Interaction of the non-phosphorylated peptide G7-18NATE with Grb7-SH2 domain requires phosphate for enhanced affinity and specificity
Src‐homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific inhibitor. The G7‐18NATE cyclic peptide is reported to specifically inhibit the growth factor receptor bound protein 7 (Grb7) adapter protein,...
Saved in:
Published in | Journal of molecular recognition Vol. 25; no. 1; pp. 57 - 67 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.01.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0952-3499 1099-1352 1099-1352 |
DOI | 10.1002/jmr.2148 |
Cover
Loading…
Abstract | Src‐homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific inhibitor. The G7‐18NATE cyclic peptide is reported to specifically inhibit the growth factor receptor bound protein 7 (Grb7) adapter protein, implicated in the progression of several cancer types, via interactions with its SH2 domain. G7‐18NATE effectively inhibits the interaction of Grb7 with ErbB3 and focal adhesion kinase in cell lysates and, with the addition of a cell permeability sequence, inhibits the growth and migration of a number of breast cancer cell lines. It is thus a promising lead in the development of therapeutics targeted to Grb7. Here we investigate the degree to which G7‐18NATE is specific for the Grb7‐SH2 domain compared with closely related SH2 domains including those of Grb10, Grb14, and Grb2 using surface plasmon resonance. We demonstrate that G7‐18NATE binds with micromolar binding affinity to Grb7‐SH2 domain (KD = 4–6 μm) compared with 50–200 times lower affinity for Grb10, Grb14, and Grb2 but that this specificity depends critically on the presence of phosphate in millimolar concentrations. Other differences in buffer composition, including use of Tris or 2‐(N‐Morpholino)ethanesulfonic acid or varying the pH, do not impact on the interaction. This suggests that under cellular conditions, G7‐18NATE binds with highest affinity to Grb7. In addition, our findings demonstrate that the basis of specificity of G7‐18NATE binding to the Grb7‐SH2 domain is via other than intrinsic structural features of the protein, representing an unexpected mode of molecular recognition. Copyright © 2011 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Src‐homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific inhibitor. The G7‐18NATE cyclic peptide is reported to specifically inhibit the growth factor receptor bound protein 7 (Grb7) adapter protein, implicated in the progression of several cancer types, via interactions with its SH2 domain. G7‐18NATE effectively inhibits the interaction of Grb7 with ErbB3 and focal adhesion kinase in cell lysates and, with the addition of a cell permeability sequence, inhibits the growth and migration of a number of breast cancer cell lines. It is thus a promising lead in the development of therapeutics targeted to Grb7. Here we investigate the degree to which G7‐18NATE is specific for the Grb7‐SH2 domain compared with closely related SH2 domains including those of Grb10, Grb14, and Grb2 using surface plasmon resonance. We demonstrate that G7‐18NATE binds with micromolar binding affinity to Grb7‐SH2 domain (
K
D
= 4–6 μ
m
) compared with 50–200 times lower affinity for Grb10, Grb14, and Grb2 but that this specificity depends critically on the presence of phosphate in millimolar concentrations. Other differences in buffer composition, including use of Tris or 2‐(N‐Morpholino)ethanesulfonic acid or varying the pH, do not impact on the interaction. This suggests that under cellular conditions, G7‐18NATE binds with highest affinity to Grb7. In addition, our findings demonstrate that the basis of specificity of G7‐18NATE binding to the Grb7‐SH2 domain is via other than intrinsic structural features of the protein, representing an unexpected mode of molecular recognition. Copyright © 2011 John Wiley & Sons, Ltd. Src-homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific inhibitor. The G7-18NATE cyclic peptide is reported to specifically inhibit the growth factor receptor bound protein 7 (Grb7) adapter protein, implicated in the progression of several cancer types, via interactions with its SH2 domain. G7-18NATE effectively inhibits the interaction of Grb7 with ErbB3 and focal adhesion kinase in cell lysates and, with the addition of a cell permeability sequence, inhibits the growth and migration of a number of breast cancer cell lines. It is thus a promising lead in the development of therapeutics targeted to Grb7. Here we investigate the degree to which G7-18NATE is specific for the Grb7-SH2 domain compared with closely related SH2 domains including those of Grb10, Grb14, and Grb2 using surface plasmon resonance. We demonstrate that G7-18NATE binds with micromolar binding affinity to Grb7-SH2 domain (K(D) = 4-6 μm) compared with 50-200 times lower affinity for Grb10, Grb14, and Grb2 but that this specificity depends critically on the presence of phosphate in millimolar concentrations. Other differences in buffer composition, including use of Tris or 2-(N-Morpholino)ethanesulfonic acid or varying the pH, do not impact on the interaction. This suggests that under cellular conditions, G7-18NATE binds with highest affinity to Grb7. In addition, our findings demonstrate that the basis of specificity of G7-18NATE binding to the Grb7-SH2 domain is via other than intrinsic structural features of the protein, representing an unexpected mode of molecular recognition.Src-homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific inhibitor. The G7-18NATE cyclic peptide is reported to specifically inhibit the growth factor receptor bound protein 7 (Grb7) adapter protein, implicated in the progression of several cancer types, via interactions with its SH2 domain. G7-18NATE effectively inhibits the interaction of Grb7 with ErbB3 and focal adhesion kinase in cell lysates and, with the addition of a cell permeability sequence, inhibits the growth and migration of a number of breast cancer cell lines. It is thus a promising lead in the development of therapeutics targeted to Grb7. Here we investigate the degree to which G7-18NATE is specific for the Grb7-SH2 domain compared with closely related SH2 domains including those of Grb10, Grb14, and Grb2 using surface plasmon resonance. We demonstrate that G7-18NATE binds with micromolar binding affinity to Grb7-SH2 domain (K(D) = 4-6 μm) compared with 50-200 times lower affinity for Grb10, Grb14, and Grb2 but that this specificity depends critically on the presence of phosphate in millimolar concentrations. Other differences in buffer composition, including use of Tris or 2-(N-Morpholino)ethanesulfonic acid or varying the pH, do not impact on the interaction. This suggests that under cellular conditions, G7-18NATE binds with highest affinity to Grb7. In addition, our findings demonstrate that the basis of specificity of G7-18NATE binding to the Grb7-SH2 domain is via other than intrinsic structural features of the protein, representing an unexpected mode of molecular recognition. Src-homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific inhibitor. The G7-18NATE cyclic peptide is reported to specifically inhibit the growth factor receptor bound protein 7 (Grb7) adapter protein, implicated in the progression of several cancer types, via interactions with its SH2 domain. G7-18NATE effectively inhibits the interaction of Grb7 with ErbB3 and focal adhesion kinase in cell lysates and, with the addition of a cell permeability sequence, inhibits the growth and migration of a number of breast cancer cell lines. It is thus a promising lead in the development of therapeutics targeted to Grb7. Here we investigate the degree to which G7-18NATE is specific for the Grb7-SH2 domain compared with closely related SH2 domains including those of Grb10, Grb14, and Grb2 using surface plasmon resonance. We demonstrate that G7-18NATE binds with micromolar binding affinity to Grb7-SH2 domain (K(D) = 4-6 μm) compared with 50-200 times lower affinity for Grb10, Grb14, and Grb2 but that this specificity depends critically on the presence of phosphate in millimolar concentrations. Other differences in buffer composition, including use of Tris or 2-(N-Morpholino)ethanesulfonic acid or varying the pH, do not impact on the interaction. This suggests that under cellular conditions, G7-18NATE binds with highest affinity to Grb7. In addition, our findings demonstrate that the basis of specificity of G7-18NATE binding to the Grb7-SH2 domain is via other than intrinsic structural features of the protein, representing an unexpected mode of molecular recognition. Src‐homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific inhibitor. The G7‐18NATE cyclic peptide is reported to specifically inhibit the growth factor receptor bound protein 7 (Grb7) adapter protein, implicated in the progression of several cancer types, via interactions with its SH2 domain. G7‐18NATE effectively inhibits the interaction of Grb7 with ErbB3 and focal adhesion kinase in cell lysates and, with the addition of a cell permeability sequence, inhibits the growth and migration of a number of breast cancer cell lines. It is thus a promising lead in the development of therapeutics targeted to Grb7. Here we investigate the degree to which G7‐18NATE is specific for the Grb7‐SH2 domain compared with closely related SH2 domains including those of Grb10, Grb14, and Grb2 using surface plasmon resonance. We demonstrate that G7‐18NATE binds with micromolar binding affinity to Grb7‐SH2 domain (KD = 4–6 μm) compared with 50–200 times lower affinity for Grb10, Grb14, and Grb2 but that this specificity depends critically on the presence of phosphate in millimolar concentrations. Other differences in buffer composition, including use of Tris or 2‐(N‐Morpholino)ethanesulfonic acid or varying the pH, do not impact on the interaction. This suggests that under cellular conditions, G7‐18NATE binds with highest affinity to Grb7. In addition, our findings demonstrate that the basis of specificity of G7‐18NATE binding to the Grb7‐SH2 domain is via other than intrinsic structural features of the protein, representing an unexpected mode of molecular recognition. Copyright © 2011 John Wiley & Sons, Ltd. |
Author | Del Borgo, Mark P. Pero, Stephanie C. Ambaye, Nigus D. Wilce, Jacqueline A. Wilce, Matthew C.J. Gunzburg, Menachem J. Krag, David N. |
Author_xml | – sequence: 1 givenname: Menachem J. surname: Gunzburg fullname: Gunzburg, Menachem J. organization: Department of Biochemistry and Molecular Biology, Monash University, VIC, 3800, Australia – sequence: 2 givenname: Nigus D. surname: Ambaye fullname: Ambaye, Nigus D. organization: Department of Biochemistry and Molecular Biology, Monash University, VIC, 3800, Australia – sequence: 3 givenname: Mark P. surname: Del Borgo fullname: Del Borgo, Mark P. organization: Department of Biochemistry and Molecular Biology, Monash University, VIC, 3800, Australia – sequence: 4 givenname: Stephanie C. surname: Pero fullname: Pero, Stephanie C. organization: Department of Surgery and Vermont Cancer Center, University of Vermont, VT, Burlington, USA – sequence: 5 givenname: David N. surname: Krag fullname: Krag, David N. organization: Department of Surgery and Vermont Cancer Center, University of Vermont, VT, Burlington, USA – sequence: 6 givenname: Matthew C.J. surname: Wilce fullname: Wilce, Matthew C.J. organization: Department of Biochemistry and Molecular Biology, Monash University, VIC, 3800, Australia – sequence: 7 givenname: Jacqueline A. surname: Wilce fullname: Wilce, Jacqueline A. email: jackie.wilce@monash.edu, Jacqueline A. Wilce, Biochemistry and Molecular Biology, Monash University, Wellington Road, VIC 3800, Australia., jackie.wilce@monash.edu organization: Department of Biochemistry and Molecular Biology, Monash University, VIC, 3800, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22213451$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kd1qGzEQhUVJaZy00Ccoumtu1tXPylpdhpA4KYlbWpeAb4RWmsVK9y-STOoH6HtXxkkhJb0YhmG-c2DmHKGDfugBofeUTCkh7NNdF6aMltUrNKFEqYJywQ7QhCjBCl4qdYiOYrwjJO8EeYMOGWOUl4JO0O-rPkEwNvmhx0OD0xpwNi_G9RBzhW1rEjg8wpi8AzyXBa0Wp8tz_ODTGs9DLYvvlwy7oTO-xwHuNz5AxHt5luJmCBj6telttjFN43ufttj0DscRrG-8zfNb9LoxbYR3j_0Y_bg4X55dFtdf5ldnp9eF5aKqCmlASDurnBNQWVq6hjFZl6RyygljayaFoHVZs4obC0AUKNo4CVzBzIIU_Bh93PuOYbjfQEy689FC25oehk3UinLJWCl25IdHclN34PQYfGfCVj99LgPTPWDDEGOARudDzO6NKRjfakr0Lhqdo9G7aLLg5B_Bk-cLaLFHH3wL2_9y-vPNt-e8jwl-_eVN-KlnkkuhbxdzfbP6ulpcrG71kv8BfBytsw |
CitedBy_id | crossref_primary_10_1002_bip_22237 crossref_primary_10_1371_journal_pone_0052578 crossref_primary_10_1007_s00289_013_1042_9 crossref_primary_10_3390_biomedicines10051145 crossref_primary_10_3390_molecules24203739 crossref_primary_10_1039_D2RA02062A crossref_primary_10_1039_c3cs35449k crossref_primary_10_3389_fmolb_2017_00064 crossref_primary_10_1021_acs_jmedchem_5b00609 crossref_primary_10_1107_S2053230X13033414 crossref_primary_10_1038_srep27060 crossref_primary_10_1021_acs_jmedchem_7b01320 crossref_primary_10_1016_j_bios_2025_117255 |
Cites_doi | 10.1016/j.jmb.2011.07.030 10.1074/jbc.274.34.24425 10.1002/3527603611.ch1 10.1017/S1462399403006227 10.1007/s00249-005-0480-1 10.1016/S0014-5793(01)02545-5 10.1007/s10989-010-9222-z 10.1016/j.molcel.2006.06.001 10.1074/jbc.272.13.8490 10.1016/0092-8674(93)90405-F 10.1158/1541-7786.MCR-06-0282 10.1093/carcin/bgm221 10.1002/j.1460-2075.1994.tb06386.x 10.2741/3292 10.1007/s10989-006-9014-7 10.1016/0005-2728(77)90186-4 10.1021/jm020970s 10.1006/dbio.1997.8516 10.1021/bi9814991 10.1038/362087a0 10.1002/gcc.20339 10.1074/jbc.M111816200 10.1074/jbc.271.21.12502 10.1002/pro.5560041120 10.1016/j.bbapap.2004.10.005 10.1186/1472-6807-7-58 10.1002/bip.20667 10.1023/A:1025498409113 10.1006/bbrc.1997.6218 10.1002/bip.21403 10.1016/S0898-6568(98)00022-9 10.1371/journal.pone.0009024 10.1021/bi00036a008 10.1002/jmr.834 10.1016/S0079-6468(08)70097-3 10.1093/jnci/djj105 10.1016/S0092-8674(03)01077-8 10.1042/BJ20050216 10.1038/sj.bjc.6603732 10.1081/RRS-120037896 10.1016/S1097-2765(00)80269-5 10.1615/CritRevImmunol.v30.i3.70 10.2741/1229 10.1016/j.bmc.2010.10.030 10.1074/jbc.M109.018259 10.1093/annonc/mdp346 |
ContentType | Journal Article |
Copyright | Copyright © 2011 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2011 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/jmr.2148 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1099-1352 |
EndPage | 67 |
ExternalDocumentID | 22213451 10_1002_jmr_2148 JMR2148 ark_67375_WNG_MZPZNFZW_T |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 UB1 V8K VH1 W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3588-7ae57c68dd5e8c14df227b408d9d5acb27551b4b283acee09e91fd7e39e6ce753 |
IEDL.DBID | DR2 |
ISSN | 0952-3499 1099-1352 |
IngestDate | Fri Jul 11 03:32:01 EDT 2025 Thu Apr 03 07:01:49 EDT 2025 Tue Jul 01 04:22:37 EDT 2025 Thu Apr 24 22:55:17 EDT 2025 Wed Jan 22 17:05:26 EST 2025 Wed Oct 30 09:53:08 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2011 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3588-7ae57c68dd5e8c14df227b408d9d5acb27551b4b283acee09e91fd7e39e6ce753 |
Notes | ark:/67375/WNG-MZPZNFZW-T istex:031F337E57A360E9EFC212D4CBB93A26F2381F57 ArticleID:JMR2148 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22213451 |
PQID | 913722455 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_913722455 pubmed_primary_22213451 crossref_citationtrail_10_1002_jmr_2148 crossref_primary_10_1002_jmr_2148 wiley_primary_10_1002_jmr_2148_JMR2148 istex_primary_ark_67375_WNG_MZPZNFZW_T |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01 January 2012 2012-01-00 2012-Jan 20120101 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: England |
PublicationTitle | Journal of molecular recognition |
PublicationTitleAlternate | J. Mol. Recognit |
PublicationYear | 2012 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | Pace CN, Vajdos F, Fee L, Grimsley G, Gray T. 1995. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4(11):2411-2423. Porter CJ, Wilce MC, Mackay JP, Leedman P, Wilce JA. 2005. Grb7-SH2 domain dimerisation is affected by a single point mutation. Eur. Biophys. J. 34(5):454-460. Holt LJ, Siddle K. 2005. Grb10 and Grb14: enigmatic regulators of insulin action-and more? Biochem. J. 388(Pt 2):393-406. Gunzburg MJ, Ambaye ND, Hertzog JT, Del Borgo MP, Pero SC, Krag DN, Wilce MC, Aguilar MI, Perlmutter P, Wilce JA. 2010. Use of SPR to Study the Interaction of G7-18NATE Peptide with the Grb7-SH2 Domain. Int. J. Pept. Res. Ther. 16:177-184. Burke TR. 2006. Development of Grb2 SH2 domain signaling antagonists: a potential new class of antiproliferative agents. Int. J. Pept. Res. Ther. 12(1):33-48. Itoh S, Taketomi A, Tanaka S, Harimoto N, Yamashita Y, Aishima S, Maeda T, Shirabe K, Shimada M, Maehara Y. 2007. Role of growth factor receptor bound protein 7 in hepatocellular carcinoma. Mol. Cancer Res. 5(7):667-673. Ambaye ND, Pero SC, Gunzburg MJ, Yap MY, Clayton DJ, Del Borgo MP, Perlmutter P, Aguilar MI, Shukla GS, Elena Peletskaya E, Cookson MM, Krag DN, Wilce MC, Wilce JA. 2011c. Structural basis of binding by cyclic non-phosphorylated peptide antagonists of Grb7 implicated in breast cancer progression. J. Mol. Biol. 412(3):397-411. Daly RJ, Sanderson GM, Janes PW, Sutherland RL. 1996. Cloning and characterization of GRB14, a novel member of the GRB7 gene family. J. Biol. Chem. 271(21):12502-12510. Ward WH, Holdgate GA. 2001. Isothermal titration calorimetry in drug discovery. Prog. Med. Chem. 38:309-376. Janes PW, Lackmann M, Church WB, Sanderson GM, Sutherland RL, Daly RJ. 1997. Structural determinants of the interaction between the erbB2 receptor and the Src homology 2 domain of Grb7. J. Biol. Chem. 272(13):8490-8497. Perozzo R, Folkers G, Scapozza L. 2004. Thermodynamics of protein-ligand interactions: history, presence, and future aspects. J. Recept. Signal Transduct. Res. 24(1-2):1-52. Spuches AM, Argiros HJ, Lee KH, Haas LL, Pero SC, Krag DN, Roller PP, Wilcox DE, Lyons BA. 2007. Calorimetric investigation of phosphorylated and non-phosphorylated peptide ligand binding to the human Grb7-SH2 domain. J. Mol. Recognit. 20(4):245-252. Tanaka S, Mori M, Akiyoshi T, Tanaka Y, Mafune K, Wands JR, Sugimachi K. 1997. Coexpression of Grb7 with epidermal growth factor receptor or Her2/erbB2 in human advanced esophageal carcinoma. Cancer Res. 57(1):28-31. Daly RJ. 1998. The Grb7 family of signalling proteins. Cell. Signal. 10(9):613-618. Erecinska M, Stubbs M, Miyata Y, Ditre CM. 1977. Regulation of cellular metabolism by intracellular phosphate. Biochim. Biophys. Acta 462(1):20-35. Kasembeli MM, Xu X, Tweardy DJ. 2009. SH2 domain binding to phosphopeptide ligands: potential for drug targeting. Front. Biosci. 14:1010-1022. Kimber MS, Nachman J, Cunningham AM, Gish GD, Pawson T, Pai EF. 2000. Structural basis for specificity switching of the Src SH2 domain. Mol. Cell 5(6):1043-1049. Nadler Y, Gonzalez AM, Camp RL, Rimm DL, Kluger HM, Kluger Y. 2010. Growth factor receptor-bound protein-7 (Grb7) as a prognostic marker and therapeutic target in breast cancer. Ann. Oncol. 21(3):466-473. Pawson T. 2004. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116(2):191-203. Eck MJ, Shoelson SE, Harrison SC. 1993. Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck. Nature 362(6415):87-91. Liu BA, Jablonowski K, Raina M, Arce M, Pawson T, Nash PD. 2006. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol. Cell 22(6):851-868. Manser J, Roonprapunt C, Margolis B. 1997. C. elegans cell migration gene mig-10 shares similarities with a family of SH2 domain proteins and acts cell nonautonomously in excretory canal development. Dev. Biol. 184(1):150-164. Bai T, Luoh SW. 2008. GRB-7 facilitates HER-2/Neu-mediated signal transduction and tumor formation. Carcinogenesis 29(3):473-479. Lange G, Lesuisse D, Deprez P, Schoot B, Loenze P, Benard D, Marquette JP, Broto P, Sarubbi E, Mandine E. 2003. Requirements for specific binding of low affinity inhibitor fragments to the SH2 domain of (pp60)Src are identical to those for high affinity binding of full length inhibitors. J. Med. Chem. 46(24):5184-5195. Pero SC, Daly RJ, Krag DN. 2003. Grb7-based molecular therapeutics in cancer. Expert Rev. Mol. Med. 5(14):1-11. Tanaka S, Pero SC, Taguchi K, Shimada M, Mori M, Krag DN, Arii S. 2006. Specific peptide ligand for Grb7 signal transduction protein and pancreatic cancer metastasis. J. Natl. Cancer Inst. 98(7):491-498. Ivancic M, Daly RJ, Lyons BA. 2003. Solution structure of the human Grb7-SH2 domain/erbB2 peptide complex and structural basis for Grb7 binding to ErbB2. J. Biomol. NMR 27(3):205-219. Pero SC, Shukla GS, Cookson MM, Flemer S, Jr., Krag DN. 2007. Combination treatment with Grb7 peptide and doxorubicin or trastuzumab (Herceptin) results in cooperative cell growth inhibition in breast cancer cells. Br. J. Cancer 96(10):1520-1525. Kao J, Pollack JR. 2006. RNA interference-based functional dissection of the 17q12 amplicon in breast cancer reveals contribution of coamplified genes. Genes Chromosomes Cancer 45(8):761-769. Ambaye ND, Gunzburg MJ, Lim RC, Price JT, Wilce MC, Wilce JA. 2011a. Benzopyrazine derivatives: a novel class of growth factor receptor bound protein 7 antagonists. Bioorg. Med. Chem. 19(1):693-701. Machida K, Mayer BJ. 2005. The SH2 domain: versatile signaling module and pharmaceutical target. Biochim. Biophys. Acta 1747(1):1-25. Nencioni A, Cea M, Garuti A, Passalacqua M, Raffaghello L, Soncini D, Moran E, Zoppoli G, Pistoia V, Patrone F, Ballestrero A. 2010. Grb7 upregulation is a molecular adaptation to HER2 signaling inhibition due to removal of Akt-mediated gene repression. PLoS One 5(2):e9024. Waksman G, Shoelson SE, Pant N, Cowburn D, Kuriyan J. 1993. Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell 72(5):779-790. Ambaye ND, Lim RC, Clayton DJ, Gunzburg MJ, Price JT, Pero SC, Krag DN, Wilce MC, Aguilar MI, Perlmutter P, Wilce JA. 2011b. Uptake of a cell permeable G7-18NATE construct into cells and binding with the Grb7-SH2 domain. Biopolymers 96(2):181-188. Bradshaw JM, Waksman G. 1998. Calorimetric investigation of proton linkage by monitoring both the enthalpy and association constant of binding: application to the interaction of the Src SH2 domain with a high-affinity tyrosyl phosphopeptide. Biochemistry 37(44):15400-15407. Porter CJ, Matthews JM, Mackay JP, Pursglove SE, Schmidberger JW, Leedman PJ, Pero SC, Krag DN, Wilce MC, Wilce JA. 2007. Grb7 SH2 domain structure and interactions with a cyclic peptide inhibitor of cancer cell migration and proliferation. BMC Struct. Biol. 7:58. Stein D, Wu J, Fuqua SA, Roonprapunt C, Yajnik V, D'Eustachio P, Moskow JJ, Buchberg AM, Osborne CK, Margolis B. 1994. The SH2 domain protein GRB-7 is co-amplified, overexpressed and in a tight complex with HER2 in breast cancer. EMBO J. 13(6):1331-1340. Pascal SM, Yamazaki T, Singer AU, Kay LE, Forman-Kay JD. 1995. Structural and dynamic characterization of the phosphotyrosine binding region of a Src homology 2 domain-phosphopeptide complex by NMR relaxation, proton exchange, and chemical shift approaches. Biochemistry 34(36):11353-11362. Shen TL, Guan JL. 2004. Grb7 in intracellular signaling and its role in cell regulation. Front. Biosci. 9:192-200. Shen TL, Guan JL. 2001. Differential regulation of cell migration and cell cycle progression by FAK complexes with Src, PI3K, Grb7 and Grb2 in focal contacts. FEBS Lett. 499(1-2):176-181. Pias S, Peterson TA, Johnson DL, Lyons BA. 2010. The intertwining of structure and function: proposed helix-swapping of the SH2 domain of Grb7, a regulatory protein implicated in cancer progression and inflammation. Crit. Rev. Immunol. 30(3):299-304. Pero SC, Oligino L, Daly RJ, Soden AL, Liu C, Roller PP, Li P, Krag DN. 2002. Identification of novel non-phosphorylated ligands, which bind selectively to the SH2 domain of Grb7. J. Biol. Chem. 277(14):11918-11926. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press: Planview, NY, USA; B21. Chu PY, Huang LY, Hsu CH, Liang CC, Guan JL, Hung TH, Shen TL. 2009. Tyrosine phosphorylation of growth factor receptor-bound protein-7 by focal adhesion kinase in the regulation of cell migration, proliferation, and tumorigenesis. J. Biol. Chem. 284(30):20215-20226. Han DC, Guan JL. 1999. Association of focal adhesion kinase with Grb7 and its role in cell migration. J. Biol. Chem. 274(34):24425-24430. Kishi T, Sasaki H, Akiyama N, Ishizuka T, Sakamoto H, Aizawa S, Sugimura T, Terada M. 1997. Molecular cloning of human GRB-7 co-amplified with CAB1 and c-ERBB-2 in primary gastric cancer. Biochem. Biophys. Res. Commun. 232(1):5-9. Porter CJ, Wilce JA. 2007. NMR analysis of G7-18NATE, a nonphosphorylated cyclic peptide inhibitor of the Grb7 adapter protein. Biopolymers 88(2):174-181. 2010; 16 2011a; 19 2006; 12 2000; 5 1997; 272 2006; 98 1995; 34 1997; 232 2002; 277 2004; 24 2004; 9 2005 2007; 96 1995; 4 2011c; 412 1993; 362 1977; 462 1998; 37 2009; 14 2010; 21 2011b; 96 2004; 116 2005; 1747 2006; 45 1993; 72 1997; 184 2005; 388 2006; 22 2008; 29 1997; 57 1999; 274 2003; 46 1996; 271 2003; 27 2003; 5 2007; 7 1994; 13 2007; 5 2001; 38 2009; 284 2007; 20 1998; 10 2010; 5 2007; 88 2010; 30 2005; 34 2001; 499 1989 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Tanaka S (e_1_2_8_46_1) 1997; 57 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 Sambrook J (e_1_2_8_41_1) 1989 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – reference: Manser J, Roonprapunt C, Margolis B. 1997. C. elegans cell migration gene mig-10 shares similarities with a family of SH2 domain proteins and acts cell nonautonomously in excretory canal development. Dev. Biol. 184(1):150-164. – reference: Lange G, Lesuisse D, Deprez P, Schoot B, Loenze P, Benard D, Marquette JP, Broto P, Sarubbi E, Mandine E. 2003. Requirements for specific binding of low affinity inhibitor fragments to the SH2 domain of (pp60)Src are identical to those for high affinity binding of full length inhibitors. J. Med. Chem. 46(24):5184-5195. – reference: Erecinska M, Stubbs M, Miyata Y, Ditre CM. 1977. Regulation of cellular metabolism by intracellular phosphate. Biochim. Biophys. Acta 462(1):20-35. – reference: Porter CJ, Matthews JM, Mackay JP, Pursglove SE, Schmidberger JW, Leedman PJ, Pero SC, Krag DN, Wilce MC, Wilce JA. 2007. Grb7 SH2 domain structure and interactions with a cyclic peptide inhibitor of cancer cell migration and proliferation. BMC Struct. Biol. 7:58. – reference: Tanaka S, Pero SC, Taguchi K, Shimada M, Mori M, Krag DN, Arii S. 2006. Specific peptide ligand for Grb7 signal transduction protein and pancreatic cancer metastasis. J. Natl. Cancer Inst. 98(7):491-498. – reference: Burke TR. 2006. Development of Grb2 SH2 domain signaling antagonists: a potential new class of antiproliferative agents. Int. J. Pept. Res. Ther. 12(1):33-48. – reference: Janes PW, Lackmann M, Church WB, Sanderson GM, Sutherland RL, Daly RJ. 1997. Structural determinants of the interaction between the erbB2 receptor and the Src homology 2 domain of Grb7. J. Biol. Chem. 272(13):8490-8497. – reference: Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press: Planview, NY, USA; B21. – reference: Daly RJ. 1998. The Grb7 family of signalling proteins. Cell. Signal. 10(9):613-618. – reference: Itoh S, Taketomi A, Tanaka S, Harimoto N, Yamashita Y, Aishima S, Maeda T, Shirabe K, Shimada M, Maehara Y. 2007. Role of growth factor receptor bound protein 7 in hepatocellular carcinoma. Mol. Cancer Res. 5(7):667-673. – reference: Pace CN, Vajdos F, Fee L, Grimsley G, Gray T. 1995. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4(11):2411-2423. – reference: Ambaye ND, Lim RC, Clayton DJ, Gunzburg MJ, Price JT, Pero SC, Krag DN, Wilce MC, Aguilar MI, Perlmutter P, Wilce JA. 2011b. Uptake of a cell permeable G7-18NATE construct into cells and binding with the Grb7-SH2 domain. Biopolymers 96(2):181-188. – reference: Pero SC, Shukla GS, Cookson MM, Flemer S, Jr., Krag DN. 2007. Combination treatment with Grb7 peptide and doxorubicin or trastuzumab (Herceptin) results in cooperative cell growth inhibition in breast cancer cells. Br. J. Cancer 96(10):1520-1525. – reference: Pawson T. 2004. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116(2):191-203. – reference: Tanaka S, Mori M, Akiyoshi T, Tanaka Y, Mafune K, Wands JR, Sugimachi K. 1997. Coexpression of Grb7 with epidermal growth factor receptor or Her2/erbB2 in human advanced esophageal carcinoma. Cancer Res. 57(1):28-31. – reference: Porter CJ, Wilce MC, Mackay JP, Leedman P, Wilce JA. 2005. Grb7-SH2 domain dimerisation is affected by a single point mutation. Eur. Biophys. J. 34(5):454-460. – reference: Nadler Y, Gonzalez AM, Camp RL, Rimm DL, Kluger HM, Kluger Y. 2010. Growth factor receptor-bound protein-7 (Grb7) as a prognostic marker and therapeutic target in breast cancer. Ann. Oncol. 21(3):466-473. – reference: Ambaye ND, Gunzburg MJ, Lim RC, Price JT, Wilce MC, Wilce JA. 2011a. Benzopyrazine derivatives: a novel class of growth factor receptor bound protein 7 antagonists. Bioorg. Med. Chem. 19(1):693-701. – reference: Porter CJ, Wilce JA. 2007. NMR analysis of G7-18NATE, a nonphosphorylated cyclic peptide inhibitor of the Grb7 adapter protein. Biopolymers 88(2):174-181. – reference: Ivancic M, Daly RJ, Lyons BA. 2003. Solution structure of the human Grb7-SH2 domain/erbB2 peptide complex and structural basis for Grb7 binding to ErbB2. J. Biomol. NMR 27(3):205-219. – reference: Machida K, Mayer BJ. 2005. The SH2 domain: versatile signaling module and pharmaceutical target. Biochim. Biophys. Acta 1747(1):1-25. – reference: Spuches AM, Argiros HJ, Lee KH, Haas LL, Pero SC, Krag DN, Roller PP, Wilcox DE, Lyons BA. 2007. Calorimetric investigation of phosphorylated and non-phosphorylated peptide ligand binding to the human Grb7-SH2 domain. J. Mol. Recognit. 20(4):245-252. – reference: Gunzburg MJ, Ambaye ND, Hertzog JT, Del Borgo MP, Pero SC, Krag DN, Wilce MC, Aguilar MI, Perlmutter P, Wilce JA. 2010. Use of SPR to Study the Interaction of G7-18NATE Peptide with the Grb7-SH2 Domain. Int. J. Pept. Res. Ther. 16:177-184. – reference: Han DC, Guan JL. 1999. Association of focal adhesion kinase with Grb7 and its role in cell migration. J. Biol. Chem. 274(34):24425-24430. – reference: Perozzo R, Folkers G, Scapozza L. 2004. Thermodynamics of protein-ligand interactions: history, presence, and future aspects. J. Recept. Signal Transduct. Res. 24(1-2):1-52. – reference: Kimber MS, Nachman J, Cunningham AM, Gish GD, Pawson T, Pai EF. 2000. Structural basis for specificity switching of the Src SH2 domain. Mol. Cell 5(6):1043-1049. – reference: Shen TL, Guan JL. 2004. Grb7 in intracellular signaling and its role in cell regulation. Front. Biosci. 9:192-200. – reference: Stein D, Wu J, Fuqua SA, Roonprapunt C, Yajnik V, D'Eustachio P, Moskow JJ, Buchberg AM, Osborne CK, Margolis B. 1994. The SH2 domain protein GRB-7 is co-amplified, overexpressed and in a tight complex with HER2 in breast cancer. EMBO J. 13(6):1331-1340. – reference: Ambaye ND, Pero SC, Gunzburg MJ, Yap MY, Clayton DJ, Del Borgo MP, Perlmutter P, Aguilar MI, Shukla GS, Elena Peletskaya E, Cookson MM, Krag DN, Wilce MC, Wilce JA. 2011c. Structural basis of binding by cyclic non-phosphorylated peptide antagonists of Grb7 implicated in breast cancer progression. J. Mol. Biol. 412(3):397-411. – reference: Chu PY, Huang LY, Hsu CH, Liang CC, Guan JL, Hung TH, Shen TL. 2009. Tyrosine phosphorylation of growth factor receptor-bound protein-7 by focal adhesion kinase in the regulation of cell migration, proliferation, and tumorigenesis. J. Biol. Chem. 284(30):20215-20226. – reference: Bradshaw JM, Waksman G. 1998. Calorimetric investigation of proton linkage by monitoring both the enthalpy and association constant of binding: application to the interaction of the Src SH2 domain with a high-affinity tyrosyl phosphopeptide. Biochemistry 37(44):15400-15407. – reference: Holt LJ, Siddle K. 2005. Grb10 and Grb14: enigmatic regulators of insulin action-and more? Biochem. J. 388(Pt 2):393-406. – reference: Ward WH, Holdgate GA. 2001. Isothermal titration calorimetry in drug discovery. Prog. Med. Chem. 38:309-376. – reference: Nencioni A, Cea M, Garuti A, Passalacqua M, Raffaghello L, Soncini D, Moran E, Zoppoli G, Pistoia V, Patrone F, Ballestrero A. 2010. Grb7 upregulation is a molecular adaptation to HER2 signaling inhibition due to removal of Akt-mediated gene repression. PLoS One 5(2):e9024. – reference: Daly RJ, Sanderson GM, Janes PW, Sutherland RL. 1996. Cloning and characterization of GRB14, a novel member of the GRB7 gene family. J. Biol. Chem. 271(21):12502-12510. – reference: Pias S, Peterson TA, Johnson DL, Lyons BA. 2010. The intertwining of structure and function: proposed helix-swapping of the SH2 domain of Grb7, a regulatory protein implicated in cancer progression and inflammation. Crit. Rev. Immunol. 30(3):299-304. – reference: Pero SC, Daly RJ, Krag DN. 2003. Grb7-based molecular therapeutics in cancer. Expert Rev. Mol. Med. 5(14):1-11. – reference: Pero SC, Oligino L, Daly RJ, Soden AL, Liu C, Roller PP, Li P, Krag DN. 2002. Identification of novel non-phosphorylated ligands, which bind selectively to the SH2 domain of Grb7. J. Biol. Chem. 277(14):11918-11926. – reference: Kao J, Pollack JR. 2006. RNA interference-based functional dissection of the 17q12 amplicon in breast cancer reveals contribution of coamplified genes. Genes Chromosomes Cancer 45(8):761-769. – reference: Waksman G, Shoelson SE, Pant N, Cowburn D, Kuriyan J. 1993. Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell 72(5):779-790. – reference: Liu BA, Jablonowski K, Raina M, Arce M, Pawson T, Nash PD. 2006. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol. Cell 22(6):851-868. – reference: Shen TL, Guan JL. 2001. Differential regulation of cell migration and cell cycle progression by FAK complexes with Src, PI3K, Grb7 and Grb2 in focal contacts. FEBS Lett. 499(1-2):176-181. – reference: Eck MJ, Shoelson SE, Harrison SC. 1993. Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck. Nature 362(6415):87-91. – reference: Kasembeli MM, Xu X, Tweardy DJ. 2009. SH2 domain binding to phosphopeptide ligands: potential for drug targeting. Front. Biosci. 14:1010-1022. – reference: Bai T, Luoh SW. 2008. GRB-7 facilitates HER-2/Neu-mediated signal transduction and tumor formation. Carcinogenesis 29(3):473-479. – reference: Pascal SM, Yamazaki T, Singer AU, Kay LE, Forman-Kay JD. 1995. Structural and dynamic characterization of the phosphotyrosine binding region of a Src homology 2 domain-phosphopeptide complex by NMR relaxation, proton exchange, and chemical shift approaches. Biochemistry 34(36):11353-11362. – reference: Kishi T, Sasaki H, Akiyama N, Ishizuka T, Sakamoto H, Aizawa S, Sugimura T, Terada M. 1997. Molecular cloning of human GRB-7 co-amplified with CAB1 and c-ERBB-2 in primary gastric cancer. Biochem. Biophys. Res. Commun. 232(1):5-9. – volume: 7 start-page: 58 year: 2007 article-title: Grb7 SH2 domain structure and interactions with a cyclic peptide inhibitor of cancer cell migration and proliferation publication-title: BMC Struct. Biol. – volume: 29 start-page: 473 issue: 3 year: 2008 end-page: 479 article-title: GRB‐7 facilitates HER‐2/Neu‐mediated signal transduction and tumor formation publication-title: Carcinogenesis – volume: 16 start-page: 177 year: 2010 end-page: 184 article-title: Use of SPR to Study the Interaction of G7‐18NATE Peptide with the Grb7‐SH2 Domain publication-title: Int. J. Pept. Res. Ther. – volume: 5 start-page: 667 issue: 7 year: 2007 end-page: 673 article-title: Role of growth factor receptor bound protein 7 in hepatocellular carcinoma publication-title: Mol. Cancer Res. – volume: 184 start-page: 150 issue: 1 year: 1997 end-page: 164 article-title: C. elegans cell migration gene mig‐10 shares similarities with a family of SH2 domain proteins and acts cell nonautonomously in excretory canal development publication-title: Dev. Biol. – volume: 272 start-page: 8490 issue: 13 year: 1997 end-page: 8497 article-title: Structural determinants of the interaction between the erbB2 receptor and the Src homology 2 domain of Grb7 publication-title: J. Biol. Chem. – volume: 1747 start-page: 1 issue: 1 year: 2005 end-page: 25 article-title: The SH2 domain: versatile signaling module and pharmaceutical target publication-title: Biochim. Biophys. Acta – volume: 96 start-page: 181 issue: 2 year: 2011b end-page: 188 article-title: Uptake of a cell permeable G7‐18NATE construct into cells and binding with the Grb7‐SH2 domain publication-title: Biopolymers – volume: 46 start-page: 5184 issue: 24 year: 2003 end-page: 5195 article-title: Requirements for specific binding of low affinity inhibitor fragments to the SH2 domain of (pp60)Src are identical to those for high affinity binding of full length inhibitors publication-title: J. Med. Chem. – volume: 30 start-page: 299 issue: 3 year: 2010 end-page: 304 article-title: The intertwining of structure and function: proposed helix‐swapping of the SH2 domain of Grb7, a regulatory protein implicated in cancer progression and inflammation publication-title: Crit. Rev. Immunol. – start-page: B21 year: 1989 – volume: 274 start-page: 24425 issue: 34 year: 1999 end-page: 24430 article-title: Association of focal adhesion kinase with Grb7 and its role in cell migration publication-title: J. Biol. Chem. – volume: 277 start-page: 11918 issue: 14 year: 2002 end-page: 11926 article-title: Identification of novel non‐phosphorylated ligands, which bind selectively to the SH2 domain of Grb7 publication-title: J. Biol. Chem. – volume: 284 start-page: 20215 issue: 30 year: 2009 end-page: 20226 article-title: Tyrosine phosphorylation of growth factor receptor‐bound protein‐7 by focal adhesion kinase in the regulation of cell migration, proliferation, and tumorigenesis publication-title: J. Biol. Chem. – volume: 116 start-page: 191 issue: 2 year: 2004 end-page: 203 article-title: Specificity in signal transduction: from phosphotyrosine‐SH2 domain interactions to complex cellular systems publication-title: Cell – volume: 271 start-page: 12502 issue: 21 year: 1996 end-page: 12510 article-title: Cloning and characterization of GRB14, a novel member of the GRB7 gene family publication-title: J. Biol. Chem. – volume: 72 start-page: 779 issue: 5 year: 1993 end-page: 790 article-title: Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide‐free forms publication-title: Cell – volume: 38 start-page: 309 year: 2001 end-page: 376 article-title: Isothermal titration calorimetry in drug discovery publication-title: Prog. Med. Chem. – volume: 21 start-page: 466 issue: 3 year: 2010 end-page: 473 article-title: Growth factor receptor‐bound protein‐7 (Grb7) as a prognostic marker and therapeutic target in breast cancer publication-title: Ann. Oncol. – volume: 27 start-page: 205 issue: 3 year: 2003 end-page: 219 article-title: Solution structure of the human Grb7‐SH2 domain/erbB2 peptide complex and structural basis for Grb7 binding to ErbB2 publication-title: J. Biomol. NMR – volume: 34 start-page: 454 issue: 5 year: 2005 end-page: 460 article-title: Grb7‐SH2 domain dimerisation is affected by a single point mutation publication-title: Eur. Biophys. J. – volume: 362 start-page: 87 issue: 6415 year: 1993 end-page: 91 article-title: Recognition of a high‐affinity phosphotyrosyl peptide by the Src homology‐2 domain of p56lck publication-title: Nature – volume: 12 start-page: 33 issue: 1 year: 2006 end-page: 48 article-title: Development of Grb2 SH2 domain signaling antagonists: a potential new class of antiproliferative agents publication-title: Int. J. Pept. Res. Ther. – volume: 13 start-page: 1331 issue: 6 year: 1994 end-page: 1340 article-title: The SH2 domain protein GRB‐7 is co‐amplified, overexpressed and in a tight complex with HER2 in breast cancer publication-title: EMBO J. – volume: 20 start-page: 245 issue: 4 year: 2007 end-page: 252 article-title: Calorimetric investigation of phosphorylated and non‐phosphorylated peptide ligand binding to the human Grb7‐SH2 domain publication-title: J. Mol. Recognit. – volume: 96 start-page: 1520 issue: 10 year: 2007 end-page: 1525 article-title: Combination treatment with Grb7 peptide and doxorubicin or trastuzumab (Herceptin) results in cooperative cell growth inhibition in breast cancer cells publication-title: Br. J. Cancer – volume: 5 start-page: e9024 issue: 2 year: 2010 article-title: Grb7 upregulation is a molecular adaptation to HER2 signaling inhibition due to removal of Akt‐mediated gene repression publication-title: PLoS One – volume: 10 start-page: 613 issue: 9 year: 1998 end-page: 618 article-title: The Grb7 family of signalling proteins publication-title: Cell. Signal. – volume: 232 start-page: 5 issue: 1 year: 1997 end-page: 9 article-title: Molecular cloning of human GRB‐7 co‐amplified with CAB1 and c‐ERBB‐2 in primary gastric cancer publication-title: Biochem. Biophys. Res. Commun. – volume: 22 start-page: 851 issue: 6 year: 2006 end-page: 868 article-title: The human and mouse complement of SH2 domain proteins‐establishing the boundaries of phosphotyrosine signaling publication-title: Mol. Cell – volume: 5 start-page: 1 issue: 14 year: 2003 end-page: 11 article-title: Grb7‐based molecular therapeutics in cancer publication-title: Expert Rev. Mol. Med. – volume: 19 start-page: 693 issue: 1 year: 2011a end-page: 701 article-title: Benzopyrazine derivatives: a novel class of growth factor receptor bound protein 7 antagonists publication-title: Bioorg. Med. Chem. – volume: 24 start-page: 1 issue: 1–2 year: 2004 end-page: 52 article-title: Thermodynamics of protein‐ligand interactions: history, presence, and future aspects publication-title: J. Recept. Signal Transduct. Res. – volume: 57 start-page: 28 issue: 1 year: 1997 end-page: 31 article-title: Coexpression of Grb7 with epidermal growth factor receptor or Her2/erbB2 in human advanced esophageal carcinoma publication-title: Cancer Res. – volume: 37 start-page: 15400 issue: 44 year: 1998 end-page: 15407 article-title: Calorimetric investigation of proton linkage by monitoring both the enthalpy and association constant of binding: application to the interaction of the Src SH2 domain with a high‐affinity tyrosyl phosphopeptide publication-title: Biochemistry – volume: 388 start-page: 393 issue: Pt 2 year: 2005 end-page: 406 article-title: Grb10 and Grb14: enigmatic regulators of insulin action–and more? publication-title: Biochem. J. – volume: 14 start-page: 1010 year: 2009 end-page: 1022 article-title: SH2 domain binding to phosphopeptide ligands: potential for drug targeting publication-title: Front. Biosci. – volume: 34 start-page: 11353 issue: 36 year: 1995 end-page: 11362 article-title: Structural and dynamic characterization of the phosphotyrosine binding region of a Src homology 2 domain–phosphopeptide complex by NMR relaxation, proton exchange, and chemical shift approaches publication-title: Biochemistry – volume: 9 start-page: 192 year: 2004 end-page: 200 article-title: Grb7 in intracellular signaling and its role in cell regulation publication-title: Front. Biosci. – volume: 4 start-page: 2411 issue: 11 year: 1995 end-page: 2423 article-title: How to measure and predict the molar absorption coefficient of a protein publication-title: Protein Sci. – volume: 5 start-page: 1043 issue: 6 year: 2000 end-page: 1049 article-title: Structural basis for specificity switching of the Src SH2 domain publication-title: Mol. Cell – volume: 98 start-page: 491 issue: 7 year: 2006 end-page: 498 article-title: Specific peptide ligand for Grb7 signal transduction protein and pancreatic cancer metastasis publication-title: J. Natl. Cancer Inst. – volume: 412 start-page: 397 issue: 3 year: 2011c end-page: 411 article-title: Structural basis of binding by cyclic non‐phosphorylated peptide antagonists of Grb7 implicated in breast cancer progression publication-title: J. Mol. Biol. – start-page: 5 year: 2005 end-page: 36 – volume: 462 start-page: 20 issue: 1 year: 1977 end-page: 35 article-title: Regulation of cellular metabolism by intracellular phosphate publication-title: Biochim. Biophys. Acta – volume: 45 start-page: 761 issue: 8 year: 2006 end-page: 769 article-title: RNA interference‐based functional dissection of the 17q12 amplicon in breast cancer reveals contribution of coamplified genes publication-title: Genes Chromosomes Cancer – volume: 88 start-page: 174 issue: 2 year: 2007 end-page: 181 article-title: NMR analysis of G7‐18NATE, a nonphosphorylated cyclic peptide inhibitor of the Grb7 adapter protein publication-title: Biopolymers – volume: 499 start-page: 176 issue: 1–2 year: 2001 end-page: 181 article-title: Differential regulation of cell migration and cell cycle progression by FAK complexes with Src, PI3K, Grb7 and Grb2 in focal contacts publication-title: FEBS Lett. – ident: e_1_2_8_4_1 doi: 10.1016/j.jmb.2011.07.030 – ident: e_1_2_8_14_1 doi: 10.1074/jbc.274.34.24425 – ident: e_1_2_8_32_1 doi: 10.1002/3527603611.ch1 – ident: e_1_2_8_33_1 doi: 10.1017/S1462399403006227 – ident: e_1_2_8_40_1 doi: 10.1007/s00249-005-0480-1 – ident: e_1_2_8_42_1 doi: 10.1016/S0014-5793(01)02545-5 – ident: e_1_2_8_13_1 doi: 10.1007/s10989-010-9222-z – volume: 57 start-page: 28 issue: 1 year: 1997 ident: e_1_2_8_46_1 article-title: Coexpression of Grb7 with epidermal growth factor receptor or Her2/erbB2 in human advanced esophageal carcinoma publication-title: Cancer Res. – ident: e_1_2_8_24_1 doi: 10.1016/j.molcel.2006.06.001 – ident: e_1_2_8_18_1 doi: 10.1074/jbc.272.13.8490 – ident: e_1_2_8_48_1 doi: 10.1016/0092-8674(93)90405-F – ident: e_1_2_8_16_1 doi: 10.1158/1541-7786.MCR-06-0282 – ident: e_1_2_8_5_1 doi: 10.1093/carcin/bgm221 – ident: e_1_2_8_45_1 doi: 10.1002/j.1460-2075.1994.tb06386.x – ident: e_1_2_8_20_1 doi: 10.2741/3292 – ident: e_1_2_8_7_1 doi: 10.1007/s10989-006-9014-7 – ident: e_1_2_8_12_1 doi: 10.1016/0005-2728(77)90186-4 – ident: e_1_2_8_23_1 doi: 10.1021/jm020970s – ident: e_1_2_8_26_1 doi: 10.1006/dbio.1997.8516 – ident: e_1_2_8_6_1 doi: 10.1021/bi9814991 – ident: e_1_2_8_11_1 doi: 10.1038/362087a0 – ident: e_1_2_8_19_1 doi: 10.1002/gcc.20339 – ident: e_1_2_8_34_1 doi: 10.1074/jbc.M111816200 – ident: e_1_2_8_10_1 doi: 10.1074/jbc.271.21.12502 – ident: e_1_2_8_29_1 doi: 10.1002/pro.5560041120 – ident: e_1_2_8_25_1 doi: 10.1016/j.bbapap.2004.10.005 – ident: e_1_2_8_39_1 doi: 10.1186/1472-6807-7-58 – ident: e_1_2_8_38_1 doi: 10.1002/bip.20667 – start-page: B21 volume-title: Molecular cloning: a laboratory manual year: 1989 ident: e_1_2_8_41_1 – ident: e_1_2_8_17_1 doi: 10.1023/A:1025498409113 – ident: e_1_2_8_22_1 doi: 10.1006/bbrc.1997.6218 – ident: e_1_2_8_3_1 doi: 10.1002/bip.21403 – ident: e_1_2_8_9_1 doi: 10.1016/S0898-6568(98)00022-9 – ident: e_1_2_8_28_1 doi: 10.1371/journal.pone.0009024 – ident: e_1_2_8_30_1 doi: 10.1021/bi00036a008 – ident: e_1_2_8_44_1 doi: 10.1002/jmr.834 – ident: e_1_2_8_49_1 doi: 10.1016/S0079-6468(08)70097-3 – ident: e_1_2_8_47_1 doi: 10.1093/jnci/djj105 – ident: e_1_2_8_31_1 doi: 10.1016/S0092-8674(03)01077-8 – ident: e_1_2_8_15_1 doi: 10.1042/BJ20050216 – ident: e_1_2_8_35_1 doi: 10.1038/sj.bjc.6603732 – ident: e_1_2_8_36_1 doi: 10.1081/RRS-120037896 – ident: e_1_2_8_21_1 doi: 10.1016/S1097-2765(00)80269-5 – ident: e_1_2_8_37_1 doi: 10.1615/CritRevImmunol.v30.i3.70 – ident: e_1_2_8_43_1 doi: 10.2741/1229 – ident: e_1_2_8_2_1 doi: 10.1016/j.bmc.2010.10.030 – ident: e_1_2_8_8_1 doi: 10.1074/jbc.M109.018259 – ident: e_1_2_8_27_1 doi: 10.1093/annonc/mdp346 |
SSID | ssj0009950 |
Score | 2.0362906 |
Snippet | Src‐homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific... Src-homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 57 |
SubjectTerms | Adaptor Proteins, Signal Transducing - antagonists & inhibitors Adaptor Proteins, Signal Transducing - chemistry Amino Acid Sequence Breast cancer Breast Neoplasms - drug therapy Cell Adhesion - drug effects Cell Line, Tumor Cell Movement - drug effects Female GRB10 Adaptor Protein - antagonists & inhibitors GRB10 Adaptor Protein - chemistry GRB2 Adaptor Protein - antagonists & inhibitors GRB2 Adaptor Protein - chemistry Grb7 GRB7 Adaptor Protein - antagonists & inhibitors GRB7 Adaptor Protein - chemistry Humans Molecular Sequence Data Non phosphorylated cyclic peptide Peptide inhibitor Peptides, Cyclic - chemistry Peptides, Cyclic - pharmacology Phosphates - chemistry Phosphates - metabolism Protein Binding Sensitivity and Specificity SH2 domain src Homology Domains Surface Plasmon resonance Surface Plasmon Resonance - methods |
Title | Interaction of the non-phosphorylated peptide G7-18NATE with Grb7-SH2 domain requires phosphate for enhanced affinity and specificity |
URI | https://api.istex.fr/ark:/67375/WNG-MZPZNFZW-T/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmr.2148 https://www.ncbi.nlm.nih.gov/pubmed/22213451 https://www.proquest.com/docview/913722455 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQEIIXLhuMcpOR0HhKlzhxnTyWaW01qRUanTaVB8tXbWxNqrSVKE-888Jv5JdwbDedhoaEeIhys3Nxju3vnHz-jNA7aBWtdSN_mSjAQSm0ifJcyYgpALPUTVPpRZKGo87gJDs6o2drVqUbCxP0ITYBN1czfHvtKriQ8_1r0dAv07pNAMxD8-uoWg4PHV8rR8Ht4yCzR6IUUH2jOxuT_SbjjZ7orivUr7fBzJuo1Xc7vUfoc_PAgW1y2V4uZFt9-0PL8f_e6DF6uEajuBvM5wm6Y8pttNMtwROfrvAe9vxQH3jfRvc-NFv3D5pZ4nbQDx9SDKMjcGUx4ElcVuWv7z9n59Uclnp1BXBW45mjz2iD-wzOJfmoOz7ELgiM-7V0hz4NCNbVVFyUuDaOnmzmOFwCsmOA1tiU556ugIW1F9ASrbAoNXZDRR3dCfafopPe4fhgEK0neIhUSqGGMmEoU51ca2pylWTaEsJkFue60FQoSRjgOZlJgEACOvO4MEViNTNpYTrKgKP1DG3BK5nnCBeFTEyS2NhayMBimSoCrhI4m3AYcEgLvW8-Nldr9XM3CccVD7rNhEPpc1f6LfR2k3IWFD9uSbPn7WWTQNSXjiHHKD8d9flw8nEy6k1O-biFcGNQHD6M-xkjSlMt57xIUgbwidIW2g2GtrkYQLYkzWgCd_Hm8tfH4EfDY7d-8a8JX6IHAPhICCG9QluLemleA6hayDe--vwGWMYhPQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJjReuGzAytVIaDylS5ykTsRTGWvLWCM0Om2qkKz4pt2aVGkrUZ5454XfyC_h2G46DQ0J8RDlZjuOc2x_5-T4Owi9hlFRa7Pyl-YpKCipVF6SCO5RAWA2NmEqLUlSP2v1jqL9k_hkBb2t18I4foilwc30DDtemw5uDNI7V6yh56OqSQDN30JrJqC3CV_w_vCKOwoq4DuiPeKFgOtr5lmf7NQ5r81Fa6ZZv94ENK_jVjvxdO6hL3WVnb_JRXM25U3x7Q82x_98p_vo7gKQ4raToAdoRRUbaLNdgDI-muNtbF1Ere19A91-Vx-t79aB4jbRD2tVdAskcKkxQEpclMWv7z_Hp-UEtmp-CYhW4rHxoJEKdyncC5KsPdjDxg6MuxU3lz73CJblKD8rcKWMh7KaYFcEZMeArrEqTq3HAs61PoPBaI7zQmKzWtR4PMH5Q3TU2Rvs9rxFjAdPhDF0UpqrmIpWImWsEhFEUhNCeeQnMpVxLjihAOl4xAEF5TCf-6lKAy2pClPVEgp0rUdoFV5JbSGcpjxQQaB9rSED9XkoCGhLoG_CZYAiDfSm_tpMLAjQTRyOS-aomwmD1mem9Rvo1TLl2JF-3JBm2wrMMkFeXRgnORqz46zL-sNPw6wzPGaDBsK1RDH4MOZ_TF6ocjZhaRBSQFBx3ECPnaQtCwPUFoRRHMBTrLz8tRpsv39o9k_-NeFLtN4b9A_YwYfs41N0B_AfcRalZ2h1Ws3Uc8BYU_7C9qXfPsclVw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgE5cXLhuXcjUSGk_pEieuk8cy1pZBq2l02lQerPimja1JlbYS5Yl3XviN_BKO7abT0JAQD1ESx04c5xz7OyfHnxF6Db2iMXbmL8szMFAypYM0lSJgEsAstctUOpKk_qDVO0z2junxMqrSzoXx_BArh5vVDNdfWwWfKLN9QRr6ZVw1CYD562g9aYGuWEB0cEEdBc8PPc8eCWKA9TXxbEi265KXhqJ126pfr8KZl2GrG3c6d9HnusY-3OSsOZ-Jpvz2B5nj_73SPXRnCUdx28vPfXRNFxtos12AKT5e4C3sAkSd530D3XhbH93aqZeJ20Q_nE_RT4_ApcEAKHFRFr--_5yclFPYqsU54FmFJzZ-RmncZXAtSgft4S62XmDcrYRN-tQjWJXj_LTAlbbxyXqK_S2gOAZsjXVx4uIVcG7MKXRFC5wXCtu5ojbeCc4foMPO7nCnFyxXeAhkTEFFWa4pk61UKapTGSXKEMJEEqYqUzSXgjAAdCIRgIFyGM3DTGeRUUzHmW5JDZbWQ7QGr6QfI5xlItJRZEJjoAALRSwJ2EpgbUIyAJEGelN_bC6X9Od2FY5z7ombCYfW57b1G-jVKufEU35ckWfLycsqQ16d2RA5RvnRoMv7o_3RoDM64sMGwrVAcfgw9m9MXuhyPuVZFDPAT5Q20CMvaKubAWaL4oRG8BQnLn-tBt_rH9j9k3_N-BLd3H_X4R_fDz48RbcB_BHvTnqG1mbVXD8HgDUTL5wm_QbfsSQP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+of+the+non-phosphorylated+peptide+G7-18NATE+with+Grb7-SH2+domain+requires+phosphate+for+enhanced+affinity+and+specificity&rft.jtitle=Journal+of+molecular+recognition&rft.au=Gunzburg%2C+Menachem+J&rft.au=Ambaye%2C+Nigus+D&rft.au=Del+Borgo%2C+Mark+P&rft.au=Pero%2C+Stephanie+C&rft.date=2012-01-01&rft.eissn=1099-1352&rft.volume=25&rft.issue=1&rft.spage=57&rft_id=info:doi/10.1002%2Fjmr.2148&rft_id=info%3Apmid%2F22213451&rft.externalDocID=22213451 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3499&client=summon |