Application of an improved U-Net with image-to-image translation and transfer learning in peach orchard segmentation
•The semantic segmentation model U-Net is improved for peach orchard segmentation.•CycleGAN and transfer learning improve the accuracy of peach orchard segmentation.•Coupling UAV data with satellite images enables large-scale mapping of peach orchard. Peach cultivation holds a significant economic i...
Saved in:
Published in | International journal of applied earth observation and geoinformation Vol. 130; p. 103871 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The semantic segmentation model U-Net is improved for peach orchard segmentation.•CycleGAN and transfer learning improve the accuracy of peach orchard segmentation.•Coupling UAV data with satellite images enables large-scale mapping of peach orchard.
Peach cultivation holds a significant economic importance, and obtaining the spatial distribution of peach orchards is helpful for yield prediction and precision agriculture. In this study, we introduce a new U-Net semantic segmentation model, utilizing ResNet50 as a backbone network, augmented with an Efficient Multi-Scale Attention (EMA) mechanism module and a LayerScale adaptive scaling parameter. To address style differences between images from Unmanned Aerial Vehicle (UAV), Google Earth, and Sentinel-2 satellite, we incorporate Cycle-Consistent Generative Adversarial Networks (CycleGAN). This synthesis ensures that UAV images conform to a comparable style found in Google Earth and Sentinel-2 images, while feature details of high spatial resolution UAV images are transferred to Google Earth and Sentinel-2 images through transfer learning. The results demonstrate that using ResNet50 as a backbone network for the U-Net model yields higher accuracy compared to using VGG16 for the U-Net model. Specifically, the Mean Intersection over Union (MIoU) values for UAV and Sentinel-2 images are higher by 0.49 % and 0.95 %, respectively. The MIoU values for UAV, Google Earth, and Sentinel-2 images increased by 0.87 %, 1.71 %, and 1.74 %, respectively, with the introduction of EMA. Additionally, with the introduction of LayerScale adaptive scaling parameters, the MIoU values increased by 0.31 %, 0.33 %, and 1.44 %, respectively, further enhancing the segmentation accuracy of the model. After applying CycleGAN and transfer learning, the MIoU increased by 1.02 %, 0.15 %, and 1.57 % for UAV, Google Earth, and Sentinel-2 images, respectively, resulting in MIoU values of 97.39 %, 92.08 %, and 84.54 %. The comparative analysis with DeepLabV3+, PSPNet, and HRNet models demonstrates the superior mapping performance of the proposed method. Moreover, the method exhibits good generalization and mapping speed across six test sites in the research area. Overall, this approach ensures high precision and efficiency in peach orchard mapping, accommodating various spatial resolutions, and holds potential for addressing diverse requirements in peach orchard mapping applications. |
---|---|
AbstractList | Peach cultivation holds a significant economic importance, and obtaining the spatial distribution of peach orchards is helpful for yield prediction and precision agriculture. In this study, we introduce a new U-Net semantic segmentation model, utilizing ResNet50 as a backbone network, augmented with an Efficient Multi-Scale Attention (EMA) mechanism module and a LayerScale adaptive scaling parameter. To address style differences between images from Unmanned Aerial Vehicle (UAV), Google Earth, and Sentinel-2 satellite, we incorporate Cycle-Consistent Generative Adversarial Networks (CycleGAN). This synthesis ensures that UAV images conform to a comparable style found in Google Earth and Sentinel-2 images, while feature details of high spatial resolution UAV images are transferred to Google Earth and Sentinel-2 images through transfer learning. The results demonstrate that using ResNet50 as a backbone network for the U-Net model yields higher accuracy compared to using VGG16 for the U-Net model. Specifically, the Mean Intersection over Union (MIoU) values for UAV and Sentinel-2 images are higher by 0.49 % and 0.95 %, respectively. The MIoU values for UAV, Google Earth, and Sentinel-2 images increased by 0.87 %, 1.71 %, and 1.74 %, respectively, with the introduction of EMA. Additionally, with the introduction of LayerScale adaptive scaling parameters, the MIoU values increased by 0.31 %, 0.33 %, and 1.44 %, respectively, further enhancing the segmentation accuracy of the model. After applying CycleGAN and transfer learning, the MIoU increased by 1.02 %, 0.15 %, and 1.57 % for UAV, Google Earth, and Sentinel-2 images, respectively, resulting in MIoU values of 97.39 %, 92.08 %, and 84.54 %. The comparative analysis with DeepLabV3+, PSPNet, and HRNet models demonstrates the superior mapping performance of the proposed method. Moreover, the method exhibits good generalization and mapping speed across six test sites in the research area. Overall, this approach ensures high precision and efficiency in peach orchard mapping, accommodating various spatial resolutions, and holds potential for addressing diverse requirements in peach orchard mapping applications. •The semantic segmentation model U-Net is improved for peach orchard segmentation.•CycleGAN and transfer learning improve the accuracy of peach orchard segmentation.•Coupling UAV data with satellite images enables large-scale mapping of peach orchard. Peach cultivation holds a significant economic importance, and obtaining the spatial distribution of peach orchards is helpful for yield prediction and precision agriculture. In this study, we introduce a new U-Net semantic segmentation model, utilizing ResNet50 as a backbone network, augmented with an Efficient Multi-Scale Attention (EMA) mechanism module and a LayerScale adaptive scaling parameter. To address style differences between images from Unmanned Aerial Vehicle (UAV), Google Earth, and Sentinel-2 satellite, we incorporate Cycle-Consistent Generative Adversarial Networks (CycleGAN). This synthesis ensures that UAV images conform to a comparable style found in Google Earth and Sentinel-2 images, while feature details of high spatial resolution UAV images are transferred to Google Earth and Sentinel-2 images through transfer learning. The results demonstrate that using ResNet50 as a backbone network for the U-Net model yields higher accuracy compared to using VGG16 for the U-Net model. Specifically, the Mean Intersection over Union (MIoU) values for UAV and Sentinel-2 images are higher by 0.49 % and 0.95 %, respectively. The MIoU values for UAV, Google Earth, and Sentinel-2 images increased by 0.87 %, 1.71 %, and 1.74 %, respectively, with the introduction of EMA. Additionally, with the introduction of LayerScale adaptive scaling parameters, the MIoU values increased by 0.31 %, 0.33 %, and 1.44 %, respectively, further enhancing the segmentation accuracy of the model. After applying CycleGAN and transfer learning, the MIoU increased by 1.02 %, 0.15 %, and 1.57 % for UAV, Google Earth, and Sentinel-2 images, respectively, resulting in MIoU values of 97.39 %, 92.08 %, and 84.54 %. The comparative analysis with DeepLabV3+, PSPNet, and HRNet models demonstrates the superior mapping performance of the proposed method. Moreover, the method exhibits good generalization and mapping speed across six test sites in the research area. Overall, this approach ensures high precision and efficiency in peach orchard mapping, accommodating various spatial resolutions, and holds potential for addressing diverse requirements in peach orchard mapping applications. |
ArticleNumber | 103871 |
Author | Zhang, Xiaobin Li, Tong Cheng, Jiayu Sun, Qinan Gu, Qing Zhu, Yihang Chen, Miaojin Zhao, Yiying |
Author_xml | – sequence: 1 givenname: Jiayu surname: Cheng fullname: Cheng, Jiayu organization: College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou, China – sequence: 2 givenname: Yihang surname: Zhu fullname: Zhu, Yihang organization: Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China – sequence: 3 givenname: Yiying surname: Zhao fullname: Zhao, Yiying organization: Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China – sequence: 4 givenname: Tong surname: Li fullname: Li, Tong organization: College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou, China – sequence: 5 givenname: Miaojin surname: Chen fullname: Chen, Miaojin organization: Fenghua Peach Research Institute, Ningbo, China – sequence: 6 givenname: Qinan surname: Sun fullname: Sun, Qinan organization: Fenghua Peach Research Institute, Ningbo, China – sequence: 7 givenname: Qing surname: Gu fullname: Gu, Qing email: guq@zaas.ac.cn organization: College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou, China – sequence: 8 givenname: Xiaobin surname: Zhang fullname: Zhang, Xiaobin email: zhangxb@zaas.ac.cn organization: Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China |
BookMark | eNp9kEtLxTAQhbNQ8PkD3OUP9DpJ0xeuRHyB6Ma7DmMy6U2pSUmD4r-33opLVzNz4DucOSfsIMRAjF0I2AgQ9eWwGbDfSJBqucu2EQfsWFR1V7SqlEfsZJ4HANE0dXvM8vU0jd5g9jHw6DgG7t-nFD_I8m3xTJl_-rxbNOypyLHYLzwnDPO4QhjsejtKfCRMwYee-8AnQrPjMZkdJstn6t8p5D1zxg4djjOd_85Ttr27fb15KJ5e7h9vrp8KU1ZtLgRAB0S1BVlS10LXdZUCV1m0UloJJQpTO1DKgWlR1EYYqsGVgFa9VSDKU_a4-tqIg57SEj596Yhe74WYeo0pezOSlo5aJStCsKCgcUjQGAlNKyxVCuXiJVYvk-I8J3J_fgL0T-160Evt-qd2vda-MFcrQ8uTH56Sno2nYMj6RCYvKfw_9Dfl949Q |
Cites_doi | 10.1016/j.compag.2019.105194 10.1016/j.scienta.2022.111390 10.3390/rs14091977 10.1016/j.ecoinf.2022.101733 10.1109/JSEN.2023.3271391 10.1109/ICCV.2017.244 10.1016/j.agrformet.2020.108240 10.3390/rs14133227 10.1007/s11119-020-09777-5 10.3390/rs15102500 10.1038/s41598-023-34379-2 10.3390/land11071078 10.1007/978-981-15-6318-8_32 10.1002/rse2.264 10.1002/jsfa.10696 10.5194/isprs-archives-XLII-3-W6-573-2019 10.1016/j.autcon.2021.104110 10.1007/978-3-319-24574-4_28 10.1007/978-3-030-01234-2_49 10.3390/rs16010036 10.1109/ICASSP49357.2023.10096516 10.3390/rs15071838 10.1016/j.asoc.2023.110511 10.1016/j.scienta.2022.110899 10.3390/rs15133283 10.1007/s11119-022-09932-0 10.1080/15481603.2023.2206539 10.1080/01431161.2020.1757782 10.5194/isprs-archives-XLVIII-M-1-2023-491-2023 10.1109/CVPR.2019.00584 10.1109/CVPR.2017.660 10.1016/j.compag.2023.108204 10.3390/rs15174156 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jag.2024.103871 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
ExternalDocumentID | oai_doaj_org_article_2fe8425ea0d0407fae07c20781de54a2 10_1016_j_jag_2024_103871 S1569843224002255 |
GroupedDBID | 0SF 29J 4.4 5GY 6I. AAFTH AAHBH AALRI AAQXK AAXKI AAXUO ABFYP ABLST ABQEM ABQYD ACLVX ACRLP ACSBN ADBBV ADMUD ADVLN AFJKZ AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLECG EBS EFJIC EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P R2- RIG ROL SDF SDG SES SPC SSE SSJ T5K ~02 AAYXX CITATION |
ID | FETCH-LOGICAL-c358t-10090ee6d023e980999540f5dad22d203a1c6f044f0c8a16c1ce60f30ad4b5013 |
IEDL.DBID | AIKHN |
ISSN | 1569-8432 |
IngestDate | Tue Oct 22 15:11:21 EDT 2024 Wed Oct 23 14:16:43 EDT 2024 Sat Oct 19 15:54:02 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Google Earth Unmanned aerial vehicle Semantic segmentation Remote sensing Peach orchard mapping Sentinel-2 |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-10090ee6d023e980999540f5dad22d203a1c6f044f0c8a16c1ce60f30ad4b5013 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1569843224002255 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2fe8425ea0d0407fae07c20781de54a2 crossref_primary_10_1016_j_jag_2024_103871 elsevier_sciencedirect_doi_10_1016_j_jag_2024_103871 |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | International journal of applied earth observation and geoinformation |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Wu, Jia, Yang, Zhang, Dai, Zhou (b0185) 2023; 15 Yadav, Thomasson, Hardin, Searcy, Braga Neto, Popescu, Martin, Rodriguez, Meza, Enciso (b0200) 2023; 204 Zheng, Chen (b0230) 2021; 35 Nasiri, Deljouei, Moradi, Sadeghi, Borz (b0115) 2022; 14 Kavzoglu, T., Bilucan, F. and Teke, A., 2020. Comparison of support vector machines, random forest and decision tree methods for classification of sentinel-2A image using different band combinations, 41st Asian Conference on Remote Sensing (ACRS 2020), pp. 1-8. Panella, F., Lipani, A. and Boehm, J., 2022. Semantic segmentation of cracks: Data challenges and architecture. Automat. Constr. 135: 104110. Wu, Xiao, Yang, Wang, Steiner, Bajgain (b0190) 2021; 297 Hu, Zhang, Zhao, Yang, Chen, Zhou, Chen (b0055) 2022; 60 Sun, K., Xiao, B., Liu, D. and Wang, J., 2019. Deep high-resolution representation learning for human pose estimation, Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 5693-5703. Hao, Yin, Li, Zhang, Yang (b0050) 2023; 15 Dalagnol, Wagner, Emilio, Streher, Galvão, Ometto, Aragao (b0035) 2022; 8 Chen, Zhao (b0020) 2022; 113 Li, Zhang (b0095) 2022; 11 Zhang, Wang, Liu, Zhao, Lu, Qu, Tian, Su, Luo, Yang (b0220) 2023; 15 Kumar, A., Razi, R., Singh, A. and Das, H., 2020. Res-vgg: A novel model for plant disease detection by fusing vgg16 and resnet models, International Conference on Machine Learning, Image Processing, Network Security and Data Sciences. Springer, pp. 383-400. Zhu, J.Y., Park, T., Isola, P. and Efros, A.A., 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks, Proceedings of the IEEE international conference on computer vision, pp. 2223-2232. Zhang, Hu, Wu, Liu, Yang, Tang (b0215) 2023; 213 Ronneberger, O., Fischer, P. and Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation, Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer, pp. 234-241. Xu, Ye, Mei, Shen, Sun, Wang, Yang (b0195) 2023; 23 Yu, Zha, Sun, Li, Jin, Zhu, Bian, Ma, Zeng, Su (b0210) 2023; 24 Neetu and Ray, S., 2019. Exploring machine learning classification algorithms for crop classification using Sentinel 2 data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42: 573-578. Ghassemi, Shoeibi, Khodatars, Heras, Rahimi, Zare, Zhang, Pachori, Gorriz (b0045) 2023; 144 Toosi, Javan, Samadzadegan, Mehravar, Kurban, Azadi (b0155) 2022; 70 Li, Luo, Ji, Zhang, Lu (b0090) 2020; 41 Luo, Yang, Yuan, Gou, Li (b0100) 2023 da Silva Junior, Leonel-Junior, Rossi, Correia Filho, de Barros Santiago, de Oliveira-Júnior, Teodoro, Lima, Capristo-Silva (b0030) 2020; 169 Ouyang, D., He, S., Zhang, G., Luo, M., Guo, H., Zhan, J. and Huang, Z., 2023. Efficient Multi-Scale Attention Module with Cross-Spatial Learning, ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 1-5. Touvron, Cord, Jégou (b0160) 2022 Wang, Hu, Shi, Hou, Xu, Zhang (b0180) 2023; 13 Kalinaki, Malik, Lai (b0070) 2023; 122 Zhao, H., Shi, J., Qi, X., Wang, X. and Jia, J., 2017. Pyramid scene parsing network, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881-2890. Atif, Bhuyan, Ahamed (b0010) 2019 Iglesias, Echeverria (b0060) 2022; 296 Çolak, Sunar (b0025) 2023; 48 Dhanya, Subeesh, Kushwaha, Vishwakarma, Kumar, Ritika, Singh (b0040) 2022; 6 Wang, Ding, Ran, Qin, Liu, Li (b0170) 2023; 15 Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F. and Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation, Proceedings of the European conference on computer vision (ECCV), pp. 801-818. Yang, She, Huang, Yang, Zhang, Zhang, Hong, Zhang (b0205) 2022; 70 Aliabad, Malamiri, Shojaei, Sarsangi, Ferreira, Kalantari (b0005) 2022; 14 Jo, Park, Sitokonstantinou, Kim, Lee, Koukos, Lee (b0065) 2023; 60 Osco, Nogueira, Marques Ramos, Faita Pinheiro, Furuya, Gonçalves, de Castro Jorge, Marcato Junior, dos Santos (b0125) 2021; 22 Moisa, Tiye, Dejene, Gemeda (b0110) 2022; 6 Ullah, Bais (b0165) 2022; 6 Li, Liu, Ge, Yuan, Zhang, Liu (b0085) 2023; 16 Sharifi (b0145) 2021; 101 Manganaris, Minas, Cirilli, Torres, Bassi, Costa (b0105) 2022; 305 10.1016/j.jag.2024.103871_b0075 10.1016/j.jag.2024.103871_b0130 10.1016/j.jag.2024.103871_b0150 Hu (10.1016/j.jag.2024.103871_b0055) 2022; 60 Dalagnol (10.1016/j.jag.2024.103871_b0035) 2022; 8 Iglesias (10.1016/j.jag.2024.103871_b0060) 2022; 296 Li (10.1016/j.jag.2024.103871_b0095) 2022; 11 Aliabad (10.1016/j.jag.2024.103871_b0005) 2022; 14 Ghassemi (10.1016/j.jag.2024.103871_b0045) 2023; 144 Wu (10.1016/j.jag.2024.103871_b0185) 2023; 15 Li (10.1016/j.jag.2024.103871_b0085) 2023; 16 Çolak (10.1016/j.jag.2024.103871_b0025) 2023; 48 Nasiri (10.1016/j.jag.2024.103871_b0115) 2022; 14 Osco (10.1016/j.jag.2024.103871_b0125) 2021; 22 Touvron (10.1016/j.jag.2024.103871_b0160) 2022 10.1016/j.jag.2024.103871_b0135 10.1016/j.jag.2024.103871_b0015 Kalinaki (10.1016/j.jag.2024.103871_b0070) 2023; 122 Zheng (10.1016/j.jag.2024.103871_b0230) 2021; 35 10.1016/j.jag.2024.103871_b0235 Sharifi (10.1016/j.jag.2024.103871_b0145) 2021; 101 Xu (10.1016/j.jag.2024.103871_b0195) 2023; 23 Wang (10.1016/j.jag.2024.103871_b0180) 2023; 13 10.1016/j.jag.2024.103871_b0140 Luo (10.1016/j.jag.2024.103871_b0100) 2023 Manganaris (10.1016/j.jag.2024.103871_b0105) 2022; 305 10.1016/j.jag.2024.103871_b0080 Zhang (10.1016/j.jag.2024.103871_b0220) 2023; 15 Ullah (10.1016/j.jag.2024.103871_b0165) 2022; 6 Zhang (10.1016/j.jag.2024.103871_b0215) 2023; 213 Atif (10.1016/j.jag.2024.103871_b0010) 2019 Dhanya (10.1016/j.jag.2024.103871_b0040) 2022; 6 Li (10.1016/j.jag.2024.103871_b0090) 2020; 41 Moisa (10.1016/j.jag.2024.103871_b0110) 2022; 6 Wang (10.1016/j.jag.2024.103871_b0170) 2023; 15 Jo (10.1016/j.jag.2024.103871_b0065) 2023; 60 Yadav (10.1016/j.jag.2024.103871_b0200) 2023; 204 Chen (10.1016/j.jag.2024.103871_b0020) 2022; 113 Yang (10.1016/j.jag.2024.103871_b0205) 2022; 70 10.1016/j.jag.2024.103871_b0225 da Silva Junior (10.1016/j.jag.2024.103871_b0030) 2020; 169 Wu (10.1016/j.jag.2024.103871_b0190) 2021; 297 Yu (10.1016/j.jag.2024.103871_b0210) 2023; 24 Hao (10.1016/j.jag.2024.103871_b0050) 2023; 15 10.1016/j.jag.2024.103871_b0120 Toosi (10.1016/j.jag.2024.103871_b0155) 2022; 70 |
References_xml | – volume: 113 year: 2022 ident: b0020 article-title: Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine publication-title: Int. J. Appl. Earth Obs. contributor: fullname: Zhao – volume: 48 start-page: 491 year: 2023 end-page: 496 ident: b0025 article-title: Cycle-Gan based feature translation for optical-Sar data in burned area mapping publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. contributor: fullname: Sunar – volume: 11 start-page: 1078 year: 2022 ident: b0095 article-title: Identifying peach trees in cultivated land using U-Net algorithm publication-title: Land contributor: fullname: Zhang – volume: 101 start-page: 891 year: 2021 end-page: 896 ident: b0145 article-title: Yield prediction with machine learning algorithms and satellite images publication-title: J. Sci. Food Agr. contributor: fullname: Sharifi – volume: 23 start-page: 13680 year: 2023 end-page: 13691 ident: b0195 article-title: Cross-attention guided group aggregation network for cropland change detection publication-title: IEEE Sens. J. contributor: fullname: Yang – volume: 296 year: 2022 ident: b0060 article-title: Current situation, trends and challenges for efficient and sustainable peach production publication-title: Sci. Hortic. contributor: fullname: Echeverria – volume: 35 start-page: 1 year: 2021 end-page: 8 ident: b0230 article-title: High spatial resolution remote sensing image segmentation based on the multiclassification model and the binary classification model publication-title: Neural Comput. Appl. contributor: fullname: Chen – volume: 24 start-page: 92 year: 2023 end-page: 113 ident: b0210 article-title: Deep convolutional neural networks for estimating maize above-ground biomass using multi-source UAV images: A comparison with traditional machine learning algorithms publication-title: Precis. Agric. contributor: fullname: Su – volume: 60 start-page: 2206539 year: 2023 ident: b0065 article-title: Recurrent U-Net based dynamic paddy rice mapping in South Korea with enhanced data compatibility to support agricultural decision making publication-title: Gisci. Remote Sens. contributor: fullname: Lee – volume: 15 start-page: 3283 year: 2023 ident: b0170 article-title: Automatic pear extraction from high-resolution images by a visual attention mechanism network publication-title: Remote Sens. contributor: fullname: Li – volume: 8 start-page: 601 year: 2022 end-page: 614 ident: b0035 article-title: Canopy palm cover across the Brazilian Amazon forests mapped with airborne LiDAR data and deep learning publication-title: Remote Sens. Ecol. Con. contributor: fullname: Aragao – volume: 305 year: 2022 ident: b0105 article-title: Peach for the future: A specialty crop revisited publication-title: Sci. Hortic. contributor: fullname: Costa – start-page: 1 year: 2019 end-page: 6 ident: b0010 article-title: A review on semantic segmentation from a modern perspective, 2019 international conference on electrical, electronics and computer engineering (UPCON) publication-title: IEEE contributor: fullname: Ahamed – volume: 6 start-page: 34 year: 2022 end-page: 46 ident: b0110 article-title: Land suitability analysis for maize production using geospatial technologies in the Didessa watershed, Ethiopia publication-title: Artif. Intell. Agric. contributor: fullname: Gemeda – volume: 14 start-page: 1977 year: 2022 ident: b0115 article-title: Land use and land cover mapping using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A comparison of two composition methods publication-title: Remote Sens. contributor: fullname: Borz – start-page: 516 year: 2022 end-page: 533 ident: b0160 article-title: Deit iii: Revenge of the vit publication-title: Eur. Conf. Comput. Vis. Springer contributor: fullname: Jégou – volume: 169 year: 2020 ident: b0030 article-title: Mapping soybean planting area in midwest Brazil with remotely sensed images and phenology-based algorithm using the Google Earth Engine platform publication-title: Comput. Electron. Agr. contributor: fullname: Capristo-Silva – volume: 13 start-page: 7600 year: 2023 ident: b0180 article-title: A deep learning method for optimizing semantic segmentation accuracy of remote sensing images based on improved UNet publication-title: Sci. Rep. contributor: fullname: Zhang – volume: 297 year: 2021 ident: b0190 article-title: Spatial-temporal dynamics of maize and soybean planted area, harvested area, gross primary production, and grain production in the Contiguous United States during 2008–2018 publication-title: Agr. Forest Meteorol. contributor: fullname: Bajgain – volume: 16 start-page: 36 year: 2023 ident: b0085 article-title: Extracting citrus-growing regions by multiscale UNet using Sentinel-2 satellite imagery publication-title: Remote Sens. contributor: fullname: Liu – volume: 6 start-page: 211 year: 2022 end-page: 229 ident: b0040 article-title: Deep learning based computer vision approaches for smart agricultural applications publication-title: Artif. Intell. Agric. contributor: fullname: Singh – volume: 213 year: 2023 ident: b0215 article-title: Large-scale apple orchard mapping from multi-source data using the semantic segmentation model with image-to-image translation and transfer learning publication-title: Comput. Electron. Agr. contributor: fullname: Tang – year: 2023 ident: b0100 article-title: Semantic segmentation of agricultural images: A survey publication-title: Inform. Process. Agric. contributor: fullname: Li – volume: 60 start-page: 1 year: 2022 end-page: 13 ident: b0055 article-title: A robust deep learning approach for the quantitative characterization and clustering of peach tree crowns based on UAV images publication-title: IEEE t. Geosci. Remote contributor: fullname: Chen – volume: 14 start-page: 3227 year: 2022 ident: b0005 article-title: Investigating the ability to identify new constructions in urban areas using images from unmanned aerial vehicles, Google Earth, and Sentinel-2 publication-title: Remote Sens. contributor: fullname: Kalantari – volume: 6 start-page: 189 year: 2022 end-page: 198 ident: b0165 article-title: Evaluation of model generalization for growing plants using conditional learning publication-title: Artif. Intelli. Agric. contributor: fullname: Bais – volume: 15 start-page: 2500 year: 2023 ident: b0185 article-title: Economic fruit forest classification based on improved U-Net model in UAV multispectral imagery publication-title: Remote Sens. contributor: fullname: Zhou – volume: 22 start-page: 1171 year: 2021 end-page: 1188 ident: b0125 article-title: Semantic segmentation of citrus-orchard using deep neural networks and multispectral UAV-based imagery publication-title: Precis. Agric. contributor: fullname: dos Santos – volume: 70 year: 2022 ident: b0155 article-title: Citrus orchard mapping in Juybar, Iran: Analysis of NDVI time series and feature fusion of multi-source satellite imageries publication-title: Ecol. Inform. contributor: fullname: Azadi – volume: 15 start-page: 1838 year: 2023 ident: b0050 article-title: A multi-objective semantic segmentation algorithm based on improved U-Net networks publication-title: Remote Sens. contributor: fullname: Yang – volume: 70 year: 2022 ident: b0205 article-title: Extraction of soybean planting area based on feature fusion technology of multi-source low altitude unmanned aerial vehicle images publication-title: Ecol. Infrom. contributor: fullname: Zhang – volume: 122 year: 2023 ident: b0070 article-title: FCD-AttResU-Net: An improved forest change detection in Sentinel-2 satellite images using attention residual U-Net publication-title: Int. J. Appl. Earth Obs. contributor: fullname: Lai – volume: 204 year: 2023 ident: b0200 article-title: Detecting volunteer cotton plants in a corn field with deep learning on UAV remote-sensing imagery publication-title: Comput. Electron. Agr. contributor: fullname: Enciso – volume: 144 year: 2023 ident: b0045 article-title: Automatic diagnosis of covid-19 from ct images using cyclegan and transfer learning publication-title: Appl. Soft. Comput. contributor: fullname: Gorriz – volume: 15 start-page: 4156 year: 2023 ident: b0220 article-title: A lightweight winter wheat planting area extraction model based on improved DeepLabv3+ and CBAM publication-title: Remote Sens. contributor: fullname: Yang – volume: 41 start-page: 7343 year: 2020 end-page: 7367 ident: b0090 article-title: Evaluating generative adversarial networks based image-level domain transfer for multi-source remote sensing image segmentation and object detection publication-title: Int. J. Remote Sens. contributor: fullname: Lu – volume: 169 year: 2020 ident: 10.1016/j.jag.2024.103871_b0030 article-title: Mapping soybean planting area in midwest Brazil with remotely sensed images and phenology-based algorithm using the Google Earth Engine platform publication-title: Comput. Electron. Agr. doi: 10.1016/j.compag.2019.105194 contributor: fullname: da Silva Junior – volume: 6 start-page: 189 year: 2022 ident: 10.1016/j.jag.2024.103871_b0165 article-title: Evaluation of model generalization for growing plants using conditional learning publication-title: Artif. Intelli. Agric. contributor: fullname: Ullah – volume: 305 year: 2022 ident: 10.1016/j.jag.2024.103871_b0105 article-title: Peach for the future: A specialty crop revisited publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2022.111390 contributor: fullname: Manganaris – volume: 14 start-page: 1977 issue: 9 year: 2022 ident: 10.1016/j.jag.2024.103871_b0115 article-title: Land use and land cover mapping using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A comparison of two composition methods publication-title: Remote Sens. doi: 10.3390/rs14091977 contributor: fullname: Nasiri – volume: 70 year: 2022 ident: 10.1016/j.jag.2024.103871_b0155 article-title: Citrus orchard mapping in Juybar, Iran: Analysis of NDVI time series and feature fusion of multi-source satellite imageries publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2022.101733 contributor: fullname: Toosi – volume: 6 start-page: 211 year: 2022 ident: 10.1016/j.jag.2024.103871_b0040 article-title: Deep learning based computer vision approaches for smart agricultural applications publication-title: Artif. Intell. Agric. contributor: fullname: Dhanya – volume: 23 start-page: 13680 issue: 12 year: 2023 ident: 10.1016/j.jag.2024.103871_b0195 article-title: Cross-attention guided group aggregation network for cropland change detection publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3271391 contributor: fullname: Xu – ident: 10.1016/j.jag.2024.103871_b0235 doi: 10.1109/ICCV.2017.244 – volume: 297 year: 2021 ident: 10.1016/j.jag.2024.103871_b0190 article-title: Spatial-temporal dynamics of maize and soybean planted area, harvested area, gross primary production, and grain production in the Contiguous United States during 2008–2018 publication-title: Agr. Forest Meteorol. doi: 10.1016/j.agrformet.2020.108240 contributor: fullname: Wu – volume: 14 start-page: 3227 issue: 13 year: 2022 ident: 10.1016/j.jag.2024.103871_b0005 article-title: Investigating the ability to identify new constructions in urban areas using images from unmanned aerial vehicles, Google Earth, and Sentinel-2 publication-title: Remote Sens. doi: 10.3390/rs14133227 contributor: fullname: Aliabad – volume: 22 start-page: 1171 issue: 4 year: 2021 ident: 10.1016/j.jag.2024.103871_b0125 article-title: Semantic segmentation of citrus-orchard using deep neural networks and multispectral UAV-based imagery publication-title: Precis. Agric. doi: 10.1007/s11119-020-09777-5 contributor: fullname: Osco – volume: 15 start-page: 2500 issue: 10 year: 2023 ident: 10.1016/j.jag.2024.103871_b0185 article-title: Economic fruit forest classification based on improved U-Net model in UAV multispectral imagery publication-title: Remote Sens. doi: 10.3390/rs15102500 contributor: fullname: Wu – volume: 13 start-page: 7600 issue: 1 year: 2023 ident: 10.1016/j.jag.2024.103871_b0180 article-title: A deep learning method for optimizing semantic segmentation accuracy of remote sensing images based on improved UNet publication-title: Sci. Rep. doi: 10.1038/s41598-023-34379-2 contributor: fullname: Wang – volume: 113 year: 2022 ident: 10.1016/j.jag.2024.103871_b0020 article-title: Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine publication-title: Int. J. Appl. Earth Obs. contributor: fullname: Chen – volume: 11 start-page: 1078 issue: 7 year: 2022 ident: 10.1016/j.jag.2024.103871_b0095 article-title: Identifying peach trees in cultivated land using U-Net algorithm publication-title: Land doi: 10.3390/land11071078 contributor: fullname: Li – ident: 10.1016/j.jag.2024.103871_b0080 doi: 10.1007/978-981-15-6318-8_32 – volume: 8 start-page: 601 issue: 5 year: 2022 ident: 10.1016/j.jag.2024.103871_b0035 article-title: Canopy palm cover across the Brazilian Amazon forests mapped with airborne LiDAR data and deep learning publication-title: Remote Sens. Ecol. Con. doi: 10.1002/rse2.264 contributor: fullname: Dalagnol – volume: 101 start-page: 891 issue: 3 year: 2021 ident: 10.1016/j.jag.2024.103871_b0145 article-title: Yield prediction with machine learning algorithms and satellite images publication-title: J. Sci. Food Agr. doi: 10.1002/jsfa.10696 contributor: fullname: Sharifi – ident: 10.1016/j.jag.2024.103871_b0120 doi: 10.5194/isprs-archives-XLII-3-W6-573-2019 – ident: 10.1016/j.jag.2024.103871_b0135 doi: 10.1016/j.autcon.2021.104110 – ident: 10.1016/j.jag.2024.103871_b0140 doi: 10.1007/978-3-319-24574-4_28 – ident: 10.1016/j.jag.2024.103871_b0015 doi: 10.1007/978-3-030-01234-2_49 – volume: 70 year: 2022 ident: 10.1016/j.jag.2024.103871_b0205 article-title: Extraction of soybean planting area based on feature fusion technology of multi-source low altitude unmanned aerial vehicle images publication-title: Ecol. Infrom. contributor: fullname: Yang – start-page: 1 year: 2019 ident: 10.1016/j.jag.2024.103871_b0010 article-title: A review on semantic segmentation from a modern perspective, 2019 international conference on electrical, electronics and computer engineering (UPCON) publication-title: IEEE contributor: fullname: Atif – volume: 60 start-page: 1 year: 2022 ident: 10.1016/j.jag.2024.103871_b0055 article-title: A robust deep learning approach for the quantitative characterization and clustering of peach tree crowns based on UAV images publication-title: IEEE t. Geosci. Remote contributor: fullname: Hu – volume: 16 start-page: 36 issue: 1 year: 2023 ident: 10.1016/j.jag.2024.103871_b0085 article-title: Extracting citrus-growing regions by multiscale UNet using Sentinel-2 satellite imagery publication-title: Remote Sens. doi: 10.3390/rs16010036 contributor: fullname: Li – ident: 10.1016/j.jag.2024.103871_b0130 doi: 10.1109/ICASSP49357.2023.10096516 – volume: 35 start-page: 1 issue: 5 year: 2021 ident: 10.1016/j.jag.2024.103871_b0230 article-title: High spatial resolution remote sensing image segmentation based on the multiclassification model and the binary classification model publication-title: Neural Comput. Appl. contributor: fullname: Zheng – volume: 15 start-page: 1838 issue: 7 year: 2023 ident: 10.1016/j.jag.2024.103871_b0050 article-title: A multi-objective semantic segmentation algorithm based on improved U-Net networks publication-title: Remote Sens. doi: 10.3390/rs15071838 contributor: fullname: Hao – volume: 6 start-page: 34 year: 2022 ident: 10.1016/j.jag.2024.103871_b0110 article-title: Land suitability analysis for maize production using geospatial technologies in the Didessa watershed, Ethiopia publication-title: Artif. Intell. Agric. contributor: fullname: Moisa – volume: 144 year: 2023 ident: 10.1016/j.jag.2024.103871_b0045 article-title: Automatic diagnosis of covid-19 from ct images using cyclegan and transfer learning publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2023.110511 contributor: fullname: Ghassemi – volume: 296 year: 2022 ident: 10.1016/j.jag.2024.103871_b0060 article-title: Current situation, trends and challenges for efficient and sustainable peach production publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2022.110899 contributor: fullname: Iglesias – volume: 15 start-page: 3283 issue: 13 year: 2023 ident: 10.1016/j.jag.2024.103871_b0170 article-title: Automatic pear extraction from high-resolution images by a visual attention mechanism network publication-title: Remote Sens. doi: 10.3390/rs15133283 contributor: fullname: Wang – volume: 24 start-page: 92 issue: 1 year: 2023 ident: 10.1016/j.jag.2024.103871_b0210 article-title: Deep convolutional neural networks for estimating maize above-ground biomass using multi-source UAV images: A comparison with traditional machine learning algorithms publication-title: Precis. Agric. doi: 10.1007/s11119-022-09932-0 contributor: fullname: Yu – volume: 60 start-page: 2206539 issue: 1 year: 2023 ident: 10.1016/j.jag.2024.103871_b0065 article-title: Recurrent U-Net based dynamic paddy rice mapping in South Korea with enhanced data compatibility to support agricultural decision making publication-title: Gisci. Remote Sens. doi: 10.1080/15481603.2023.2206539 contributor: fullname: Jo – volume: 41 start-page: 7343 issue: 19 year: 2020 ident: 10.1016/j.jag.2024.103871_b0090 article-title: Evaluating generative adversarial networks based image-level domain transfer for multi-source remote sensing image segmentation and object detection publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2020.1757782 contributor: fullname: Li – volume: 204 year: 2023 ident: 10.1016/j.jag.2024.103871_b0200 article-title: Detecting volunteer cotton plants in a corn field with deep learning on UAV remote-sensing imagery publication-title: Comput. Electron. Agr. contributor: fullname: Yadav – volume: 48 start-page: 491 year: 2023 ident: 10.1016/j.jag.2024.103871_b0025 article-title: Cycle-Gan based feature translation for optical-Sar data in burned area mapping publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLVIII-M-1-2023-491-2023 contributor: fullname: Çolak – ident: 10.1016/j.jag.2024.103871_b0075 – volume: 122 year: 2023 ident: 10.1016/j.jag.2024.103871_b0070 article-title: FCD-AttResU-Net: An improved forest change detection in Sentinel-2 satellite images using attention residual U-Net publication-title: Int. J. Appl. Earth Obs. contributor: fullname: Kalinaki – start-page: 516 year: 2022 ident: 10.1016/j.jag.2024.103871_b0160 article-title: Deit iii: Revenge of the vit publication-title: Eur. Conf. Comput. Vis. Springer contributor: fullname: Touvron – year: 2023 ident: 10.1016/j.jag.2024.103871_b0100 article-title: Semantic segmentation of agricultural images: A survey publication-title: Inform. Process. Agric. contributor: fullname: Luo – ident: 10.1016/j.jag.2024.103871_b0150 doi: 10.1109/CVPR.2019.00584 – ident: 10.1016/j.jag.2024.103871_b0225 doi: 10.1109/CVPR.2017.660 – volume: 213 year: 2023 ident: 10.1016/j.jag.2024.103871_b0215 article-title: Large-scale apple orchard mapping from multi-source data using the semantic segmentation model with image-to-image translation and transfer learning publication-title: Comput. Electron. Agr. doi: 10.1016/j.compag.2023.108204 contributor: fullname: Zhang – volume: 15 start-page: 4156 issue: 17 year: 2023 ident: 10.1016/j.jag.2024.103871_b0220 article-title: A lightweight winter wheat planting area extraction model based on improved DeepLabv3+ and CBAM publication-title: Remote Sens. doi: 10.3390/rs15174156 contributor: fullname: Zhang |
SSID | ssj0017768 |
Score | 2.4283512 |
Snippet | •The semantic segmentation model U-Net is improved for peach orchard segmentation.•CycleGAN and transfer learning improve the accuracy of peach orchard... Peach cultivation holds a significant economic importance, and obtaining the spatial distribution of peach orchards is helpful for yield prediction and... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 103871 |
SubjectTerms | Google Earth Peach orchard mapping Remote sensing Semantic segmentation Sentinel-2 Unmanned aerial vehicle |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykx5Ep8P5RQ6ehGLaJk1znLIxBHdysFtJmmRsYDe2-v_7krSuHsSLtzbko-S95r2X98svCD1kVnLmEu5M6jKi1uSRylUKUQqVKhZKKI8mfJtl0zl9XbBF56ovhwkL9MBh4p4SaA56ZSTRoG_cSkN4mTiKGm0YlWH1JaINppr8AefhEBzLRJTTNGnzmR7ZtZZLCAwT6snBefzDInni_o5h6hibyRk6bbxEPApfd46OTNVHJx3uwD4ajA9H1KBq84_uL1A9OuSk8cZiWeGV3zkwGs-jmamx23uFMlhJonoT-QdcO5sVcHHQQod3a3a4uVZiiVcV3jroJd54eiWN92b50Zxcqi7RfDJ-f5lGzd0KUZmyvIbVlwhiTKbBZhuROz8RJGaZljpJdEJSGZeZJZRaUuYyzsq4NBmxKZGaKgZ-4wD1qk1lrhDOqOZKxkpppaiiVjIh3U4wy4XmnNAhemznt9gGCo2ixZatCxBG4YRRBGEM0bOTwHdFx37tC0AnikYnir90YohoK7-icSSCgwBdrX4f-_o_xr5Bx67LgCa7Rb1692nuwG-p1b1X0S9ymeq5 priority: 102 providerName: Directory of Open Access Journals |
Title | Application of an improved U-Net with image-to-image translation and transfer learning in peach orchard segmentation |
URI | https://dx.doi.org/10.1016/j.jag.2024.103871 https://doaj.org/article/2fe8425ea0d0407fae07c20781de54a2 |
Volume | 130 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH9i5bIdEGND64DKB05IUZ3EjpNjqUBlGxXaVolbZMd2FaQlVQn_P8-OA-WwC7fYshPL7-V9-P3eM8B5ZqXgLuDOpa4iZk0eqVyl6KUwqeJCFcqjCW-X2WLFftzz-z2YD7kwDlYZZH8v0720Dj3TsJvTTV1P_6DnUeQs9ShI5Er-AfZ9kGgE-7Obn4vlSzBBiD4jDsdHbsIQ3PQwrwe5Ri8xYb5SuIjfqCdfxX9HS-1onutDOAgmI5n1q_oMe6Y5gk87hQSP4PjqNV8Nh4Yf9vELdLPXADVpLZENqf0xgtFkFS1NR9xBLPahWIm6NvIPpHMKrAfJ4Qzdt63ZknDHxJrUDdk4HCZpfa0lTR7N-l9IY2q-wur66u98EYWLFqIq5XmHopgW1JhMowI3Re6MRiSf5VrqJNEJTWVcZZYyZmmVyzir4spk1KZUaqY4GpHHMGraxnwDkjEtlIyV0koxxazkhXTHwjwvtBCUjeFi2N9y09fTKAeg2UOJxCgdMcqeGGO4dBR4GehKYfuOdrsuAy-UCfIXCh4jqUaBJKw0VFSJq2GkDWcyGQMb6Fe-4Sx8Vf3_b39_37QT-OhaPZjsFEbd9smcodnSqQmy5fz3r7tJYM-Jd_-fAWYm7k4 |
link.rule.ids | 315,783,787,867,2109,24130,27938,27939,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED7kMSQdijZpEPfJoVMBwZREitLoBgmcJvHSGMhGkCJpyEAkw1H_f48UlThDl24SH5LAO92D990R4HvhlOA-4M6VqRPmbJnoUufopTCl00pXOqAJ7xbFfMl-PfCHPbgYc2E8rDLK_kGmB2kdW6ZxNaebppn-Rs-jKlkeUJDIlXwfDtEaqJDZD2fXN_PFczBBiCEjDjsTP2EMbgaY11qt0EvMWKgULtJX6ilU8d_RUjua5-odvI0mI5kNX_Ue9mx7Am92CgmewNnlS74aDo0_7NMp9LOXADXpHFEtacI2gjVkmSxsT_xGLLahWEn6LgkXpPcKbADJ4Qwz3Du7JfGMiRVpWrLxOEzShVpLhjzZ1WNMY2o_wPLq8v5insSDFpI652WPophW1NrCoAK3VemNRiSf40aZLDMZzVVaF44y5mhdqrSo09oW1OVUGaY5GpFncNB2rT0HUjAjtEq1NlozzZzilfLbwrysjBCUTeDHuL5yM9TTkCPQbC2RGNITQw7EmMBPT4Hngb4UdmjotisZeUFmyF8oeKyiBgWScMpSUWe-hpGxnKlsAmykn3zFWfio5t_v_vh_077B0fz-7lbeXi9uPsGx7xmAZZ_hoN_-sV_QhOn118iifwHKj-6_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+an+improved+U-Net+with+image-to-image+translation+and+transfer+learning+in+peach+orchard+segmentation&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Cheng%2C+Jiayu&rft.au=Zhu%2C+Yihang&rft.au=Zhao%2C+Yiying&rft.au=Li%2C+Tong&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.volume=130&rft_id=info:doi/10.1016%2Fj.jag.2024.103871&rft.externalDocID=S1569843224002255 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |