Interaction of the non-phosphorylated peptide G7-18NATE with Grb7-SH2 domain requires phosphate for enhanced affinity and specificity

Src‐homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific inhibitor. The G7‐18NATE cyclic peptide is reported to specifically inhibit the growth factor receptor bound protein 7 (Grb7) adapter protein,...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular recognition Vol. 25; no. 1; pp. 57 - 67
Main Authors Gunzburg, Menachem J., Ambaye, Nigus D., Del Borgo, Mark P., Pero, Stephanie C., Krag, David N., Wilce, Matthew C.J., Wilce, Jacqueline A.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.01.2012
Subjects
Online AccessGet full text
ISSN0952-3499
1099-1352
1099-1352
DOI10.1002/jmr.2148

Cover

Loading…
Abstract Src‐homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific inhibitor. The G7‐18NATE cyclic peptide is reported to specifically inhibit the growth factor receptor bound protein 7 (Grb7) adapter protein, implicated in the progression of several cancer types, via interactions with its SH2 domain. G7‐18NATE effectively inhibits the interaction of Grb7 with ErbB3 and focal adhesion kinase in cell lysates and, with the addition of a cell permeability sequence, inhibits the growth and migration of a number of breast cancer cell lines. It is thus a promising lead in the development of therapeutics targeted to Grb7. Here we investigate the degree to which G7‐18NATE is specific for the Grb7‐SH2 domain compared with closely related SH2 domains including those of Grb10, Grb14, and Grb2 using surface plasmon resonance. We demonstrate that G7‐18NATE binds with micromolar binding affinity to Grb7‐SH2 domain (KD = 4–6 μm) compared with 50–200 times lower affinity for Grb10, Grb14, and Grb2 but that this specificity depends critically on the presence of phosphate in millimolar concentrations. Other differences in buffer composition, including use of Tris or 2‐(N‐Morpholino)ethanesulfonic acid or varying the pH, do not impact on the interaction. This suggests that under cellular conditions, G7‐18NATE binds with highest affinity to Grb7. In addition, our findings demonstrate that the basis of specificity of G7‐18NATE binding to the Grb7‐SH2 domain is via other than intrinsic structural features of the protein, representing an unexpected mode of molecular recognition. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList Src‐homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific inhibitor. The G7‐18NATE cyclic peptide is reported to specifically inhibit the growth factor receptor bound protein 7 (Grb7) adapter protein, implicated in the progression of several cancer types, via interactions with its SH2 domain. G7‐18NATE effectively inhibits the interaction of Grb7 with ErbB3 and focal adhesion kinase in cell lysates and, with the addition of a cell permeability sequence, inhibits the growth and migration of a number of breast cancer cell lines. It is thus a promising lead in the development of therapeutics targeted to Grb7. Here we investigate the degree to which G7‐18NATE is specific for the Grb7‐SH2 domain compared with closely related SH2 domains including those of Grb10, Grb14, and Grb2 using surface plasmon resonance. We demonstrate that G7‐18NATE binds with micromolar binding affinity to Grb7‐SH2 domain ( K D  = 4–6 μ m ) compared with 50–200 times lower affinity for Grb10, Grb14, and Grb2 but that this specificity depends critically on the presence of phosphate in millimolar concentrations. Other differences in buffer composition, including use of Tris or 2‐(N‐Morpholino)ethanesulfonic acid or varying the pH, do not impact on the interaction. This suggests that under cellular conditions, G7‐18NATE binds with highest affinity to Grb7. In addition, our findings demonstrate that the basis of specificity of G7‐18NATE binding to the Grb7‐SH2 domain is via other than intrinsic structural features of the protein, representing an unexpected mode of molecular recognition. Copyright © 2011 John Wiley & Sons, Ltd.
Src-homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific inhibitor. The G7-18NATE cyclic peptide is reported to specifically inhibit the growth factor receptor bound protein 7 (Grb7) adapter protein, implicated in the progression of several cancer types, via interactions with its SH2 domain. G7-18NATE effectively inhibits the interaction of Grb7 with ErbB3 and focal adhesion kinase in cell lysates and, with the addition of a cell permeability sequence, inhibits the growth and migration of a number of breast cancer cell lines. It is thus a promising lead in the development of therapeutics targeted to Grb7. Here we investigate the degree to which G7-18NATE is specific for the Grb7-SH2 domain compared with closely related SH2 domains including those of Grb10, Grb14, and Grb2 using surface plasmon resonance. We demonstrate that G7-18NATE binds with micromolar binding affinity to Grb7-SH2 domain (K(D)  = 4-6 μm) compared with 50-200 times lower affinity for Grb10, Grb14, and Grb2 but that this specificity depends critically on the presence of phosphate in millimolar concentrations. Other differences in buffer composition, including use of Tris or 2-(N-Morpholino)ethanesulfonic acid or varying the pH, do not impact on the interaction. This suggests that under cellular conditions, G7-18NATE binds with highest affinity to Grb7. In addition, our findings demonstrate that the basis of specificity of G7-18NATE binding to the Grb7-SH2 domain is via other than intrinsic structural features of the protein, representing an unexpected mode of molecular recognition.Src-homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific inhibitor. The G7-18NATE cyclic peptide is reported to specifically inhibit the growth factor receptor bound protein 7 (Grb7) adapter protein, implicated in the progression of several cancer types, via interactions with its SH2 domain. G7-18NATE effectively inhibits the interaction of Grb7 with ErbB3 and focal adhesion kinase in cell lysates and, with the addition of a cell permeability sequence, inhibits the growth and migration of a number of breast cancer cell lines. It is thus a promising lead in the development of therapeutics targeted to Grb7. Here we investigate the degree to which G7-18NATE is specific for the Grb7-SH2 domain compared with closely related SH2 domains including those of Grb10, Grb14, and Grb2 using surface plasmon resonance. We demonstrate that G7-18NATE binds with micromolar binding affinity to Grb7-SH2 domain (K(D)  = 4-6 μm) compared with 50-200 times lower affinity for Grb10, Grb14, and Grb2 but that this specificity depends critically on the presence of phosphate in millimolar concentrations. Other differences in buffer composition, including use of Tris or 2-(N-Morpholino)ethanesulfonic acid or varying the pH, do not impact on the interaction. This suggests that under cellular conditions, G7-18NATE binds with highest affinity to Grb7. In addition, our findings demonstrate that the basis of specificity of G7-18NATE binding to the Grb7-SH2 domain is via other than intrinsic structural features of the protein, representing an unexpected mode of molecular recognition.
Src-homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific inhibitor. The G7-18NATE cyclic peptide is reported to specifically inhibit the growth factor receptor bound protein 7 (Grb7) adapter protein, implicated in the progression of several cancer types, via interactions with its SH2 domain. G7-18NATE effectively inhibits the interaction of Grb7 with ErbB3 and focal adhesion kinase in cell lysates and, with the addition of a cell permeability sequence, inhibits the growth and migration of a number of breast cancer cell lines. It is thus a promising lead in the development of therapeutics targeted to Grb7. Here we investigate the degree to which G7-18NATE is specific for the Grb7-SH2 domain compared with closely related SH2 domains including those of Grb10, Grb14, and Grb2 using surface plasmon resonance. We demonstrate that G7-18NATE binds with micromolar binding affinity to Grb7-SH2 domain (K(D)  = 4-6 μm) compared with 50-200 times lower affinity for Grb10, Grb14, and Grb2 but that this specificity depends critically on the presence of phosphate in millimolar concentrations. Other differences in buffer composition, including use of Tris or 2-(N-Morpholino)ethanesulfonic acid or varying the pH, do not impact on the interaction. This suggests that under cellular conditions, G7-18NATE binds with highest affinity to Grb7. In addition, our findings demonstrate that the basis of specificity of G7-18NATE binding to the Grb7-SH2 domain is via other than intrinsic structural features of the protein, representing an unexpected mode of molecular recognition.
Src‐homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific inhibitor. The G7‐18NATE cyclic peptide is reported to specifically inhibit the growth factor receptor bound protein 7 (Grb7) adapter protein, implicated in the progression of several cancer types, via interactions with its SH2 domain. G7‐18NATE effectively inhibits the interaction of Grb7 with ErbB3 and focal adhesion kinase in cell lysates and, with the addition of a cell permeability sequence, inhibits the growth and migration of a number of breast cancer cell lines. It is thus a promising lead in the development of therapeutics targeted to Grb7. Here we investigate the degree to which G7‐18NATE is specific for the Grb7‐SH2 domain compared with closely related SH2 domains including those of Grb10, Grb14, and Grb2 using surface plasmon resonance. We demonstrate that G7‐18NATE binds with micromolar binding affinity to Grb7‐SH2 domain (KD = 4–6 μm) compared with 50–200 times lower affinity for Grb10, Grb14, and Grb2 but that this specificity depends critically on the presence of phosphate in millimolar concentrations. Other differences in buffer composition, including use of Tris or 2‐(N‐Morpholino)ethanesulfonic acid or varying the pH, do not impact on the interaction. This suggests that under cellular conditions, G7‐18NATE binds with highest affinity to Grb7. In addition, our findings demonstrate that the basis of specificity of G7‐18NATE binding to the Grb7‐SH2 domain is via other than intrinsic structural features of the protein, representing an unexpected mode of molecular recognition. Copyright © 2011 John Wiley & Sons, Ltd.
Author Del Borgo, Mark P.
Pero, Stephanie C.
Ambaye, Nigus D.
Wilce, Jacqueline A.
Wilce, Matthew C.J.
Gunzburg, Menachem J.
Krag, David N.
Author_xml – sequence: 1
  givenname: Menachem J.
  surname: Gunzburg
  fullname: Gunzburg, Menachem J.
  organization: Department of Biochemistry and Molecular Biology, Monash University, VIC, 3800, Australia
– sequence: 2
  givenname: Nigus D.
  surname: Ambaye
  fullname: Ambaye, Nigus D.
  organization: Department of Biochemistry and Molecular Biology, Monash University, VIC, 3800, Australia
– sequence: 3
  givenname: Mark P.
  surname: Del Borgo
  fullname: Del Borgo, Mark P.
  organization: Department of Biochemistry and Molecular Biology, Monash University, VIC, 3800, Australia
– sequence: 4
  givenname: Stephanie C.
  surname: Pero
  fullname: Pero, Stephanie C.
  organization: Department of Surgery and Vermont Cancer Center, University of Vermont, VT, Burlington, USA
– sequence: 5
  givenname: David N.
  surname: Krag
  fullname: Krag, David N.
  organization: Department of Surgery and Vermont Cancer Center, University of Vermont, VT, Burlington, USA
– sequence: 6
  givenname: Matthew C.J.
  surname: Wilce
  fullname: Wilce, Matthew C.J.
  organization: Department of Biochemistry and Molecular Biology, Monash University, VIC, 3800, Australia
– sequence: 7
  givenname: Jacqueline A.
  surname: Wilce
  fullname: Wilce, Jacqueline A.
  email: jackie.wilce@monash.edu, Jacqueline A. Wilce, Biochemistry and Molecular Biology, Monash University, Wellington Road, VIC 3800, Australia., jackie.wilce@monash.edu
  organization: Department of Biochemistry and Molecular Biology, Monash University, VIC, 3800, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22213451$$D View this record in MEDLINE/PubMed
BookMark eNp1kd1qGzEQhUVJaZy00Ccoumtu1tXPylpdhpA4KYlbWpeAb4RWmsVK9y-STOoH6HtXxkkhJb0YhmG-c2DmHKGDfugBofeUTCkh7NNdF6aMltUrNKFEqYJywQ7QhCjBCl4qdYiOYrwjJO8EeYMOGWOUl4JO0O-rPkEwNvmhx0OD0xpwNi_G9RBzhW1rEjg8wpi8AzyXBa0Wp8tz_ODTGs9DLYvvlwy7oTO-xwHuNz5AxHt5luJmCBj6telttjFN43ufttj0DscRrG-8zfNb9LoxbYR3j_0Y_bg4X55dFtdf5ldnp9eF5aKqCmlASDurnBNQWVq6hjFZl6RyygljayaFoHVZs4obC0AUKNo4CVzBzIIU_Bh93PuOYbjfQEy689FC25oehk3UinLJWCl25IdHclN34PQYfGfCVj99LgPTPWDDEGOARudDzO6NKRjfakr0Lhqdo9G7aLLg5B_Bk-cLaLFHH3wL2_9y-vPNt-e8jwl-_eVN-KlnkkuhbxdzfbP6ulpcrG71kv8BfBytsw
CitedBy_id crossref_primary_10_1002_bip_22237
crossref_primary_10_1371_journal_pone_0052578
crossref_primary_10_1007_s00289_013_1042_9
crossref_primary_10_3390_biomedicines10051145
crossref_primary_10_3390_molecules24203739
crossref_primary_10_1039_D2RA02062A
crossref_primary_10_1039_c3cs35449k
crossref_primary_10_3389_fmolb_2017_00064
crossref_primary_10_1021_acs_jmedchem_5b00609
crossref_primary_10_1107_S2053230X13033414
crossref_primary_10_1038_srep27060
crossref_primary_10_1021_acs_jmedchem_7b01320
crossref_primary_10_1016_j_bios_2025_117255
Cites_doi 10.1016/j.jmb.2011.07.030
10.1074/jbc.274.34.24425
10.1002/3527603611.ch1
10.1017/S1462399403006227
10.1007/s00249-005-0480-1
10.1016/S0014-5793(01)02545-5
10.1007/s10989-010-9222-z
10.1016/j.molcel.2006.06.001
10.1074/jbc.272.13.8490
10.1016/0092-8674(93)90405-F
10.1158/1541-7786.MCR-06-0282
10.1093/carcin/bgm221
10.1002/j.1460-2075.1994.tb06386.x
10.2741/3292
10.1007/s10989-006-9014-7
10.1016/0005-2728(77)90186-4
10.1021/jm020970s
10.1006/dbio.1997.8516
10.1021/bi9814991
10.1038/362087a0
10.1002/gcc.20339
10.1074/jbc.M111816200
10.1074/jbc.271.21.12502
10.1002/pro.5560041120
10.1016/j.bbapap.2004.10.005
10.1186/1472-6807-7-58
10.1002/bip.20667
10.1023/A:1025498409113
10.1006/bbrc.1997.6218
10.1002/bip.21403
10.1016/S0898-6568(98)00022-9
10.1371/journal.pone.0009024
10.1021/bi00036a008
10.1002/jmr.834
10.1016/S0079-6468(08)70097-3
10.1093/jnci/djj105
10.1016/S0092-8674(03)01077-8
10.1042/BJ20050216
10.1038/sj.bjc.6603732
10.1081/RRS-120037896
10.1016/S1097-2765(00)80269-5
10.1615/CritRevImmunol.v30.i3.70
10.2741/1229
10.1016/j.bmc.2010.10.030
10.1074/jbc.M109.018259
10.1093/annonc/mdp346
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/jmr.2148
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1099-1352
EndPage 67
ExternalDocumentID 22213451
10_1002_jmr_2148
JMR2148
ark_67375_WNG_MZPZNFZW_T
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
UB1
V8K
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3588-7ae57c68dd5e8c14df227b408d9d5acb27551b4b283acee09e91fd7e39e6ce753
IEDL.DBID DR2
ISSN 0952-3499
1099-1352
IngestDate Fri Jul 11 03:32:01 EDT 2025
Thu Apr 03 07:01:49 EDT 2025
Tue Jul 01 04:22:37 EDT 2025
Thu Apr 24 22:55:17 EDT 2025
Wed Jan 22 17:05:26 EST 2025
Wed Oct 30 09:53:08 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2011 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3588-7ae57c68dd5e8c14df227b408d9d5acb27551b4b283acee09e91fd7e39e6ce753
Notes ark:/67375/WNG-MZPZNFZW-T
istex:031F337E57A360E9EFC212D4CBB93A26F2381F57
ArticleID:JMR2148
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22213451
PQID 913722455
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_913722455
pubmed_primary_22213451
crossref_citationtrail_10_1002_jmr_2148
crossref_primary_10_1002_jmr_2148
wiley_primary_10_1002_jmr_2148_JMR2148
istex_primary_ark_67375_WNG_MZPZNFZW_T
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01
January 2012
2012-01-00
2012-Jan
20120101
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
PublicationTitle Journal of molecular recognition
PublicationTitleAlternate J. Mol. Recognit
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Pace CN, Vajdos F, Fee L, Grimsley G, Gray T. 1995. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4(11):2411-2423.
Porter CJ, Wilce MC, Mackay JP, Leedman P, Wilce JA. 2005. Grb7-SH2 domain dimerisation is affected by a single point mutation. Eur. Biophys. J. 34(5):454-460.
Holt LJ, Siddle K. 2005. Grb10 and Grb14: enigmatic regulators of insulin action-and more? Biochem. J. 388(Pt 2):393-406.
Gunzburg MJ, Ambaye ND, Hertzog JT, Del Borgo MP, Pero SC, Krag DN, Wilce MC, Aguilar MI, Perlmutter P, Wilce JA. 2010. Use of SPR to Study the Interaction of G7-18NATE Peptide with the Grb7-SH2 Domain. Int. J. Pept. Res. Ther. 16:177-184.
Burke TR. 2006. Development of Grb2 SH2 domain signaling antagonists: a potential new class of antiproliferative agents. Int. J. Pept. Res. Ther. 12(1):33-48.
Itoh S, Taketomi A, Tanaka S, Harimoto N, Yamashita Y, Aishima S, Maeda T, Shirabe K, Shimada M, Maehara Y. 2007. Role of growth factor receptor bound protein 7 in hepatocellular carcinoma. Mol. Cancer Res. 5(7):667-673.
Ambaye ND, Pero SC, Gunzburg MJ, Yap MY, Clayton DJ, Del Borgo MP, Perlmutter P, Aguilar MI, Shukla GS, Elena Peletskaya E, Cookson MM, Krag DN, Wilce MC, Wilce JA. 2011c. Structural basis of binding by cyclic non-phosphorylated peptide antagonists of Grb7 implicated in breast cancer progression. J. Mol. Biol. 412(3):397-411.
Daly RJ, Sanderson GM, Janes PW, Sutherland RL. 1996. Cloning and characterization of GRB14, a novel member of the GRB7 gene family. J. Biol. Chem. 271(21):12502-12510.
Ward WH, Holdgate GA. 2001. Isothermal titration calorimetry in drug discovery. Prog. Med. Chem. 38:309-376.
Janes PW, Lackmann M, Church WB, Sanderson GM, Sutherland RL, Daly RJ. 1997. Structural determinants of the interaction between the erbB2 receptor and the Src homology 2 domain of Grb7. J. Biol. Chem. 272(13):8490-8497.
Perozzo R, Folkers G, Scapozza L. 2004. Thermodynamics of protein-ligand interactions: history, presence, and future aspects. J. Recept. Signal Transduct. Res. 24(1-2):1-52.
Spuches AM, Argiros HJ, Lee KH, Haas LL, Pero SC, Krag DN, Roller PP, Wilcox DE, Lyons BA. 2007. Calorimetric investigation of phosphorylated and non-phosphorylated peptide ligand binding to the human Grb7-SH2 domain. J. Mol. Recognit. 20(4):245-252.
Tanaka S, Mori M, Akiyoshi T, Tanaka Y, Mafune K, Wands JR, Sugimachi K. 1997. Coexpression of Grb7 with epidermal growth factor receptor or Her2/erbB2 in human advanced esophageal carcinoma. Cancer Res. 57(1):28-31.
Daly RJ. 1998. The Grb7 family of signalling proteins. Cell. Signal. 10(9):613-618.
Erecinska M, Stubbs M, Miyata Y, Ditre CM. 1977. Regulation of cellular metabolism by intracellular phosphate. Biochim. Biophys. Acta 462(1):20-35.
Kasembeli MM, Xu X, Tweardy DJ. 2009. SH2 domain binding to phosphopeptide ligands: potential for drug targeting. Front. Biosci. 14:1010-1022.
Kimber MS, Nachman J, Cunningham AM, Gish GD, Pawson T, Pai EF. 2000. Structural basis for specificity switching of the Src SH2 domain. Mol. Cell 5(6):1043-1049.
Nadler Y, Gonzalez AM, Camp RL, Rimm DL, Kluger HM, Kluger Y. 2010. Growth factor receptor-bound protein-7 (Grb7) as a prognostic marker and therapeutic target in breast cancer. Ann. Oncol. 21(3):466-473.
Pawson T. 2004. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116(2):191-203.
Eck MJ, Shoelson SE, Harrison SC. 1993. Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck. Nature 362(6415):87-91.
Liu BA, Jablonowski K, Raina M, Arce M, Pawson T, Nash PD. 2006. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol. Cell 22(6):851-868.
Manser J, Roonprapunt C, Margolis B. 1997. C. elegans cell migration gene mig-10 shares similarities with a family of SH2 domain proteins and acts cell nonautonomously in excretory canal development. Dev. Biol. 184(1):150-164.
Bai T, Luoh SW. 2008. GRB-7 facilitates HER-2/Neu-mediated signal transduction and tumor formation. Carcinogenesis 29(3):473-479.
Lange G, Lesuisse D, Deprez P, Schoot B, Loenze P, Benard D, Marquette JP, Broto P, Sarubbi E, Mandine E. 2003. Requirements for specific binding of low affinity inhibitor fragments to the SH2 domain of (pp60)Src are identical to those for high affinity binding of full length inhibitors. J. Med. Chem. 46(24):5184-5195.
Pero SC, Daly RJ, Krag DN. 2003. Grb7-based molecular therapeutics in cancer. Expert Rev. Mol. Med. 5(14):1-11.
Tanaka S, Pero SC, Taguchi K, Shimada M, Mori M, Krag DN, Arii S. 2006. Specific peptide ligand for Grb7 signal transduction protein and pancreatic cancer metastasis. J. Natl. Cancer Inst. 98(7):491-498.
Ivancic M, Daly RJ, Lyons BA. 2003. Solution structure of the human Grb7-SH2 domain/erbB2 peptide complex and structural basis for Grb7 binding to ErbB2. J. Biomol. NMR 27(3):205-219.
Pero SC, Shukla GS, Cookson MM, Flemer S, Jr., Krag DN. 2007. Combination treatment with Grb7 peptide and doxorubicin or trastuzumab (Herceptin) results in cooperative cell growth inhibition in breast cancer cells. Br. J. Cancer 96(10):1520-1525.
Kao J, Pollack JR. 2006. RNA interference-based functional dissection of the 17q12 amplicon in breast cancer reveals contribution of coamplified genes. Genes Chromosomes Cancer 45(8):761-769.
Ambaye ND, Gunzburg MJ, Lim RC, Price JT, Wilce MC, Wilce JA. 2011a. Benzopyrazine derivatives: a novel class of growth factor receptor bound protein 7 antagonists. Bioorg. Med. Chem. 19(1):693-701.
Machida K, Mayer BJ. 2005. The SH2 domain: versatile signaling module and pharmaceutical target. Biochim. Biophys. Acta 1747(1):1-25.
Nencioni A, Cea M, Garuti A, Passalacqua M, Raffaghello L, Soncini D, Moran E, Zoppoli G, Pistoia V, Patrone F, Ballestrero A. 2010. Grb7 upregulation is a molecular adaptation to HER2 signaling inhibition due to removal of Akt-mediated gene repression. PLoS One 5(2):e9024.
Waksman G, Shoelson SE, Pant N, Cowburn D, Kuriyan J. 1993. Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell 72(5):779-790.
Ambaye ND, Lim RC, Clayton DJ, Gunzburg MJ, Price JT, Pero SC, Krag DN, Wilce MC, Aguilar MI, Perlmutter P, Wilce JA. 2011b. Uptake of a cell permeable G7-18NATE construct into cells and binding with the Grb7-SH2 domain. Biopolymers 96(2):181-188.
Bradshaw JM, Waksman G. 1998. Calorimetric investigation of proton linkage by monitoring both the enthalpy and association constant of binding: application to the interaction of the Src SH2 domain with a high-affinity tyrosyl phosphopeptide. Biochemistry 37(44):15400-15407.
Porter CJ, Matthews JM, Mackay JP, Pursglove SE, Schmidberger JW, Leedman PJ, Pero SC, Krag DN, Wilce MC, Wilce JA. 2007. Grb7 SH2 domain structure and interactions with a cyclic peptide inhibitor of cancer cell migration and proliferation. BMC Struct. Biol. 7:58.
Stein D, Wu J, Fuqua SA, Roonprapunt C, Yajnik V, D'Eustachio P, Moskow JJ, Buchberg AM, Osborne CK, Margolis B. 1994. The SH2 domain protein GRB-7 is co-amplified, overexpressed and in a tight complex with HER2 in breast cancer. EMBO J. 13(6):1331-1340.
Pascal SM, Yamazaki T, Singer AU, Kay LE, Forman-Kay JD. 1995. Structural and dynamic characterization of the phosphotyrosine binding region of a Src homology 2 domain-phosphopeptide complex by NMR relaxation, proton exchange, and chemical shift approaches. Biochemistry 34(36):11353-11362.
Shen TL, Guan JL. 2004. Grb7 in intracellular signaling and its role in cell regulation. Front. Biosci. 9:192-200.
Shen TL, Guan JL. 2001. Differential regulation of cell migration and cell cycle progression by FAK complexes with Src, PI3K, Grb7 and Grb2 in focal contacts. FEBS Lett. 499(1-2):176-181.
Pias S, Peterson TA, Johnson DL, Lyons BA. 2010. The intertwining of structure and function: proposed helix-swapping of the SH2 domain of Grb7, a regulatory protein implicated in cancer progression and inflammation. Crit. Rev. Immunol. 30(3):299-304.
Pero SC, Oligino L, Daly RJ, Soden AL, Liu C, Roller PP, Li P, Krag DN. 2002. Identification of novel non-phosphorylated ligands, which bind selectively to the SH2 domain of Grb7. J. Biol. Chem. 277(14):11918-11926.
Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press: Planview, NY, USA; B21.
Chu PY, Huang LY, Hsu CH, Liang CC, Guan JL, Hung TH, Shen TL. 2009. Tyrosine phosphorylation of growth factor receptor-bound protein-7 by focal adhesion kinase in the regulation of cell migration, proliferation, and tumorigenesis. J. Biol. Chem. 284(30):20215-20226.
Han DC, Guan JL. 1999. Association of focal adhesion kinase with Grb7 and its role in cell migration. J. Biol. Chem. 274(34):24425-24430.
Kishi T, Sasaki H, Akiyama N, Ishizuka T, Sakamoto H, Aizawa S, Sugimura T, Terada M. 1997. Molecular cloning of human GRB-7 co-amplified with CAB1 and c-ERBB-2 in primary gastric cancer. Biochem. Biophys. Res. Commun. 232(1):5-9.
Porter CJ, Wilce JA. 2007. NMR analysis of G7-18NATE, a nonphosphorylated cyclic peptide inhibitor of the Grb7 adapter protein. Biopolymers 88(2):174-181.
2010; 16
2011a; 19
2006; 12
2000; 5
1997; 272
2006; 98
1995; 34
1997; 232
2002; 277
2004; 24
2004; 9
2005
2007; 96
1995; 4
2011c; 412
1993; 362
1977; 462
1998; 37
2009; 14
2010; 21
2011b; 96
2004; 116
2005; 1747
2006; 45
1993; 72
1997; 184
2005; 388
2006; 22
2008; 29
1997; 57
1999; 274
2003; 46
1996; 271
2003; 27
2003; 5
2007; 7
1994; 13
2007; 5
2001; 38
2009; 284
2007; 20
1998; 10
2010; 5
2007; 88
2010; 30
2005; 34
2001; 499
1989
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Tanaka S (e_1_2_8_46_1) 1997; 57
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
Sambrook J (e_1_2_8_41_1) 1989
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – reference: Manser J, Roonprapunt C, Margolis B. 1997. C. elegans cell migration gene mig-10 shares similarities with a family of SH2 domain proteins and acts cell nonautonomously in excretory canal development. Dev. Biol. 184(1):150-164.
– reference: Lange G, Lesuisse D, Deprez P, Schoot B, Loenze P, Benard D, Marquette JP, Broto P, Sarubbi E, Mandine E. 2003. Requirements for specific binding of low affinity inhibitor fragments to the SH2 domain of (pp60)Src are identical to those for high affinity binding of full length inhibitors. J. Med. Chem. 46(24):5184-5195.
– reference: Erecinska M, Stubbs M, Miyata Y, Ditre CM. 1977. Regulation of cellular metabolism by intracellular phosphate. Biochim. Biophys. Acta 462(1):20-35.
– reference: Porter CJ, Matthews JM, Mackay JP, Pursglove SE, Schmidberger JW, Leedman PJ, Pero SC, Krag DN, Wilce MC, Wilce JA. 2007. Grb7 SH2 domain structure and interactions with a cyclic peptide inhibitor of cancer cell migration and proliferation. BMC Struct. Biol. 7:58.
– reference: Tanaka S, Pero SC, Taguchi K, Shimada M, Mori M, Krag DN, Arii S. 2006. Specific peptide ligand for Grb7 signal transduction protein and pancreatic cancer metastasis. J. Natl. Cancer Inst. 98(7):491-498.
– reference: Burke TR. 2006. Development of Grb2 SH2 domain signaling antagonists: a potential new class of antiproliferative agents. Int. J. Pept. Res. Ther. 12(1):33-48.
– reference: Janes PW, Lackmann M, Church WB, Sanderson GM, Sutherland RL, Daly RJ. 1997. Structural determinants of the interaction between the erbB2 receptor and the Src homology 2 domain of Grb7. J. Biol. Chem. 272(13):8490-8497.
– reference: Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press: Planview, NY, USA; B21.
– reference: Daly RJ. 1998. The Grb7 family of signalling proteins. Cell. Signal. 10(9):613-618.
– reference: Itoh S, Taketomi A, Tanaka S, Harimoto N, Yamashita Y, Aishima S, Maeda T, Shirabe K, Shimada M, Maehara Y. 2007. Role of growth factor receptor bound protein 7 in hepatocellular carcinoma. Mol. Cancer Res. 5(7):667-673.
– reference: Pace CN, Vajdos F, Fee L, Grimsley G, Gray T. 1995. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4(11):2411-2423.
– reference: Ambaye ND, Lim RC, Clayton DJ, Gunzburg MJ, Price JT, Pero SC, Krag DN, Wilce MC, Aguilar MI, Perlmutter P, Wilce JA. 2011b. Uptake of a cell permeable G7-18NATE construct into cells and binding with the Grb7-SH2 domain. Biopolymers 96(2):181-188.
– reference: Pero SC, Shukla GS, Cookson MM, Flemer S, Jr., Krag DN. 2007. Combination treatment with Grb7 peptide and doxorubicin or trastuzumab (Herceptin) results in cooperative cell growth inhibition in breast cancer cells. Br. J. Cancer 96(10):1520-1525.
– reference: Pawson T. 2004. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116(2):191-203.
– reference: Tanaka S, Mori M, Akiyoshi T, Tanaka Y, Mafune K, Wands JR, Sugimachi K. 1997. Coexpression of Grb7 with epidermal growth factor receptor or Her2/erbB2 in human advanced esophageal carcinoma. Cancer Res. 57(1):28-31.
– reference: Porter CJ, Wilce MC, Mackay JP, Leedman P, Wilce JA. 2005. Grb7-SH2 domain dimerisation is affected by a single point mutation. Eur. Biophys. J. 34(5):454-460.
– reference: Nadler Y, Gonzalez AM, Camp RL, Rimm DL, Kluger HM, Kluger Y. 2010. Growth factor receptor-bound protein-7 (Grb7) as a prognostic marker and therapeutic target in breast cancer. Ann. Oncol. 21(3):466-473.
– reference: Ambaye ND, Gunzburg MJ, Lim RC, Price JT, Wilce MC, Wilce JA. 2011a. Benzopyrazine derivatives: a novel class of growth factor receptor bound protein 7 antagonists. Bioorg. Med. Chem. 19(1):693-701.
– reference: Porter CJ, Wilce JA. 2007. NMR analysis of G7-18NATE, a nonphosphorylated cyclic peptide inhibitor of the Grb7 adapter protein. Biopolymers 88(2):174-181.
– reference: Ivancic M, Daly RJ, Lyons BA. 2003. Solution structure of the human Grb7-SH2 domain/erbB2 peptide complex and structural basis for Grb7 binding to ErbB2. J. Biomol. NMR 27(3):205-219.
– reference: Machida K, Mayer BJ. 2005. The SH2 domain: versatile signaling module and pharmaceutical target. Biochim. Biophys. Acta 1747(1):1-25.
– reference: Spuches AM, Argiros HJ, Lee KH, Haas LL, Pero SC, Krag DN, Roller PP, Wilcox DE, Lyons BA. 2007. Calorimetric investigation of phosphorylated and non-phosphorylated peptide ligand binding to the human Grb7-SH2 domain. J. Mol. Recognit. 20(4):245-252.
– reference: Gunzburg MJ, Ambaye ND, Hertzog JT, Del Borgo MP, Pero SC, Krag DN, Wilce MC, Aguilar MI, Perlmutter P, Wilce JA. 2010. Use of SPR to Study the Interaction of G7-18NATE Peptide with the Grb7-SH2 Domain. Int. J. Pept. Res. Ther. 16:177-184.
– reference: Han DC, Guan JL. 1999. Association of focal adhesion kinase with Grb7 and its role in cell migration. J. Biol. Chem. 274(34):24425-24430.
– reference: Perozzo R, Folkers G, Scapozza L. 2004. Thermodynamics of protein-ligand interactions: history, presence, and future aspects. J. Recept. Signal Transduct. Res. 24(1-2):1-52.
– reference: Kimber MS, Nachman J, Cunningham AM, Gish GD, Pawson T, Pai EF. 2000. Structural basis for specificity switching of the Src SH2 domain. Mol. Cell 5(6):1043-1049.
– reference: Shen TL, Guan JL. 2004. Grb7 in intracellular signaling and its role in cell regulation. Front. Biosci. 9:192-200.
– reference: Stein D, Wu J, Fuqua SA, Roonprapunt C, Yajnik V, D'Eustachio P, Moskow JJ, Buchberg AM, Osborne CK, Margolis B. 1994. The SH2 domain protein GRB-7 is co-amplified, overexpressed and in a tight complex with HER2 in breast cancer. EMBO J. 13(6):1331-1340.
– reference: Ambaye ND, Pero SC, Gunzburg MJ, Yap MY, Clayton DJ, Del Borgo MP, Perlmutter P, Aguilar MI, Shukla GS, Elena Peletskaya E, Cookson MM, Krag DN, Wilce MC, Wilce JA. 2011c. Structural basis of binding by cyclic non-phosphorylated peptide antagonists of Grb7 implicated in breast cancer progression. J. Mol. Biol. 412(3):397-411.
– reference: Chu PY, Huang LY, Hsu CH, Liang CC, Guan JL, Hung TH, Shen TL. 2009. Tyrosine phosphorylation of growth factor receptor-bound protein-7 by focal adhesion kinase in the regulation of cell migration, proliferation, and tumorigenesis. J. Biol. Chem. 284(30):20215-20226.
– reference: Bradshaw JM, Waksman G. 1998. Calorimetric investigation of proton linkage by monitoring both the enthalpy and association constant of binding: application to the interaction of the Src SH2 domain with a high-affinity tyrosyl phosphopeptide. Biochemistry 37(44):15400-15407.
– reference: Holt LJ, Siddle K. 2005. Grb10 and Grb14: enigmatic regulators of insulin action-and more? Biochem. J. 388(Pt 2):393-406.
– reference: Ward WH, Holdgate GA. 2001. Isothermal titration calorimetry in drug discovery. Prog. Med. Chem. 38:309-376.
– reference: Nencioni A, Cea M, Garuti A, Passalacqua M, Raffaghello L, Soncini D, Moran E, Zoppoli G, Pistoia V, Patrone F, Ballestrero A. 2010. Grb7 upregulation is a molecular adaptation to HER2 signaling inhibition due to removal of Akt-mediated gene repression. PLoS One 5(2):e9024.
– reference: Daly RJ, Sanderson GM, Janes PW, Sutherland RL. 1996. Cloning and characterization of GRB14, a novel member of the GRB7 gene family. J. Biol. Chem. 271(21):12502-12510.
– reference: Pias S, Peterson TA, Johnson DL, Lyons BA. 2010. The intertwining of structure and function: proposed helix-swapping of the SH2 domain of Grb7, a regulatory protein implicated in cancer progression and inflammation. Crit. Rev. Immunol. 30(3):299-304.
– reference: Pero SC, Daly RJ, Krag DN. 2003. Grb7-based molecular therapeutics in cancer. Expert Rev. Mol. Med. 5(14):1-11.
– reference: Pero SC, Oligino L, Daly RJ, Soden AL, Liu C, Roller PP, Li P, Krag DN. 2002. Identification of novel non-phosphorylated ligands, which bind selectively to the SH2 domain of Grb7. J. Biol. Chem. 277(14):11918-11926.
– reference: Kao J, Pollack JR. 2006. RNA interference-based functional dissection of the 17q12 amplicon in breast cancer reveals contribution of coamplified genes. Genes Chromosomes Cancer 45(8):761-769.
– reference: Waksman G, Shoelson SE, Pant N, Cowburn D, Kuriyan J. 1993. Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell 72(5):779-790.
– reference: Liu BA, Jablonowski K, Raina M, Arce M, Pawson T, Nash PD. 2006. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol. Cell 22(6):851-868.
– reference: Shen TL, Guan JL. 2001. Differential regulation of cell migration and cell cycle progression by FAK complexes with Src, PI3K, Grb7 and Grb2 in focal contacts. FEBS Lett. 499(1-2):176-181.
– reference: Eck MJ, Shoelson SE, Harrison SC. 1993. Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck. Nature 362(6415):87-91.
– reference: Kasembeli MM, Xu X, Tweardy DJ. 2009. SH2 domain binding to phosphopeptide ligands: potential for drug targeting. Front. Biosci. 14:1010-1022.
– reference: Bai T, Luoh SW. 2008. GRB-7 facilitates HER-2/Neu-mediated signal transduction and tumor formation. Carcinogenesis 29(3):473-479.
– reference: Pascal SM, Yamazaki T, Singer AU, Kay LE, Forman-Kay JD. 1995. Structural and dynamic characterization of the phosphotyrosine binding region of a Src homology 2 domain-phosphopeptide complex by NMR relaxation, proton exchange, and chemical shift approaches. Biochemistry 34(36):11353-11362.
– reference: Kishi T, Sasaki H, Akiyama N, Ishizuka T, Sakamoto H, Aizawa S, Sugimura T, Terada M. 1997. Molecular cloning of human GRB-7 co-amplified with CAB1 and c-ERBB-2 in primary gastric cancer. Biochem. Biophys. Res. Commun. 232(1):5-9.
– volume: 7
  start-page: 58
  year: 2007
  article-title: Grb7 SH2 domain structure and interactions with a cyclic peptide inhibitor of cancer cell migration and proliferation
  publication-title: BMC Struct. Biol.
– volume: 29
  start-page: 473
  issue: 3
  year: 2008
  end-page: 479
  article-title: GRB‐7 facilitates HER‐2/Neu‐mediated signal transduction and tumor formation
  publication-title: Carcinogenesis
– volume: 16
  start-page: 177
  year: 2010
  end-page: 184
  article-title: Use of SPR to Study the Interaction of G7‐18NATE Peptide with the Grb7‐SH2 Domain
  publication-title: Int. J. Pept. Res. Ther.
– volume: 5
  start-page: 667
  issue: 7
  year: 2007
  end-page: 673
  article-title: Role of growth factor receptor bound protein 7 in hepatocellular carcinoma
  publication-title: Mol. Cancer Res.
– volume: 184
  start-page: 150
  issue: 1
  year: 1997
  end-page: 164
  article-title: C. elegans cell migration gene mig‐10 shares similarities with a family of SH2 domain proteins and acts cell nonautonomously in excretory canal development
  publication-title: Dev. Biol.
– volume: 272
  start-page: 8490
  issue: 13
  year: 1997
  end-page: 8497
  article-title: Structural determinants of the interaction between the erbB2 receptor and the Src homology 2 domain of Grb7
  publication-title: J. Biol. Chem.
– volume: 1747
  start-page: 1
  issue: 1
  year: 2005
  end-page: 25
  article-title: The SH2 domain: versatile signaling module and pharmaceutical target
  publication-title: Biochim. Biophys. Acta
– volume: 96
  start-page: 181
  issue: 2
  year: 2011b
  end-page: 188
  article-title: Uptake of a cell permeable G7‐18NATE construct into cells and binding with the Grb7‐SH2 domain
  publication-title: Biopolymers
– volume: 46
  start-page: 5184
  issue: 24
  year: 2003
  end-page: 5195
  article-title: Requirements for specific binding of low affinity inhibitor fragments to the SH2 domain of (pp60)Src are identical to those for high affinity binding of full length inhibitors
  publication-title: J. Med. Chem.
– volume: 30
  start-page: 299
  issue: 3
  year: 2010
  end-page: 304
  article-title: The intertwining of structure and function: proposed helix‐swapping of the SH2 domain of Grb7, a regulatory protein implicated in cancer progression and inflammation
  publication-title: Crit. Rev. Immunol.
– start-page: B21
  year: 1989
– volume: 274
  start-page: 24425
  issue: 34
  year: 1999
  end-page: 24430
  article-title: Association of focal adhesion kinase with Grb7 and its role in cell migration
  publication-title: J. Biol. Chem.
– volume: 277
  start-page: 11918
  issue: 14
  year: 2002
  end-page: 11926
  article-title: Identification of novel non‐phosphorylated ligands, which bind selectively to the SH2 domain of Grb7
  publication-title: J. Biol. Chem.
– volume: 284
  start-page: 20215
  issue: 30
  year: 2009
  end-page: 20226
  article-title: Tyrosine phosphorylation of growth factor receptor‐bound protein‐7 by focal adhesion kinase in the regulation of cell migration, proliferation, and tumorigenesis
  publication-title: J. Biol. Chem.
– volume: 116
  start-page: 191
  issue: 2
  year: 2004
  end-page: 203
  article-title: Specificity in signal transduction: from phosphotyrosine‐SH2 domain interactions to complex cellular systems
  publication-title: Cell
– volume: 271
  start-page: 12502
  issue: 21
  year: 1996
  end-page: 12510
  article-title: Cloning and characterization of GRB14, a novel member of the GRB7 gene family
  publication-title: J. Biol. Chem.
– volume: 72
  start-page: 779
  issue: 5
  year: 1993
  end-page: 790
  article-title: Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide‐free forms
  publication-title: Cell
– volume: 38
  start-page: 309
  year: 2001
  end-page: 376
  article-title: Isothermal titration calorimetry in drug discovery
  publication-title: Prog. Med. Chem.
– volume: 21
  start-page: 466
  issue: 3
  year: 2010
  end-page: 473
  article-title: Growth factor receptor‐bound protein‐7 (Grb7) as a prognostic marker and therapeutic target in breast cancer
  publication-title: Ann. Oncol.
– volume: 27
  start-page: 205
  issue: 3
  year: 2003
  end-page: 219
  article-title: Solution structure of the human Grb7‐SH2 domain/erbB2 peptide complex and structural basis for Grb7 binding to ErbB2
  publication-title: J. Biomol. NMR
– volume: 34
  start-page: 454
  issue: 5
  year: 2005
  end-page: 460
  article-title: Grb7‐SH2 domain dimerisation is affected by a single point mutation
  publication-title: Eur. Biophys. J.
– volume: 362
  start-page: 87
  issue: 6415
  year: 1993
  end-page: 91
  article-title: Recognition of a high‐affinity phosphotyrosyl peptide by the Src homology‐2 domain of p56lck
  publication-title: Nature
– volume: 12
  start-page: 33
  issue: 1
  year: 2006
  end-page: 48
  article-title: Development of Grb2 SH2 domain signaling antagonists: a potential new class of antiproliferative agents
  publication-title: Int. J. Pept. Res. Ther.
– volume: 13
  start-page: 1331
  issue: 6
  year: 1994
  end-page: 1340
  article-title: The SH2 domain protein GRB‐7 is co‐amplified, overexpressed and in a tight complex with HER2 in breast cancer
  publication-title: EMBO J.
– volume: 20
  start-page: 245
  issue: 4
  year: 2007
  end-page: 252
  article-title: Calorimetric investigation of phosphorylated and non‐phosphorylated peptide ligand binding to the human Grb7‐SH2 domain
  publication-title: J. Mol. Recognit.
– volume: 96
  start-page: 1520
  issue: 10
  year: 2007
  end-page: 1525
  article-title: Combination treatment with Grb7 peptide and doxorubicin or trastuzumab (Herceptin) results in cooperative cell growth inhibition in breast cancer cells
  publication-title: Br. J. Cancer
– volume: 5
  start-page: e9024
  issue: 2
  year: 2010
  article-title: Grb7 upregulation is a molecular adaptation to HER2 signaling inhibition due to removal of Akt‐mediated gene repression
  publication-title: PLoS One
– volume: 10
  start-page: 613
  issue: 9
  year: 1998
  end-page: 618
  article-title: The Grb7 family of signalling proteins
  publication-title: Cell. Signal.
– volume: 232
  start-page: 5
  issue: 1
  year: 1997
  end-page: 9
  article-title: Molecular cloning of human GRB‐7 co‐amplified with CAB1 and c‐ERBB‐2 in primary gastric cancer
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 22
  start-page: 851
  issue: 6
  year: 2006
  end-page: 868
  article-title: The human and mouse complement of SH2 domain proteins‐establishing the boundaries of phosphotyrosine signaling
  publication-title: Mol. Cell
– volume: 5
  start-page: 1
  issue: 14
  year: 2003
  end-page: 11
  article-title: Grb7‐based molecular therapeutics in cancer
  publication-title: Expert Rev. Mol. Med.
– volume: 19
  start-page: 693
  issue: 1
  year: 2011a
  end-page: 701
  article-title: Benzopyrazine derivatives: a novel class of growth factor receptor bound protein 7 antagonists
  publication-title: Bioorg. Med. Chem.
– volume: 24
  start-page: 1
  issue: 1–2
  year: 2004
  end-page: 52
  article-title: Thermodynamics of protein‐ligand interactions: history, presence, and future aspects
  publication-title: J. Recept. Signal Transduct. Res.
– volume: 57
  start-page: 28
  issue: 1
  year: 1997
  end-page: 31
  article-title: Coexpression of Grb7 with epidermal growth factor receptor or Her2/erbB2 in human advanced esophageal carcinoma
  publication-title: Cancer Res.
– volume: 37
  start-page: 15400
  issue: 44
  year: 1998
  end-page: 15407
  article-title: Calorimetric investigation of proton linkage by monitoring both the enthalpy and association constant of binding: application to the interaction of the Src SH2 domain with a high‐affinity tyrosyl phosphopeptide
  publication-title: Biochemistry
– volume: 388
  start-page: 393
  issue: Pt 2
  year: 2005
  end-page: 406
  article-title: Grb10 and Grb14: enigmatic regulators of insulin action–and more?
  publication-title: Biochem. J.
– volume: 14
  start-page: 1010
  year: 2009
  end-page: 1022
  article-title: SH2 domain binding to phosphopeptide ligands: potential for drug targeting
  publication-title: Front. Biosci.
– volume: 34
  start-page: 11353
  issue: 36
  year: 1995
  end-page: 11362
  article-title: Structural and dynamic characterization of the phosphotyrosine binding region of a Src homology 2 domain–phosphopeptide complex by NMR relaxation, proton exchange, and chemical shift approaches
  publication-title: Biochemistry
– volume: 9
  start-page: 192
  year: 2004
  end-page: 200
  article-title: Grb7 in intracellular signaling and its role in cell regulation
  publication-title: Front. Biosci.
– volume: 4
  start-page: 2411
  issue: 11
  year: 1995
  end-page: 2423
  article-title: How to measure and predict the molar absorption coefficient of a protein
  publication-title: Protein Sci.
– volume: 5
  start-page: 1043
  issue: 6
  year: 2000
  end-page: 1049
  article-title: Structural basis for specificity switching of the Src SH2 domain
  publication-title: Mol. Cell
– volume: 98
  start-page: 491
  issue: 7
  year: 2006
  end-page: 498
  article-title: Specific peptide ligand for Grb7 signal transduction protein and pancreatic cancer metastasis
  publication-title: J. Natl. Cancer Inst.
– volume: 412
  start-page: 397
  issue: 3
  year: 2011c
  end-page: 411
  article-title: Structural basis of binding by cyclic non‐phosphorylated peptide antagonists of Grb7 implicated in breast cancer progression
  publication-title: J. Mol. Biol.
– start-page: 5
  year: 2005
  end-page: 36
– volume: 462
  start-page: 20
  issue: 1
  year: 1977
  end-page: 35
  article-title: Regulation of cellular metabolism by intracellular phosphate
  publication-title: Biochim. Biophys. Acta
– volume: 45
  start-page: 761
  issue: 8
  year: 2006
  end-page: 769
  article-title: RNA interference‐based functional dissection of the 17q12 amplicon in breast cancer reveals contribution of coamplified genes
  publication-title: Genes Chromosomes Cancer
– volume: 88
  start-page: 174
  issue: 2
  year: 2007
  end-page: 181
  article-title: NMR analysis of G7‐18NATE, a nonphosphorylated cyclic peptide inhibitor of the Grb7 adapter protein
  publication-title: Biopolymers
– volume: 499
  start-page: 176
  issue: 1–2
  year: 2001
  end-page: 181
  article-title: Differential regulation of cell migration and cell cycle progression by FAK complexes with Src, PI3K, Grb7 and Grb2 in focal contacts
  publication-title: FEBS Lett.
– ident: e_1_2_8_4_1
  doi: 10.1016/j.jmb.2011.07.030
– ident: e_1_2_8_14_1
  doi: 10.1074/jbc.274.34.24425
– ident: e_1_2_8_32_1
  doi: 10.1002/3527603611.ch1
– ident: e_1_2_8_33_1
  doi: 10.1017/S1462399403006227
– ident: e_1_2_8_40_1
  doi: 10.1007/s00249-005-0480-1
– ident: e_1_2_8_42_1
  doi: 10.1016/S0014-5793(01)02545-5
– ident: e_1_2_8_13_1
  doi: 10.1007/s10989-010-9222-z
– volume: 57
  start-page: 28
  issue: 1
  year: 1997
  ident: e_1_2_8_46_1
  article-title: Coexpression of Grb7 with epidermal growth factor receptor or Her2/erbB2 in human advanced esophageal carcinoma
  publication-title: Cancer Res.
– ident: e_1_2_8_24_1
  doi: 10.1016/j.molcel.2006.06.001
– ident: e_1_2_8_18_1
  doi: 10.1074/jbc.272.13.8490
– ident: e_1_2_8_48_1
  doi: 10.1016/0092-8674(93)90405-F
– ident: e_1_2_8_16_1
  doi: 10.1158/1541-7786.MCR-06-0282
– ident: e_1_2_8_5_1
  doi: 10.1093/carcin/bgm221
– ident: e_1_2_8_45_1
  doi: 10.1002/j.1460-2075.1994.tb06386.x
– ident: e_1_2_8_20_1
  doi: 10.2741/3292
– ident: e_1_2_8_7_1
  doi: 10.1007/s10989-006-9014-7
– ident: e_1_2_8_12_1
  doi: 10.1016/0005-2728(77)90186-4
– ident: e_1_2_8_23_1
  doi: 10.1021/jm020970s
– ident: e_1_2_8_26_1
  doi: 10.1006/dbio.1997.8516
– ident: e_1_2_8_6_1
  doi: 10.1021/bi9814991
– ident: e_1_2_8_11_1
  doi: 10.1038/362087a0
– ident: e_1_2_8_19_1
  doi: 10.1002/gcc.20339
– ident: e_1_2_8_34_1
  doi: 10.1074/jbc.M111816200
– ident: e_1_2_8_10_1
  doi: 10.1074/jbc.271.21.12502
– ident: e_1_2_8_29_1
  doi: 10.1002/pro.5560041120
– ident: e_1_2_8_25_1
  doi: 10.1016/j.bbapap.2004.10.005
– ident: e_1_2_8_39_1
  doi: 10.1186/1472-6807-7-58
– ident: e_1_2_8_38_1
  doi: 10.1002/bip.20667
– start-page: B21
  volume-title: Molecular cloning: a laboratory manual
  year: 1989
  ident: e_1_2_8_41_1
– ident: e_1_2_8_17_1
  doi: 10.1023/A:1025498409113
– ident: e_1_2_8_22_1
  doi: 10.1006/bbrc.1997.6218
– ident: e_1_2_8_3_1
  doi: 10.1002/bip.21403
– ident: e_1_2_8_9_1
  doi: 10.1016/S0898-6568(98)00022-9
– ident: e_1_2_8_28_1
  doi: 10.1371/journal.pone.0009024
– ident: e_1_2_8_30_1
  doi: 10.1021/bi00036a008
– ident: e_1_2_8_44_1
  doi: 10.1002/jmr.834
– ident: e_1_2_8_49_1
  doi: 10.1016/S0079-6468(08)70097-3
– ident: e_1_2_8_47_1
  doi: 10.1093/jnci/djj105
– ident: e_1_2_8_31_1
  doi: 10.1016/S0092-8674(03)01077-8
– ident: e_1_2_8_15_1
  doi: 10.1042/BJ20050216
– ident: e_1_2_8_35_1
  doi: 10.1038/sj.bjc.6603732
– ident: e_1_2_8_36_1
  doi: 10.1081/RRS-120037896
– ident: e_1_2_8_21_1
  doi: 10.1016/S1097-2765(00)80269-5
– ident: e_1_2_8_37_1
  doi: 10.1615/CritRevImmunol.v30.i3.70
– ident: e_1_2_8_43_1
  doi: 10.2741/1229
– ident: e_1_2_8_2_1
  doi: 10.1016/j.bmc.2010.10.030
– ident: e_1_2_8_8_1
  doi: 10.1074/jbc.M109.018259
– ident: e_1_2_8_27_1
  doi: 10.1093/annonc/mdp346
SSID ssj0009950
Score 2.0362906
Snippet Src‐homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific...
Src-homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 57
SubjectTerms Adaptor Proteins, Signal Transducing - antagonists & inhibitors
Adaptor Proteins, Signal Transducing - chemistry
Amino Acid Sequence
Breast cancer
Breast Neoplasms - drug therapy
Cell Adhesion - drug effects
Cell Line, Tumor
Cell Movement - drug effects
Female
GRB10 Adaptor Protein - antagonists & inhibitors
GRB10 Adaptor Protein - chemistry
GRB2 Adaptor Protein - antagonists & inhibitors
GRB2 Adaptor Protein - chemistry
Grb7
GRB7 Adaptor Protein - antagonists & inhibitors
GRB7 Adaptor Protein - chemistry
Humans
Molecular Sequence Data
Non phosphorylated cyclic peptide
Peptide inhibitor
Peptides, Cyclic - chemistry
Peptides, Cyclic - pharmacology
Phosphates - chemistry
Phosphates - metabolism
Protein Binding
Sensitivity and Specificity
SH2 domain
src Homology Domains
Surface Plasmon resonance
Surface Plasmon Resonance - methods
Title Interaction of the non-phosphorylated peptide G7-18NATE with Grb7-SH2 domain requires phosphate for enhanced affinity and specificity
URI https://api.istex.fr/ark:/67375/WNG-MZPZNFZW-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmr.2148
https://www.ncbi.nlm.nih.gov/pubmed/22213451
https://www.proquest.com/docview/913722455
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQEIIXLhuMcpOR0HhKlzhxnTyWaW01qRUanTaVB8tXbWxNqrSVKE-888Jv5JdwbDedhoaEeIhys3Nxju3vnHz-jNA7aBWtdSN_mSjAQSm0ifJcyYgpALPUTVPpRZKGo87gJDs6o2drVqUbCxP0ITYBN1czfHvtKriQ8_1r0dAv07pNAMxD8-uoWg4PHV8rR8Ht4yCzR6IUUH2jOxuT_SbjjZ7orivUr7fBzJuo1Xc7vUfoc_PAgW1y2V4uZFt9-0PL8f_e6DF6uEajuBvM5wm6Y8pttNMtwROfrvAe9vxQH3jfRvc-NFv3D5pZ4nbQDx9SDKMjcGUx4ElcVuWv7z9n59Uclnp1BXBW45mjz2iD-wzOJfmoOz7ELgiM-7V0hz4NCNbVVFyUuDaOnmzmOFwCsmOA1tiU556ugIW1F9ASrbAoNXZDRR3dCfafopPe4fhgEK0neIhUSqGGMmEoU51ca2pylWTaEsJkFue60FQoSRjgOZlJgEACOvO4MEViNTNpYTrKgKP1DG3BK5nnCBeFTEyS2NhayMBimSoCrhI4m3AYcEgLvW8-Nldr9XM3CccVD7rNhEPpc1f6LfR2k3IWFD9uSbPn7WWTQNSXjiHHKD8d9flw8nEy6k1O-biFcGNQHD6M-xkjSlMt57xIUgbwidIW2g2GtrkYQLYkzWgCd_Hm8tfH4EfDY7d-8a8JX6IHAPhICCG9QluLemleA6hayDe--vwGWMYhPQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJjReuGzAytVIaDylS5ykTsRTGWvLWCM0Om2qkKz4pt2aVGkrUZ5454XfyC_h2G46DQ0J8RDlZjuOc2x_5-T4Owi9hlFRa7Pyl-YpKCipVF6SCO5RAWA2NmEqLUlSP2v1jqL9k_hkBb2t18I4foilwc30DDtemw5uDNI7V6yh56OqSQDN30JrJqC3CV_w_vCKOwoq4DuiPeKFgOtr5lmf7NQ5r81Fa6ZZv94ENK_jVjvxdO6hL3WVnb_JRXM25U3x7Q82x_98p_vo7gKQ4raToAdoRRUbaLNdgDI-muNtbF1Ere19A91-Vx-t79aB4jbRD2tVdAskcKkxQEpclMWv7z_Hp-UEtmp-CYhW4rHxoJEKdyncC5KsPdjDxg6MuxU3lz73CJblKD8rcKWMh7KaYFcEZMeArrEqTq3HAs61PoPBaI7zQmKzWtR4PMH5Q3TU2Rvs9rxFjAdPhDF0UpqrmIpWImWsEhFEUhNCeeQnMpVxLjihAOl4xAEF5TCf-6lKAy2pClPVEgp0rUdoFV5JbSGcpjxQQaB9rSED9XkoCGhLoG_CZYAiDfSm_tpMLAjQTRyOS-aomwmD1mem9Rvo1TLl2JF-3JBm2wrMMkFeXRgnORqz46zL-sNPw6wzPGaDBsK1RDH4MOZ_TF6ocjZhaRBSQFBx3ECPnaQtCwPUFoRRHMBTrLz8tRpsv39o9k_-NeFLtN4b9A_YwYfs41N0B_AfcRalZ2h1Ws3Uc8BYU_7C9qXfPsclVw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgE5cXLhuXcjUSGk_pEieuk8cy1pZBq2l02lQerPimja1JlbYS5Yl3XviN_BKO7abT0JAQD1ESx04c5xz7OyfHnxF6Db2iMXbmL8szMFAypYM0lSJgEsAstctUOpKk_qDVO0z2junxMqrSzoXx_BArh5vVDNdfWwWfKLN9QRr6ZVw1CYD562g9aYGuWEB0cEEdBc8PPc8eCWKA9TXxbEi265KXhqJ126pfr8KZl2GrG3c6d9HnusY-3OSsOZ-Jpvz2B5nj_73SPXRnCUdx28vPfXRNFxtos12AKT5e4C3sAkSd530D3XhbH93aqZeJ20Q_nE_RT4_ApcEAKHFRFr--_5yclFPYqsU54FmFJzZ-RmncZXAtSgft4S62XmDcrYRN-tQjWJXj_LTAlbbxyXqK_S2gOAZsjXVx4uIVcG7MKXRFC5wXCtu5ojbeCc4foMPO7nCnFyxXeAhkTEFFWa4pk61UKapTGSXKEMJEEqYqUzSXgjAAdCIRgIFyGM3DTGeRUUzHmW5JDZbWQ7QGr6QfI5xlItJRZEJjoAALRSwJ2EpgbUIyAJEGelN_bC6X9Od2FY5z7ombCYfW57b1G-jVKufEU35ckWfLycsqQ16d2RA5RvnRoMv7o_3RoDM64sMGwrVAcfgw9m9MXuhyPuVZFDPAT5Q20CMvaKubAWaL4oRG8BQnLn-tBt_rH9j9k3_N-BLd3H_X4R_fDz48RbcB_BHvTnqG1mbVXD8HgDUTL5wm_QbfsSQP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+of+the+non-phosphorylated+peptide+G7-18NATE+with+Grb7-SH2+domain+requires+phosphate+for+enhanced+affinity+and+specificity&rft.jtitle=Journal+of+molecular+recognition&rft.au=Gunzburg%2C+Menachem+J&rft.au=Ambaye%2C+Nigus+D&rft.au=Del+Borgo%2C+Mark+P&rft.au=Pero%2C+Stephanie+C&rft.date=2012-01-01&rft.eissn=1099-1352&rft.volume=25&rft.issue=1&rft.spage=57&rft_id=info:doi/10.1002%2Fjmr.2148&rft_id=info%3Apmid%2F22213451&rft.externalDocID=22213451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3499&client=summon