– volume: 6
  start-page: 211
  year: 2022
  ident: 10.1016/j.jag.2024.103871_b0040
  article-title: Deep learning based computer vision approaches for smart agricultural applications
  publication-title: Artif. Intell. Agric.
  contributor:
    fullname: Dhanya
– volume: 23
  start-page: 13680
  issue: 12
  year: 2023
  ident: 10.1016/j.jag.2024.103871_b0195
  article-title: Cross-attention guided group aggregation network for cropland change detection
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3271391
  contributor:
    fullname: Xu
– ident: 10.1016/j.jag.2024.103871_b0235
  doi: 10.1109/ICCV.2017.244
– volume: 297
  year: 2021
  ident: 10.1016/j.jag.2024.103871_b0190
  article-title: Spatial-temporal dynamics of maize and soybean planted area, harvested area, gross primary production, and grain production in the Contiguous United States during 2008–2018
  publication-title: Agr. Forest Meteorol.
  doi: 10.1016/j.agrformet.2020.108240
  contributor:
    fullname: Wu
– volume: 14
  start-page: 3227
  issue: 13
  year: 2022
  ident: 10.1016/j.jag.2024.103871_b0005
  article-title: Investigating the ability to identify new constructions in urban areas using images from unmanned aerial vehicles, Google Earth, and Sentinel-2
  publication-title: Remote Sens.
  doi: 10.3390/rs14133227
  contributor:
    fullname: Aliabad
– volume: 22
  start-page: 1171
  issue: 4
  year: 2021
  ident: 10.1016/j.jag.2024.103871_b0125
  article-title: Semantic segmentation of citrus-orchard using deep neural networks and multispectral UAV-based imagery
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-020-09777-5
  contributor:
    fullname: Osco
– volume: 15
  start-page: 2500
  issue: 10
  year: 2023
  ident: 10.1016/j.jag.2024.103871_b0185
  article-title: Economic fruit forest classification based on improved U-Net model in UAV multispectral imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs15102500
  contributor:
    fullname: Wu
– volume: 13
  start-page: 7600
  issue: 1
  year: 2023
  ident: 10.1016/j.jag.2024.103871_b0180
  article-title: A deep learning method for optimizing semantic segmentation accuracy of remote sensing images based on improved UNet
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-34379-2
  contributor:
    fullname: Wang
– volume: 113
  year: 2022
  ident: 10.1016/j.jag.2024.103871_b0020
  article-title: Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine
  publication-title: Int. J. Appl. Earth Obs.
  contributor:
    fullname: Chen
– volume: 11
  start-page: 1078
  issue: 7
  year: 2022
  ident: 10.1016/j.jag.2024.103871_b0095
  article-title: Identifying peach trees in cultivated land using U-Net algorithm
  publication-title: Land
  doi: 10.3390/land11071078
  contributor:
    fullname: Li
– ident: 10.1016/j.jag.2024.103871_b0080
  doi: 10.1007/978-981-15-6318-8_32
– volume: 8
  start-page: 601
  issue: 5
  year: 2022
  ident: 10.1016/j.jag.2024.103871_b0035
  article-title: Canopy palm cover across the Brazilian Amazon forests mapped with airborne LiDAR data and deep learning
  publication-title: Remote Sens. Ecol. Con.
  doi: 10.1002/rse2.264
  contributor:
    fullname: Dalagnol
– volume: 101
  start-page: 891
  issue: 3
  year: 2021
  ident: 10.1016/j.jag.2024.103871_b0145
  article-title: Yield prediction with machine learning algorithms and satellite images
  publication-title: J. Sci. Food Agr.
  doi: 10.1002/jsfa.10696
  contributor:
    fullname: Sharifi
– ident: 10.1016/j.jag.2024.103871_b0120
  doi: 10.5194/isprs-archives-XLII-3-W6-573-2019
– ident: 10.1016/j.jag.2024.103871_b0135
  doi: 10.1016/j.autcon.2021.104110
– ident: 10.1016/j.jag.2024.103871_b0140
  doi: 10.1007/978-3-319-24574-4_28
– ident: 10.1016/j.jag.2024.103871_b0015
  doi: 10.1007/978-3-030-01234-2_49
– volume: 70
  year: 2022
  ident: 10.1016/j.jag.2024.103871_b0205
  article-title: Extraction of soybean planting area based on feature fusion technology of multi-source low altitude unmanned aerial vehicle images
  publication-title: Ecol. Infrom.
  contributor:
    fullname: Yang
– start-page: 1
  year: 2019
  ident: 10.1016/j.jag.2024.103871_b0010
  article-title: A review on semantic segmentation from a modern perspective, 2019 international conference on electrical, electronics and computer engineering (UPCON)
  publication-title: IEEE
  contributor:
    fullname: Atif
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.jag.2024.103871_b0055
  article-title: A robust deep learning approach for the quantitative characterization and clustering of peach tree crowns based on UAV images
  publication-title: IEEE t. Geosci. Remote
  contributor:
    fullname: Hu
– volume: 16
  start-page: 36
  issue: 1
  year: 2023
  ident: 10.1016/j.jag.2024.103871_b0085
  article-title: Extracting citrus-growing regions by multiscale UNet using Sentinel-2 satellite imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs16010036
  contributor:
    fullname: Li
– ident: 10.1016/j.jag.2024.103871_b0130
  doi: 10.1109/ICASSP49357.2023.10096516
– volume: 35
  start-page: 1
  issue: 5
  year: 2021
  ident: 10.1016/j.jag.2024.103871_b0230
  article-title: High spatial resolution remote sensing image segmentation based on the multiclassification model and the binary classification model
  publication-title: Neural Comput. Appl.
  contributor:
    fullname: Zheng
– volume: 15
  start-page: 1838
  issue: 7
  year: 2023
  ident: 10.1016/j.jag.2024.103871_b0050
  article-title: A multi-objective semantic segmentation algorithm based on improved U-Net networks
  publication-title: Remote Sens.
  doi: 10.3390/rs15071838
  contributor:
    fullname: Hao
– volume: 6
  start-page: 34
  year: 2022
  ident: 10.1016/j.jag.2024.103871_b0110
  article-title: Land suitability analysis for maize production using geospatial technologies in the Didessa watershed, Ethiopia
  publication-title: Artif. Intell. Agric.
  contributor:
    fullname: Moisa
– volume: 144
  year: 2023
  ident: 10.1016/j.jag.2024.103871_b0045
  article-title: Automatic diagnosis of covid-19 from ct images using cyclegan and transfer learning
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2023.110511
  contributor:
    fullname: Ghassemi
– volume: 296
  year: 2022
  ident: 10.1016/j.jag.2024.103871_b0060
  article-title: Current situation, trends and challenges for efficient and sustainable peach production
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2022.110899
  contributor:
    fullname: Iglesias
– volume: 15
  start-page: 3283
  issue: 13
  year: 2023
  ident: 10.1016/j.jag.2024.103871_b0170
  article-title: Automatic pear extraction from high-resolution images by a visual attention mechanism network
  publication-title: Remote Sens.
  doi: 10.3390/rs15133283
  contributor:
    fullname: Wang
– volume: 24
  start-page: 92
  issue: 1
  year: 2023
  ident: 10.1016/j.jag.2024.103871_b0210
  article-title: Deep convolutional neural networks for estimating maize above-ground biomass using multi-source UAV images: A comparison with traditional machine learning algorithms
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-022-09932-0
  contributor:
    fullname: Yu
– volume: 60
  start-page: 2206539
  issue: 1
  year: 2023
  ident: 10.1016/j.jag.2024.103871_b0065
  article-title: Recurrent U-Net based dynamic paddy rice mapping in South Korea with enhanced data compatibility to support agricultural decision making
  publication-title: Gisci. Remote Sens.
  doi: 10.1080/15481603.2023.2206539
  contributor:
    fullname: Jo
– volume: 41
  start-page: 7343
  issue: 19
  year: 2020
  ident: 10.1016/j.jag.2024.103871_b0090
  article-title: Evaluating generative adversarial networks based image-level domain transfer for multi-source remote sensing image segmentation and object detection
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1757782
  contributor:
    fullname: Li
– volume: 204
  year: 2023
  ident: 10.1016/j.jag.2024.103871_b0200
  article-title: Detecting volunteer cotton plants in a corn field with deep learning on UAV remote-sensing imagery
  publication-title: Comput. Electron. Agr.
  contributor:
    fullname: Yadav
– volume: 48
  start-page: 491
  year: 2023
  ident: 10.1016/j.jag.2024.103871_b0025
  article-title: Cycle-Gan based feature translation for optical-Sar data in burned area mapping
  publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLVIII-M-1-2023-491-2023
  contributor:
    fullname: Çolak
– ident: 10.1016/j.jag.2024.103871_b0075
– volume: 122
  year: 2023
  ident: 10.1016/j.jag.2024.103871_b0070
  article-title: FCD-AttResU-Net: An improved forest change detection in Sentinel-2 satellite images using attention residual U-Net
  publication-title: Int. J. Appl. Earth Obs.
  contributor:
    fullname: Kalinaki
– start-page: 516
  year: 2022
  ident: 10.1016/j.jag.2024.103871_b0160
  article-title: Deit iii: Revenge of the vit
  publication-title: Eur. Conf. Comput. Vis. Springer
  contributor:
    fullname: Touvron
– year: 2023
  ident: 10.1016/j.jag.2024.103871_b0100
  article-title: Semantic segmentation of agricultural images: A survey
  publication-title: Inform. Process. Agric.
  contributor:
    fullname: Luo
– ident: 10.1016/j.jag.2024.103871_b0150
  doi: 10.1109/CVPR.2019.00584
– ident: 10.1016/j.jag.2024.103871_b0225
  doi: 10.1109/CVPR.2017.660
– volume: 213
  year: 2023
  ident: 10.1016/j.jag.2024.103871_b0215
  article-title: Large-scale apple orchard mapping from multi-source data using the semantic segmentation model with image-to-image translation and transfer learning
  publication-title: Comput. Electron. Agr.
  doi: 10.1016/j.compag.2023.108204
  contributor:
    fullname: Zhang
– volume: 15
  start-page: 4156
  issue: 17
  year: 2023
  ident: 10.1016/j.jag.2024.103871_b0220
  article-title: A lightweight winter wheat planting area extraction model based on improved DeepLabv3+ and CBAM
  publication-title: Remote Sens.
  doi: 10.3390/rs15174156
  contributor:
    fullname: Zhang
SSID ssj0017768
Score 2.4283512
Snippet •The semantic segmentation model U-Net is improved for peach orchard segmentation.•CycleGAN and transfer learning improve the accuracy of peach orchard...
Peach cultivation holds a significant economic importance, and obtaining the spatial distribution of peach orchards is helpful for yield prediction and...
SourceID doaj
crossref
elsevier
SourceType Open Website
Aggregation Database
Publisher
StartPage 103871
SubjectTerms Google Earth
Peach orchard mapping
Remote sensing
Semantic segmentation
Sentinel-2
Unmanned aerial vehicle
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykx5Ep8P5RQ6ehGLaJk1znLIxBHdysFtJmmRsYDe2-v_7krSuHsSLtzbko-S95r2X98svCD1kVnLmEu5M6jKi1uSRylUKUQqVKhZKKI8mfJtl0zl9XbBF56ovhwkL9MBh4p4SaA56ZSTRoG_cSkN4mTiKGm0YlWH1JaINppr8AefhEBzLRJTTNGnzmR7ZtZZLCAwT6snBefzDInni_o5h6hibyRk6bbxEPApfd46OTNVHJx3uwD4ajA9H1KBq84_uL1A9OuSk8cZiWeGV3zkwGs-jmamx23uFMlhJonoT-QdcO5sVcHHQQod3a3a4uVZiiVcV3jroJd54eiWN92b50Zxcqi7RfDJ-f5lGzd0KUZmyvIbVlwhiTKbBZhuROz8RJGaZljpJdEJSGZeZJZRaUuYyzsq4NBmxKZGaKgZ-4wD1qk1lrhDOqOZKxkpppaiiVjIh3U4wy4XmnNAhemznt9gGCo2ixZatCxBG4YRRBGEM0bOTwHdFx37tC0AnikYnir90YohoK7-icSSCgwBdrX4f-_o_xr5Bx67LgCa7Rb1692nuwG-p1b1X0S9ymeq5
  priority: 102
  providerName: Directory of Open Access Journals
Title Application of an improved U-Net with image-to-image translation and transfer learning in peach orchard segmentation
URI https://dx.doi.org/10.1016/j.jag.2024.103871
https://doaj.org/article/2fe8425ea0d0407fae07c20781de54a2
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH9i5bIdEGND64DKB05IUZ3EjpNjqUBlGxXaVolbZMd2FaQlVQn_P8-OA-WwC7fYshPL7-V9-P3eM8B5ZqXgLuDOpa4iZk0eqVyl6KUwqeJCFcqjCW-X2WLFftzz-z2YD7kwDlYZZH8v0720Dj3TsJvTTV1P_6DnUeQs9ShI5Er-AfZ9kGgE-7Obn4vlSzBBiD4jDsdHbsIQ3PQwrwe5Ri8xYb5SuIjfqCdfxX9HS-1onutDOAgmI5n1q_oMe6Y5gk87hQSP4PjqNV8Nh4Yf9vELdLPXADVpLZENqf0xgtFkFS1NR9xBLPahWIm6NvIPpHMKrAfJ4Qzdt63ZknDHxJrUDdk4HCZpfa0lTR7N-l9IY2q-wur66u98EYWLFqIq5XmHopgW1JhMowI3Re6MRiSf5VrqJNEJTWVcZZYyZmmVyzir4spk1KZUaqY4GpHHMGraxnwDkjEtlIyV0koxxazkhXTHwjwvtBCUjeFi2N9y09fTKAeg2UOJxCgdMcqeGGO4dBR4GehKYfuOdrsuAy-UCfIXCh4jqUaBJKw0VFSJq2GkDWcyGQMb6Fe-4Sx8Vf3_b39_37QT-OhaPZjsFEbd9smcodnSqQmy5fz3r7tJYM-Jd_-fAWYm7k4
link.rule.ids 315,783,787,867,2109,24130,27938,27939,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED7kMSQdijZpEPfJoVMBwZREitLoBgmcJvHSGMhGkCJpyEAkw1H_f48UlThDl24SH5LAO92D990R4HvhlOA-4M6VqRPmbJnoUufopTCl00pXOqAJ7xbFfMl-PfCHPbgYc2E8rDLK_kGmB2kdW6ZxNaebppn-Rs-jKlkeUJDIlXwfDtEaqJDZD2fXN_PFczBBiCEjDjsTP2EMbgaY11qt0EvMWKgULtJX6ilU8d_RUjua5-odvI0mI5kNX_Ue9mx7Am92CgmewNnlS74aDo0_7NMp9LOXADXpHFEtacI2gjVkmSxsT_xGLLahWEn6LgkXpPcKbADJ4Qwz3Du7JfGMiRVpWrLxOEzShVpLhjzZ1WNMY2o_wPLq8v5insSDFpI652WPophW1NrCoAK3VemNRiSf40aZLDMZzVVaF44y5mhdqrSo09oW1OVUGaY5GpFncNB2rT0HUjAjtEq1NlozzZzilfLbwrysjBCUTeDHuL5yM9TTkCPQbC2RGNITQw7EmMBPT4Hngb4UdmjotisZeUFmyF8oeKyiBgWScMpSUWe-hpGxnKlsAmykn3zFWfio5t_v_vh_077B0fz-7lbeXi9uPsGx7xmAZZ_hoN_-sV_QhOn118iifwHKj-6_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+an+improved+U-Net+with+image-to-image+translation+and+transfer+learning+in+peach+orchard+segmentation&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Cheng%2C+Jiayu&rft.au=Zhu%2C+Yihang&rft.au=Zhao%2C+Yiying&rft.au=Li%2C+Tong&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.volume=130&rft_id=info:doi/10.1016%2Fj.jag.2024.103871&rft.externalDocID=S1569843224002255
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon