Robust Methods for the Analysis of Income Distribution, Inequality and Poverty
Income distribution embeds a large field of research subjects in economics. It is important to study how incomes are distributed among the members of a population in order for example to determine tax policies for redistribution to decrease inequality, or to implement social policies to reduce pover...
Saved in:
Published in | International statistical review Vol. 68; no. 3; pp. 277 - 293 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.12.2000
International Statistical Institute and Instituto Nacional de Estadistica Geografia e Informatica Blackwell |
Subjects | |
Online Access | Get full text |
ISSN | 0306-7734 1751-5823 |
DOI | 10.1111/j.1751-5823.2000.tb00331.x |
Cover
Abstract | Income distribution embeds a large field of research subjects in economics. It is important to study how incomes are distributed among the members of a population in order for example to determine tax policies for redistribution to decrease inequality, or to implement social policies to reduce poverty. The available data come mostly from surveys (and not censuses as it is often believed) and are often subject to long debates about their reliability because the sources of errors are numerous. Moreover the forms in which the data are available is not always as one would expect, i.e. complete and continuous (micro data) but one also can only have data in a grouped form (in income classes) and/or truncated data where a portion of the original data has been omitted from the sample or simply not recorded. Because of these data features, it is important to complement classical statistical procedures with robust ones. In this paper such methods are presented, especially for model selection, model fitting with several types of data, inequality and poverty analysis and ordering tools. The approach is based on the Influence Function (IF) developed by Hampel (1974) and further developed by Hampel, Ronchetti, Rousseeuw & Stahel (1986). It is also shown through the analysis of real UK and Tunisian data, that robust techniques can give another picture of income distribution, inequality or poverty when compared to classical ones. /// La distribution des revenus comporte une importante quantité de domaines de recherche en économie. Il est important de pouvoir étudier comment les revenus sont répartis au sein des membres d'une population pour pouvoir par exemple définir une politique de taxation et de redistribution afin de diminuer l'inégalité, ou implémenter des actions sociales pour diminuer la pauvreté. Les données à disposition proviennent essentiellement d'enquêtes (et non pas de rencensemment comme on pourrait le croire) et leur fiabilité soulève de grands débats car les sources d'erreur sont nombreuses. En plus, les données peuvent ne pas se présenter sous la forme habituelle de données continues et complètes, mais sous forme groupée (revenus par classe) et/ou sous forme censurée à savoir qu'une partie des revenus a été enlevée de l'échantillon ou simplement non enregistrée. A cause de la particularité des données, il est important de compléter les analyses statistiques classiques au moyen d'analyses robustes. Dans cet articles de telles méthodes sont présentées, spécialement pour la sélection de modèle, l'estimation de modèle avec différents types de données, l'analyse de l'inégalité et de la pauvreté, et pour les outils de comparaison de distributions. L'approache est basée sur la fonction d'influence (IF) développée par Hampel (1974) et ensuite par Hampel, Ronchetti, Rousseeuw & Stahel (1986). On montre aussi à travers l'analyse de données réelles Britanniques et Tunisiennes que les procédures robustes peuvent donner une autre représentation de la distribution des revenues, de l'inégalité et de la pauvreté lorsqu'elles sont comparées à des procédures classiques. |
---|---|
AbstractList | Income distribution embeds a large field of research subjects in economics. It is important to study how incomes are distributed among the members of a population in order for example to determine tax policies for redistribution to decrease inequality, or to implement social policies to reduce poverty. The available data come mostly from surveys (and not censuses as it is often believed) and are often subject to long debates about their reliability because the sources of errors are numerous. Moreover the forms in which the data are available is not always as one would expect, i.e. complete and continuous (micro data) but one also can only have data in a grouped form (in income classes) and/or truncated data where a portion of the original data has been omitted from the sample or simply not recorded. Because of these data features, it is important to complement classical statistical procedures with robust ones. In this paper such methods are presented, especially for model selection, model fitting with several types of data, inequality and poverty analysis and ordering tools. The approach is based on the Influence Function (IF) developed by Hampel (1974) and further developed by Hampel, Ronchetti, Rousseeuw & Stahel (1986). It is also shown through the analysis of real UK and Tunisian data, that robust techniques can give another picture of income distribution, inequality or poverty when compared to classical ones. /// La distribution des revenus comporte une importante quantité de domaines de recherche en économie. Il est important de pouvoir étudier comment les revenus sont répartis au sein des membres d'une population pour pouvoir par exemple définir une politique de taxation et de redistribution afin de diminuer l'inégalité, ou implémenter des actions sociales pour diminuer la pauvreté. Les données à disposition proviennent essentiellement d'enquêtes (et non pas de rencensemment comme on pourrait le croire) et leur fiabilité soulève de grands débats car les sources d'erreur sont nombreuses. En plus, les données peuvent ne pas se présenter sous la forme habituelle de données continues et complètes, mais sous forme groupée (revenus par classe) et/ou sous forme censurée à savoir qu'une partie des revenus a été enlevée de l'échantillon ou simplement non enregistrée. A cause de la particularité des données, il est important de compléter les analyses statistiques classiques au moyen d'analyses robustes. Dans cet articles de telles méthodes sont présentées, spécialement pour la sélection de modèle, l'estimation de modèle avec différents types de données, l'analyse de l'inégalité et de la pauvreté, et pour les outils de comparaison de distributions. L'approache est basée sur la fonction d'influence (IF) développée par Hampel (1974) et ensuite par Hampel, Ronchetti, Rousseeuw & Stahel (1986). On montre aussi à travers l'analyse de données réelles Britanniques et Tunisiennes que les procédures robustes peuvent donner une autre représentation de la distribution des revenues, de l'inégalité et de la pauvreté lorsqu'elles sont comparées à des procédures classiques. Income distribution embeds a large field of research subjects in economics. It is important to study how incomes are distributed among the members of a population in order for example to determine tax policies for redistribution to decrease inequality, or to implement social policies to reduce poverty. The available data come mostly from surveys (and not censuses as it is often believed) and often subject to long debates about their reliability because the sources of errors are numerous. Moreover the forms in which the data are availabe is not always as one would expect, i.e. complete and continuous (microdata) but one also can only have data in a grouped form (in income classes) and/or truncated data where a portion of the original data has been omitted from the sample or simply not recorded. Because of these data features, it is important to complement classical statistical procedures with robust ones. In tis paper such methods are presented, especially for model selection, model fitting with several types of data, inequality and poverty analysis and ordering tools. The approach is based on the Influence Function (IF) developed by Hampel (1974) and further developed by Hampel, Ronchetti, Rousseeuw & Stahel (1986). It is also shown through the analysis of real UK and Tunisian data, that robust techniques can give another picture of income distribution, inequality or poverty when compared to classical ones. Summary Income distribution embeds a large field of research subjects in economics. It is important to study how incomes are distributed among the members of a population in order for example to determine tax policies for redistribution to decrease inequality, or to implement social policies to reduce poverty. The available data come mostly from surveys (and not censuses as it is often believed) and often subject to long debates about their reliability because the sources of errors are numerous. Moreover the forms in which the data are availabe is not always as one would expect, i.e. complete and continuous (microdata) but one also can only have data in a grouped form (in income classes) and/or truncated data where a portion of the original data has been omitted from the sample or simply not recorded. Because of these data features, it is important to complement classical statistical procedures with robust ones. In tis paper such methods are presented, especially for model selection, model fitting with several types of data, inequality and poverty analysis and ordering tools. The approach is based on the Influence Function (IF) developed by Hampel (1974) and further developed by Hampel, Ronchetti, Rousseeuw & Stahel (1986). It is also shown through the analysis of real UK and Tunisian data, that robust techniques can give another picture of income distribution, inequality or poverty when compared to classical ones. |
Author | Victoria-Feser, Maria-Pia |
Author_xml | – sequence: 1 givenname: Maria-Pia surname: Victoria-Feser fullname: Victoria-Feser, Maria-Pia organization: University of Geneva, CH-1211 Geneva 4, Switzerland |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=833694$$DView record in Pascal Francis |
BookMark | eNqVkVFPFDEUhRuDCcvqf2jUR2do53amrS9KUHADLAQ0-NZ0ZtvQdZhi25Wdf89MBonxCftyk_Y75_aeu4d2Ot8ZhN5QktPh7K9zykualaKAvCCE5KkmBIDm2xdo9vS0g2YESJVxDmwX7cW4HlAoBJuh5aWvNzHhM5Nu_Cpi6wNONwYfdLrto4vYW7zoGn9r8GcXU3D1JjnfvR8uza-Nbl3qse5W-ML_NiH1r9BLq9toXj_WOfp-9OXb4dfs9Px4cXhwmjVQCp6VxpRCWFbVkqykMcAqwsRKciKrsraSNsQWTEpSy5rVBaUctKgKQRtttSEa5ujt5HunY6NbG3TXuKjugrvVoVcCoJJsoD5NVBN8jMFY1bikx_-noF2rKFFjimqtxqjUGJUaU1SPKartYPHhH4s_PZ4l_jiJ711r-v9QqsXy6rIY1jVH7yaHdUw-_O1QAOGKMgKMjoNmEzasyGyfMB1-qooDL9X18lidsBPJr3-AovAAA7qoZg |
CODEN | ISTRDP |
CitedBy_id | crossref_primary_10_1111_joes_12114 crossref_primary_10_1068_b34100 crossref_primary_10_1080_00036846_2010_491459 crossref_primary_10_2139_ssrn_2164745 crossref_primary_10_1080_03610918_2013_788707 crossref_primary_10_2139_ssrn_3025469 crossref_primary_10_1007_s10888_007_9055_y crossref_primary_10_3390_econometrics6020022 crossref_primary_10_1162_REST_a_00644 crossref_primary_10_1111_roiw_12031 crossref_primary_10_1080_07474938_2019_1630077 crossref_primary_10_1177_1536867X241297918 crossref_primary_10_1080_02331888_2015_1135924 crossref_primary_10_1080_00036846_2013_778952 crossref_primary_10_1111_joes_12435 |
Cites_doi | 10.1111/j.2517-6161.1970.tb00845.x 10.1016/0022-0531(76)90068-5 10.2307/3315587 10.2307/2171925 10.2307/1912718 10.1111/j.1475-6803.1990.tb00541.x 10.1016/0771-050X(81)90013-9 10.1080/01621459.1974.10482962 10.1111/1467-9868.00093 10.1080/01621459.1997.10473631 10.1002/0471725277 10.1002/0471725250 10.2307/2223525 10.2307/1391885 10.2307/1913475 10.1093/wber/8.1.75 10.2307/1912053 10.1016/0014-2921(95)00048-8 10.1007/BF01205775 10.2307/1914015 10.1111/j.2517-6161.1977.tb01600.x 10.1016/0014-2921(80)90051-3 10.1080/01621459.1994.10476822 10.1111/j.2517-6161.1962.tb00468.x 10.1214/aoms/1177703732 10.1016/0022-0531(76)90037-5 10.1111/j.2517-6161.1984.tb01318.x |
ContentType | Journal Article |
Copyright | Copyright 2000 International Statistical Institute 2001 INIST-CNRS |
Copyright_xml | – notice: Copyright 2000 International Statistical Institute – notice: 2001 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW |
DOI | 10.1111/j.1751-5823.2000.tb00331.x |
DatabaseName | Istex CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Applied Sciences Mathematics |
EISSN | 1751-5823 |
EndPage | 293 |
ExternalDocumentID | 833694 10_1111_j_1751_5823_2000_tb00331_x INSR277 1403414 ark_67375_WNG_K4K97WX3_1 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 29J 31~ 33P 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5RE 5VS 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AABCJ AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWIL AAXRX AAYCA AAZKR ABAWQ ABBHK ABCQN ABCUV ABDBF ABEML ABFAN ABIVO ABJNI ABLJU ABPVW ABQDR ABXSQ ABYWD ACAHQ ACBWZ ACCZN ACDIW ACGFO ACGFS ACHJO ACIWK ACMTB ACNCT ACPOU ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADNMO ADODI ADOZA ADULT ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AELLO AENEX AEUPB AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFVYC AFWVQ AFZJQ AGHNM AGLNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AIHAF AITYG AIURR AJXKR AKBRZ ALAGY ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DU5 EBS ECEWR EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GIFXF GODZA H.T H.X HF~ HGD HGLYW HQ6 HVGLF HZ~ H~9 IPSME IX1 J0M JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K48 L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K RBU RNS ROL RPE RX1 SA0 SUPJJ TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 YYP ZZTAW ~02 ~IA ~WT AAHHS AAKYL ACCFJ AEEZP AELPN AEQDE AEUQT AFPWT AIWBW AJBDE BHOJU JSODD WRC AAYXX CITATION IQODW |
ID | FETCH-LOGICAL-c3587-5ee588f46b90d9ee346048d970965bf91c0f24990b9b4b21173a86281cafae0a3 |
IEDL.DBID | DR2 |
ISSN | 0306-7734 |
IngestDate | Mon Jul 21 09:12:12 EDT 2025 Thu Apr 24 22:51:27 EDT 2025 Tue Jul 01 00:48:41 EDT 2025 Wed Jan 22 16:46:51 EST 2025 Thu Jul 03 21:14:02 EDT 2025 Tue Sep 09 05:32:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Statistical analysis Mixture distribution Censored sample Life test Statistical method Income distribution Stochastic dominance Trade Survey Influence function Mathematical economy Economic model Analysis method Data forms Econometrics Reliability Inequality |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3587-5ee588f46b90d9ee346048d970965bf91c0f24990b9b4b21173a86281cafae0a3 |
Notes | ArticleID:INSR277 istex:A5CE099074F4FBFAB2427B64F30FD10FB759A3D1 ark:/67375/WNG-K4K97WX3-1 |
PageCount | 17 |
ParticipantIDs | pascalfrancis_primary_833694 crossref_citationtrail_10_1111_j_1751_5823_2000_tb00331_x crossref_primary_10_1111_j_1751_5823_2000_tb00331_x wiley_primary_10_1111_j_1751_5823_2000_tb00331_x_INSR277 jstor_primary_10_2307_1403414 istex_primary_ark_67375_WNG_K4K97WX3_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2000 |
PublicationDateYYYYMMDD | 2000-12-01 |
PublicationDate_xml | – month: 12 year: 2000 text: December 2000 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Malden, MA |
PublicationTitle | International statistical review |
PublicationYear | 2000 |
Publisher | Blackwell Publishing Ltd International Statistical Institute and Instituto Nacional de Estadistica Geografia e Informatica Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: International Statistical Institute and Instituto Nacional de Estadistica Geografia e Informatica – name: Blackwell |
References | Theil, H. (1967). Economics and Information Theory. Amsterdam : North-Holland. Victoria-Feser, M.-P. & Ronchetti, E. (1997). Robust estimation for grouped data. Journal of the American Statistical Association, 92, 333-340. Cressie, N.A.C. & Read, T.R.C. (1984). Multinomial goodness-of-fit test. Journal of the Royal Statistical Society, Serie B, 46, 440-464. Huber, P.J. (1981). Robust Statistics. New York : John Wiley. Little, R.J.A. & Rubin, D.B. (1987). Statistical Analysis with Missing Data. New York : Wiley. Foster, J., Greer, J. & Thorbeke, E. (1984). A class of decomposable poverty measures. Econometrica, 52, 761-765. Sen, A.K. (1976). Poverty: An ordinal approach to measurement. Econometrica, 44, 219-231. Cowell, F.A. & Victoria-Feser, M.-P. (1996a). Poverty measurement with contaminated data: A robust approach. European Economic Revue, 40, 1761-1771. Huber, P.J. (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics, 35, 73-101. Van Praag, B., Hagenaars, A. & Van Eck, W. (1983). The influence of classification and observation erors on the measurement of income inequality. Econometrica, 51, 1093-1108. Department of Social Security (1992). Households below Average Income, 1979-1988/89. London : HMSO. Gini, C. (1955). Memorie di Metodologia Statistica. Roma : Pizetti e Salvemini Libreria Eredi Virgilio Veschi. Groves, R.M. (1989). Survey Errors and Survey Costs. New York : John Wiley. Cowell, F.A. (1980). Generalized entropy and the measurement of distributional change. European Economic Review, 13, 147-159. Cowell, F.A. & Victoria-Feser, M.-P. (1996b). Robustness properties of inequality measures. Econometrica, 64, 77-101. Ben Horim, M. (1990). Stochastic dominance and truncates sample data. Journal of Financial Research, 13, 105-116. Victoria-Feser, M.-P. (1997). Robust model choice test for non-nested hypothesis. Journal of the Royal Statistical Society, Series B, 59, 715-727. Dalton, H. (1920). The measurement of the inequality of incomes. Economic Journal, 30, 348-361. Jenkins, S.P. (1997). Trends in real income in Britain: A microeconomic analysis. Empirical Economics, 22, 483-500. Hampel, F.R. (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69, 383-393. Kolm, S.C. (1976b). Unequal inequalities. Journal of Economic Theory, 13, 82-111. Part II. Atkinson, A.C. (1970). A method for discriminating between models. Journal of the Royal Statistical Society, Serie B, 32, 323-353. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. & Stahel, W.A. (1986). Robust Statistics: The Approach Based on Influence Functions. New York : John Wiley. Kolm, S.C. (1976a). Unequal inequalities. Journal of Economic Theory, 12, 416-442. Part I. Victoria-Feser, M.-P. & Ronchetti, E. (1994). Robust methods for personal income distribution models. The Canadian Journal of Statistics, 22, 247-258. Cox, D.R. (1962). Further results on tests of separate families of hypotheses. Journal of the Royal Statistical Society, Serie B, 24, 406-424. Fichtenbaum, R. & Shahidi, H. (1988). Truncation bias and the measurement of income inequality. Journal of Business and Economics Statistics, 6, 335-337. Ravallion, M. (1993). Poverty comparison, Volume 56 of Fundamentals of Pure and Applies Economics. Chur , Switzerland : Harwood Academic Press. Dempster, A.P., Laird, M.N. & Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Serie B, 39, 1-22. McDonald, J.B. & Ransom, M.R. (1979). Functional forms, estimation techniques and the distribution of income. Econometrica, 47, 1513-1525. Ravallion, M. & Bidani, B. (1994). How robust is a poverty profile The World Bank Economic Review, 8, 75-102. Rousseeuw, P.J. & Ronchetti, E. (1981). Influence curves for general statistics. Journal of Computational and Applied Mathematics, 7, 161-166. Heritier, S. & Ronchetti, E. (1994). Robust bounded-influence test in general parametric models. Journal of the American Statististical Asspciation, 89(427), 897-904. Dagum, C. (1980). Generating systems and properties of income distribution models. Metron, 38, (3-4), 3-26. 1990; 13 1976; 44 1997; 22 1984; 46 1998 1910 1994; 89 1981; 7 1994; 22 1970; 32 1996 1983; 51 1994 1993 1992 1979 1955 1980; 38 1994; 8 1984; 52 1974; 69 1996b; 64 1920; 30 1979; 47 1997; 92 1990 1996a; 40 1977; 39 1976a; 12 1980; 13 1988; 6 1997; 59 1987 1986 1996c 2000b 2000a 1961 1962; 24 1982 1981 1964; 35 1976b; 13 1968 1989 1967 Heritier S. (e_1_2_1_27_1) 1994; 89 Ravallion M. (e_1_2_1_37_1) 1993 Dagum C. (e_1_2_1_15_1) 1980; 38 e_1_2_1_42_1 Atkinson A.C. (e_1_2_1_2_1) 1970; 32 e_1_2_1_20_1 Little R.J.A. (e_1_2_1_33_1) 1987 e_1_2_1_41_1 Cox D.R. (e_1_2_1_12_1) 1961 e_1_2_1_40_1 Cressie N.A.C. (e_1_2_1_14_1) 1984; 46 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_24_1 e_1_2_1_45_1 Department of Social Security (e_1_2_1_18_1) 1992 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_28_1 e_1_2_1_25_1 e_1_2_1_48_1 e_1_2_1_47_1 e_1_2_1_29_1 Cox D.R. (e_1_2_1_13_1) 1962; 24 e_1_2_1_7_1 e_1_2_1_31_1 Theil H. (e_1_2_1_43_1) 1967 e_1_2_1_8_1 e_1_2_1_30_1 e_1_2_1_5_1 e_1_2_1_6_1 Hampel F.R. (e_1_2_1_26_1) 1986 e_1_2_1_3_1 e_1_2_1_35_1 e_1_2_1_4_1 e_1_2_1_34_1 e_1_2_1_10_1 e_1_2_1_11_1 Dempster A.P. (e_1_2_1_17_1) 1977; 39 e_1_2_1_32_1 e_1_2_1_16_1 e_1_2_1_39_1 Gini C. (e_1_2_1_22_1) 1955 e_1_2_1_38_1 e_1_2_1_36_1 e_1_2_1_9_1 e_1_2_1_19_1 |
References_xml | – reference: Atkinson, A.C. (1970). A method for discriminating between models. Journal of the Royal Statistical Society, Serie B, 32, 323-353. – reference: Hampel, F.R. (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69, 383-393. – reference: Rousseeuw, P.J. & Ronchetti, E. (1981). Influence curves for general statistics. Journal of Computational and Applied Mathematics, 7, 161-166. – reference: Theil, H. (1967). Economics and Information Theory. Amsterdam : North-Holland. – reference: Victoria-Feser, M.-P. (1997). Robust model choice test for non-nested hypothesis. Journal of the Royal Statistical Society, Series B, 59, 715-727. – reference: Dagum, C. (1980). Generating systems and properties of income distribution models. Metron, 38, (3-4), 3-26. – reference: McDonald, J.B. & Ransom, M.R. (1979). Functional forms, estimation techniques and the distribution of income. Econometrica, 47, 1513-1525. – reference: Little, R.J.A. & Rubin, D.B. (1987). Statistical Analysis with Missing Data. New York : Wiley. – reference: Fichtenbaum, R. & Shahidi, H. (1988). Truncation bias and the measurement of income inequality. Journal of Business and Economics Statistics, 6, 335-337. – reference: Heritier, S. & Ronchetti, E. (1994). Robust bounded-influence test in general parametric models. Journal of the American Statististical Asspciation, 89(427), 897-904. – reference: Groves, R.M. (1989). Survey Errors and Survey Costs. New York : John Wiley. – reference: Ben Horim, M. (1990). Stochastic dominance and truncates sample data. Journal of Financial Research, 13, 105-116. – reference: Gini, C. (1955). Memorie di Metodologia Statistica. Roma : Pizetti e Salvemini Libreria Eredi Virgilio Veschi. – reference: Foster, J., Greer, J. & Thorbeke, E. (1984). A class of decomposable poverty measures. Econometrica, 52, 761-765. – reference: Kolm, S.C. (1976b). Unequal inequalities. Journal of Economic Theory, 13, 82-111. Part II. – reference: Van Praag, B., Hagenaars, A. & Van Eck, W. (1983). The influence of classification and observation erors on the measurement of income inequality. Econometrica, 51, 1093-1108. – reference: Ravallion, M. & Bidani, B. (1994). How robust is a poverty profile The World Bank Economic Review, 8, 75-102. – reference: Cox, D.R. (1962). Further results on tests of separate families of hypotheses. Journal of the Royal Statistical Society, Serie B, 24, 406-424. – reference: Cowell, F.A. & Victoria-Feser, M.-P. (1996b). Robustness properties of inequality measures. Econometrica, 64, 77-101. – reference: Ravallion, M. (1993). Poverty comparison, Volume 56 of Fundamentals of Pure and Applies Economics. Chur , Switzerland : Harwood Academic Press. – reference: Kolm, S.C. (1976a). Unequal inequalities. Journal of Economic Theory, 12, 416-442. Part I. – reference: Huber, P.J. (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics, 35, 73-101. – reference: Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. & Stahel, W.A. (1986). Robust Statistics: The Approach Based on Influence Functions. New York : John Wiley. – reference: Cowell, F.A. & Victoria-Feser, M.-P. (1996a). Poverty measurement with contaminated data: A robust approach. European Economic Revue, 40, 1761-1771. – reference: Huber, P.J. (1981). Robust Statistics. New York : John Wiley. – reference: Cowell, F.A. (1980). Generalized entropy and the measurement of distributional change. European Economic Review, 13, 147-159. – reference: Dempster, A.P., Laird, M.N. & Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Serie B, 39, 1-22. – reference: Victoria-Feser, M.-P. & Ronchetti, E. (1994). Robust methods for personal income distribution models. The Canadian Journal of Statistics, 22, 247-258. – reference: Dalton, H. (1920). The measurement of the inequality of incomes. Economic Journal, 30, 348-361. – reference: Department of Social Security (1992). Households below Average Income, 1979-1988/89. London : HMSO. – reference: Jenkins, S.P. (1997). Trends in real income in Britain: A microeconomic analysis. Empirical Economics, 22, 483-500. – reference: Victoria-Feser, M.-P. & Ronchetti, E. (1997). Robust estimation for grouped data. Journal of the American Statistical Association, 92, 333-340. – reference: Sen, A.K. (1976). Poverty: An ordinal approach to measurement. Econometrica, 44, 219-231. – reference: Cressie, N.A.C. & Read, T.R.C. (1984). Multinomial goodness-of-fit test. Journal of the Royal Statistical Society, Serie B, 46, 440-464. – volume: 35 start-page: 73 year: 1964 end-page: 101 article-title: Robust estimation of a location parameter publication-title: Annals of Mathematical Statistics – year: 1981 – volume: 32 start-page: 323 year: 1970 end-page: 353 article-title: A method for discriminating between models publication-title: Journal of the Royal Statistical Society, Serie B – volume: 52 start-page: 761 year: 1984 end-page: 765 article-title: A class of decomposable poverty measures publication-title: Econometrica – volume: 59 start-page: 715 year: 1997 end-page: 727 article-title: Robust model choice test for non‐nested hypothesis publication-title: Journal of the Royal Statistical Society – year: 1968 – year: 1987 – year: 1989 – volume: 22 start-page: 483 year: 1997 end-page: 500 article-title: Trends in real income in Britain: A microeconomic analysis publication-title: Empirical Economics – year: 1996 – volume: 30 start-page: 348 year: 1920 end-page: 361 article-title: The measurement of the inequality of incomes publication-title: Economic Journal – volume: 6 start-page: 335 year: 1988 end-page: 337 article-title: Truncation bias and the measurement of income inequality publication-title: Journal of Business and Economics Statistics – volume: 12 start-page: 416 year: 1976a end-page: 442 article-title: Unequal inequalities publication-title: Journal of Economic Theory – start-page: 374 year: 1990 end-page: 379 – volume: 46 start-page: 440 year: 1984 end-page: 464 article-title: Multinomial goodness‐of‐fit test publication-title: Journal of the Royal Statistical Society, Serie B – volume: 13 start-page: 105 year: 1990 end-page: 116 article-title: Stochastic dominance and truncates sample data publication-title: Journal of Financial Research – year: 1979 – volume: 89 start-page: 897 issue: 427 year: 1994 end-page: 904 article-title: Robust bounded‐influence test in general parametric models publication-title: Journal of the American Statististical Asspciation – year: 1992 – volume: 92 start-page: 333 year: 1997 end-page: 340 article-title: Robust estimation for grouped data publication-title: Journal of the American Statistical Association – year: 1994 – volume: 38 start-page: 3 issue: 3–4 year: 1980 end-page: 26 article-title: Generating systems and properties of income distribution models publication-title: Metron – volume: 39 start-page: 1 year: 1977 end-page: 22 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society, Serie B – year: 2000b – volume: 13 start-page: 82 year: 1976b end-page: 111 article-title: Unequal inequalities publication-title: Journal of Economic Theory – year: 1998 – start-page: 3 year: 1910 end-page: 120 – volume: 8 start-page: 75 year: 1994 end-page: 102 article-title: How robust is a poverty profile publication-title: The World Bank Economic Review – volume: 24 start-page: 406 year: 1962 end-page: 424 article-title: Further results on tests of separate families of hypotheses publication-title: Journal of the Royal Statistical Society, Serie B – volume: 51 start-page: 1093 year: 1983 end-page: 1108 article-title: The influence of classification and observation erors on the measurement of income inequality publication-title: Econometrica – year: 1986 – volume: 47 start-page: 1513 year: 1979 end-page: 1525 article-title: Functional forms, estimation techniques and the distribution of income publication-title: Econometrica – year: 1996c – year: 1982 – volume: 69 start-page: 383 year: 1974 end-page: 393 article-title: The influence curve and its role in robust estimation publication-title: Journal of the American Statistical Association – year: 1967 – volume: 22 start-page: 247 year: 1994 end-page: 258 article-title: Robust methods for personal income distribution models publication-title: The Canadian Journal of Statistics – start-page: 105 year: 1961 end-page: 123 – volume: 13 start-page: 147 year: 1980 end-page: 159 article-title: Generalized entropy and the measurement of distributional change publication-title: European Economic Review – volume: 7 start-page: 161 year: 1981 end-page: 166 article-title: Influence curves for general statistics publication-title: Journal of Computational and Applied Mathematics – volume: 64 start-page: 77 year: 1996b end-page: 101 article-title: Robustness properties of inequality measures publication-title: Econometrica – year: 1955 – year: 1993 – volume: 44 start-page: 219 year: 1976 end-page: 231 article-title: Poverty: An ordinal approach to measurement publication-title: Econometrica – year: 2000a – volume: 40 start-page: 1761 year: 1996a end-page: 1771 article-title: Poverty measurement with contaminated data: A robust approach publication-title: European Economic Revue – ident: e_1_2_1_35_1 – volume: 32 start-page: 323 year: 1970 ident: e_1_2_1_2_1 article-title: A method for discriminating between models publication-title: Journal of the Royal Statistical Society, Serie B doi: 10.1111/j.2517-6161.1970.tb00845.x – ident: e_1_2_1_21_1 – ident: e_1_2_1_32_1 doi: 10.1016/0022-0531(76)90068-5 – ident: e_1_2_1_40_1 – ident: e_1_2_1_24_1 – ident: e_1_2_1_47_1 doi: 10.2307/3315587 – start-page: 105 volume-title: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability 1 year: 1961 ident: e_1_2_1_12_1 – volume-title: Robust Statistics: The Approach Based on Influence Functions year: 1986 ident: e_1_2_1_26_1 – ident: e_1_2_1_8_1 doi: 10.2307/2171925 – volume-title: Poverty comparison, Volume 56 of Fundamentals of Pure and Applies Economics year: 1993 ident: e_1_2_1_37_1 – ident: e_1_2_1_42_1 doi: 10.2307/1912718 – ident: e_1_2_1_4_1 doi: 10.1111/j.1475-6803.1990.tb00541.x – volume-title: Economics and Information Theory year: 1967 ident: e_1_2_1_43_1 – ident: e_1_2_1_41_1 doi: 10.1016/0771-050X(81)90013-9 – ident: e_1_2_1_25_1 doi: 10.1080/01621459.1974.10482962 – ident: e_1_2_1_46_1 doi: 10.1111/1467-9868.00093 – volume: 38 start-page: 3 issue: 3 year: 1980 ident: e_1_2_1_15_1 article-title: Generating systems and properties of income distribution models publication-title: Metron – ident: e_1_2_1_48_1 doi: 10.1080/01621459.1997.10473631 – ident: e_1_2_1_23_1 doi: 10.1002/0471725277 – ident: e_1_2_1_29_1 doi: 10.1002/0471725250 – ident: e_1_2_1_16_1 doi: 10.2307/2223525 – ident: e_1_2_1_19_1 doi: 10.2307/1391885 – ident: e_1_2_1_20_1 doi: 10.2307/1913475 – ident: e_1_2_1_38_1 doi: 10.1093/wber/8.1.75 – ident: e_1_2_1_44_1 doi: 10.2307/1912053 – ident: e_1_2_1_6_1 – ident: e_1_2_1_7_1 doi: 10.1016/0014-2921(95)00048-8 – ident: e_1_2_1_3_1 – ident: e_1_2_1_30_1 doi: 10.1007/BF01205775 – ident: e_1_2_1_45_1 – volume-title: Households below Average Income, 1979–1988/89 year: 1992 ident: e_1_2_1_18_1 – ident: e_1_2_1_11_1 – ident: e_1_2_1_34_1 doi: 10.2307/1914015 – volume-title: Memorie di Metodologia Statistica year: 1955 ident: e_1_2_1_22_1 – volume: 39 start-page: 1 year: 1977 ident: e_1_2_1_17_1 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society, Serie B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_1_5_1 doi: 10.1016/0014-2921(80)90051-3 – volume: 89 start-page: 897 issue: 427 year: 1994 ident: e_1_2_1_27_1 article-title: Robust bounded‐influence test in general parametric models publication-title: Journal of the American Statististical Asspciation doi: 10.1080/01621459.1994.10476822 – ident: e_1_2_1_39_1 – ident: e_1_2_1_9_1 – ident: e_1_2_1_10_1 – volume: 24 start-page: 406 year: 1962 ident: e_1_2_1_13_1 article-title: Further results on tests of separate families of hypotheses publication-title: Journal of the Royal Statistical Society, Serie B doi: 10.1111/j.2517-6161.1962.tb00468.x – ident: e_1_2_1_28_1 doi: 10.1214/aoms/1177703732 – ident: e_1_2_1_31_1 doi: 10.1016/0022-0531(76)90037-5 – ident: e_1_2_1_36_1 – volume: 46 start-page: 440 year: 1984 ident: e_1_2_1_14_1 article-title: Multinomial goodness‐of‐fit test publication-title: Journal of the Royal Statistical Society, Serie B doi: 10.1111/j.2517-6161.1984.tb01318.x – volume-title: Statistical Analysis with Missing Data year: 1987 ident: e_1_2_1_33_1 |
SSID | ssj0003284 |
Score | 1.6457577 |
Snippet | Income distribution embeds a large field of research subjects in economics. It is important to study how incomes are distributed among the members of a... Summary Income distribution embeds a large field of research subjects in economics. It is important to study how incomes are distributed among the members of a... |
SourceID | pascalfrancis crossref wiley jstor istex |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 277 |
SubjectTerms | Applications Applied sciences Censored data Economic models Estimators Exact sciences and technology Grouped data Income distribution Income estimates Income inequality Inequality Influence function Insurance, economics, finance Lorenz curve Mathematics Maximum likelihood estimation Model choice Operational research and scientific management Operational research. Management science Parametric models Poverty Poverty line Probability and statistics Robust statistics Sciences and techniques of general use Statistics Stochastic dominance |
Title | Robust Methods for the Analysis of Income Distribution, Inequality and Poverty |
URI | https://api.istex.fr/ark:/67375/WNG-K4K97WX3-1/fulltext.pdf https://www.jstor.org/stable/1403414 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1751-5823.2000.tb00331.x |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqcukFCqVi6UM-oJ7IKsnYsX1E9AVVV9VC1b1ZtmNf2u6iblZq-fV4nGTpVhwo4ppkrGQyM56xvvmGkA_B5UYEV2fScJcxDyYzPFSZs5yZClwlEk_B-ag6vWRfJ3zStUdjL0zLD7E8cEPPSPEaHdzY-aqTC15kXJaQ-k3SGSdAMcSMsoAKifQPx7-5pKCULZdULKGFANYxkPawnj8vtbJbvUDF3_fARURRmnlUZGgnYKxmt2l7On5FbvsPa1Ep18NFY4fu5xPOx__15ZvkZZfH0k-t4b0ma376hmxg6toyP2-R0XhmF_OGnqcZ1XMas2Mas03a06DQWaAxOs1uPT1E9t5u8NbHeNG3rZ4P1ExreoEg0-bhLbk8Pvr--TTrpjdkDniMXNx7LmVglVV5rbwHVsVoUSuBfDM2qMLlIdZ-KrfKMhvrUAEmlleycCYYnxvYJuvT2dS_I5TVvC6DzE2AgpWhNMLXgeVgSnAMAAZE9X9Ju47aHCds3OhHJU5UmUaV4eDNXHcq0_cDAkvZHy3Bx19JHSRjWIqYu2uEyAmur0Yn-oydKXE1AV0MyF6ylsdrI_ZeI08iK9iA7K5Y0fI5CVCpeFsmS3jGq-kvo2_jUoj3_y66QzYS40BC7eyS9eZu4fdi7tXY_eRTvwBPhx2v |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1V7YFe-EYstOAD4kRWScaO4yOilC3bjdDSqnuzbMe-FLKom5Vafj22kyxdxAEQ1yRjJZMZ-431_AbglTOp4s7USamYSahFlSjmisRoRlWBpuBRp2BWFZNz-nHBFjswG87CdPoQmw23kBlxvg4JHjakt7OcsyxhZY7xwEnc5ETMxh5S7lGPPEItdjT_qSaFedmpSfkimnOkvQbpQOz5_Vhb69VecP31QF0MPEq18q50XQ-MbXwbF6jje9AMn9bxUi7H61aPzfdfVB__27ffh7s9lCVvu9h7ADu2eQj7Ab124s-PoJov9XrVkllsU70iHiATDzjJoIRClo74CWr51ZKjIODb99564y_a7rTnDVFNTT4Fnml78xjOj9-fvZskfQOHxCDzkxezlpWlo4UWaS2sRVr4CaMWPEjOaCcykzpf_olUC021L0U5Kl9hlZlRTtlU4RPYbZaNfQqE1qzOXZkqhxnNXa64rR1NUeVoKCKOQAy_SZpe3Tw02fgib1U53mUyuCz03kxl7zJ5PQLc2H7rND7-yOp1jIaNibq6DCw5zuRF9UFO6VTwiwXKbASHMVxujx3o9zJIJdKMjuBgK4w2z5WIhfC3yxgKf_Fq8qT6PM85f_bvpi_hzuRsdipPT6rpc9iPAgSRxHMAu-3V2h56KNbqFzHBfgBEFCHO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqkCouLfShbsvDh6qnZpVk7Ng-ImCBbonQUsTeLNuxL5RdxGYl4NdjO8nCVhxo1WuSseLxjP2NNfMNQl-dSRVzpkq4oiYhFlSiqCsSoylRBZiCRZ6Ck7I4Oic_xnTclkeHWpiGH2Jx4RY8I-7XwcGvK7fs5IxmCeU5xHqTeMcJkPU9olwlhYcWASKNHsmkIOcNmZSPoRkD0lKQdnk9z4-1dFytBs3fdpmLIY1SzbwmXdMCYxnexvNp8BZddTNr0lIu-_Na9839H6SP_2vq6-hNC2TxbmN5G-iVnbxDawG7NtTP71E5mur5rMYnsUn1DHt4jD3cxB0PCp467Len6ZXF-4G-t-289d0_tE2t5x1WkwqfhizT-u4DOh8c_No7Str2DYkB6rcuai3l3JFCi7QS1oJfFMIrwQLhjHYiM6nzwZ9ItdBE-0CUgfLxFc-McsqmCj6ilcl0Yj8hTCpa5Y6nykFGcpcrZitHUlA5GAIAPSS6VZKm5TYPLTZ-yycxjleZDCoLnTdT2apM3vYQLGSvG4aPF0l9i8awEFE3lyFHjlF5UR7KIRkKdjEGmfXQVrSWp2OH5HsZiBJJRnpoc8mKFt9xgEL41zxawl_8mjwuz0Y5Y5__XXQHvT7dH8ifx-XwC1qL7AMxg2cTrdQ3c7vlcVitt6N7PQCsfCB9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Methods+for+the+Analysis+of+Income+Distribution%2C+Inequality+and+Poverty&rft.jtitle=International+statistical+review&rft.au=Victoria%E2%80%90Feser%2C+Maria%E2%80%90Pia&rft.date=2000-12-01&rft.issn=0306-7734&rft.eissn=1751-5823&rft.volume=68&rft.issue=3&rft.spage=277&rft.epage=293&rft_id=info:doi/10.1111%2Fj.1751-5823.2000.tb00331.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1751_5823_2000_tb00331_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-7734&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-7734&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-7734&client=summon |