Robust Methods for the Analysis of Income Distribution, Inequality and Poverty

Income distribution embeds a large field of research subjects in economics. It is important to study how incomes are distributed among the members of a population in order for example to determine tax policies for redistribution to decrease inequality, or to implement social policies to reduce pover...

Full description

Saved in:
Bibliographic Details
Published inInternational statistical review Vol. 68; no. 3; pp. 277 - 293
Main Author Victoria-Feser, Maria-Pia
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.12.2000
International Statistical Institute and Instituto Nacional de Estadistica Geografia e Informatica
Blackwell
Subjects
Online AccessGet full text
ISSN0306-7734
1751-5823
DOI10.1111/j.1751-5823.2000.tb00331.x

Cover

Abstract Income distribution embeds a large field of research subjects in economics. It is important to study how incomes are distributed among the members of a population in order for example to determine tax policies for redistribution to decrease inequality, or to implement social policies to reduce poverty. The available data come mostly from surveys (and not censuses as it is often believed) and are often subject to long debates about their reliability because the sources of errors are numerous. Moreover the forms in which the data are available is not always as one would expect, i.e. complete and continuous (micro data) but one also can only have data in a grouped form (in income classes) and/or truncated data where a portion of the original data has been omitted from the sample or simply not recorded. Because of these data features, it is important to complement classical statistical procedures with robust ones. In this paper such methods are presented, especially for model selection, model fitting with several types of data, inequality and poverty analysis and ordering tools. The approach is based on the Influence Function (IF) developed by Hampel (1974) and further developed by Hampel, Ronchetti, Rousseeuw & Stahel (1986). It is also shown through the analysis of real UK and Tunisian data, that robust techniques can give another picture of income distribution, inequality or poverty when compared to classical ones. /// La distribution des revenus comporte une importante quantité de domaines de recherche en économie. Il est important de pouvoir étudier comment les revenus sont répartis au sein des membres d'une population pour pouvoir par exemple définir une politique de taxation et de redistribution afin de diminuer l'inégalité, ou implémenter des actions sociales pour diminuer la pauvreté. Les données à disposition proviennent essentiellement d'enquêtes (et non pas de rencensemment comme on pourrait le croire) et leur fiabilité soulève de grands débats car les sources d'erreur sont nombreuses. En plus, les données peuvent ne pas se présenter sous la forme habituelle de données continues et complètes, mais sous forme groupée (revenus par classe) et/ou sous forme censurée à savoir qu'une partie des revenus a été enlevée de l'échantillon ou simplement non enregistrée. A cause de la particularité des données, il est important de compléter les analyses statistiques classiques au moyen d'analyses robustes. Dans cet articles de telles méthodes sont présentées, spécialement pour la sélection de modèle, l'estimation de modèle avec différents types de données, l'analyse de l'inégalité et de la pauvreté, et pour les outils de comparaison de distributions. L'approache est basée sur la fonction d'influence (IF) développée par Hampel (1974) et ensuite par Hampel, Ronchetti, Rousseeuw & Stahel (1986). On montre aussi à travers l'analyse de données réelles Britanniques et Tunisiennes que les procédures robustes peuvent donner une autre représentation de la distribution des revenues, de l'inégalité et de la pauvreté lorsqu'elles sont comparées à des procédures classiques.
AbstractList Income distribution embeds a large field of research subjects in economics. It is important to study how incomes are distributed among the members of a population in order for example to determine tax policies for redistribution to decrease inequality, or to implement social policies to reduce poverty. The available data come mostly from surveys (and not censuses as it is often believed) and are often subject to long debates about their reliability because the sources of errors are numerous. Moreover the forms in which the data are available is not always as one would expect, i.e. complete and continuous (micro data) but one also can only have data in a grouped form (in income classes) and/or truncated data where a portion of the original data has been omitted from the sample or simply not recorded. Because of these data features, it is important to complement classical statistical procedures with robust ones. In this paper such methods are presented, especially for model selection, model fitting with several types of data, inequality and poverty analysis and ordering tools. The approach is based on the Influence Function (IF) developed by Hampel (1974) and further developed by Hampel, Ronchetti, Rousseeuw & Stahel (1986). It is also shown through the analysis of real UK and Tunisian data, that robust techniques can give another picture of income distribution, inequality or poverty when compared to classical ones. /// La distribution des revenus comporte une importante quantité de domaines de recherche en économie. Il est important de pouvoir étudier comment les revenus sont répartis au sein des membres d'une population pour pouvoir par exemple définir une politique de taxation et de redistribution afin de diminuer l'inégalité, ou implémenter des actions sociales pour diminuer la pauvreté. Les données à disposition proviennent essentiellement d'enquêtes (et non pas de rencensemment comme on pourrait le croire) et leur fiabilité soulève de grands débats car les sources d'erreur sont nombreuses. En plus, les données peuvent ne pas se présenter sous la forme habituelle de données continues et complètes, mais sous forme groupée (revenus par classe) et/ou sous forme censurée à savoir qu'une partie des revenus a été enlevée de l'échantillon ou simplement non enregistrée. A cause de la particularité des données, il est important de compléter les analyses statistiques classiques au moyen d'analyses robustes. Dans cet articles de telles méthodes sont présentées, spécialement pour la sélection de modèle, l'estimation de modèle avec différents types de données, l'analyse de l'inégalité et de la pauvreté, et pour les outils de comparaison de distributions. L'approache est basée sur la fonction d'influence (IF) développée par Hampel (1974) et ensuite par Hampel, Ronchetti, Rousseeuw & Stahel (1986). On montre aussi à travers l'analyse de données réelles Britanniques et Tunisiennes que les procédures robustes peuvent donner une autre représentation de la distribution des revenues, de l'inégalité et de la pauvreté lorsqu'elles sont comparées à des procédures classiques.
Income distribution embeds a large field of research subjects in economics. It is important to study how incomes are distributed among the members of a population in order for example to determine tax policies for redistribution to decrease inequality, or to implement social policies to reduce poverty. The available data come mostly from surveys (and not censuses as it is often believed) and often subject to long debates about their reliability because the sources of errors are numerous. Moreover the forms in which the data are availabe is not always as one would expect, i.e. complete and continuous (microdata) but one also can only have data in a grouped form (in income classes) and/or truncated data where a portion of the original data has been omitted from the sample or simply not recorded. Because of these data features, it is important to complement classical statistical procedures with robust ones. In tis paper such methods are presented, especially for model selection, model fitting with several types of data, inequality and poverty analysis and ordering tools. The approach is based on the Influence Function (IF) developed by Hampel (1974) and further developed by Hampel, Ronchetti, Rousseeuw & Stahel (1986). It is also shown through the analysis of real UK and Tunisian data, that robust techniques can give another picture of income distribution, inequality or poverty when compared to classical ones.
Summary Income distribution embeds a large field of research subjects in economics. It is important to study how incomes are distributed among the members of a population in order for example to determine tax policies for redistribution to decrease inequality, or to implement social policies to reduce poverty. The available data come mostly from surveys (and not censuses as it is often believed) and often subject to long debates about their reliability because the sources of errors are numerous. Moreover the forms in which the data are availabe is not always as one would expect, i.e. complete and continuous (microdata) but one also can only have data in a grouped form (in income classes) and/or truncated data where a portion of the original data has been omitted from the sample or simply not recorded. Because of these data features, it is important to complement classical statistical procedures with robust ones. In tis paper such methods are presented, especially for model selection, model fitting with several types of data, inequality and poverty analysis and ordering tools. The approach is based on the Influence Function (IF) developed by Hampel (1974) and further developed by Hampel, Ronchetti, Rousseeuw & Stahel (1986). It is also shown through the analysis of real UK and Tunisian data, that robust techniques can give another picture of income distribution, inequality or poverty when compared to classical ones.
Author Victoria-Feser, Maria-Pia
Author_xml – sequence: 1
  givenname: Maria-Pia
  surname: Victoria-Feser
  fullname: Victoria-Feser, Maria-Pia
  organization: University of Geneva, CH-1211 Geneva 4, Switzerland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=833694$$DView record in Pascal Francis
BookMark eNqVkVFPFDEUhRuDCcvqf2jUR2do53amrS9KUHADLAQ0-NZ0ZtvQdZhi25Wdf89MBonxCftyk_Y75_aeu4d2Ot8ZhN5QktPh7K9zykualaKAvCCE5KkmBIDm2xdo9vS0g2YESJVxDmwX7cW4HlAoBJuh5aWvNzHhM5Nu_Cpi6wNONwYfdLrto4vYW7zoGn9r8GcXU3D1JjnfvR8uza-Nbl3qse5W-ML_NiH1r9BLq9toXj_WOfp-9OXb4dfs9Px4cXhwmjVQCp6VxpRCWFbVkqykMcAqwsRKciKrsraSNsQWTEpSy5rVBaUctKgKQRtttSEa5ujt5HunY6NbG3TXuKjugrvVoVcCoJJsoD5NVBN8jMFY1bikx_-noF2rKFFjimqtxqjUGJUaU1SPKartYPHhH4s_PZ4l_jiJ711r-v9QqsXy6rIY1jVH7yaHdUw-_O1QAOGKMgKMjoNmEzasyGyfMB1-qooDL9X18lidsBPJr3-AovAAA7qoZg
CODEN ISTRDP
CitedBy_id crossref_primary_10_1111_joes_12114
crossref_primary_10_1068_b34100
crossref_primary_10_1080_00036846_2010_491459
crossref_primary_10_2139_ssrn_2164745
crossref_primary_10_1080_03610918_2013_788707
crossref_primary_10_2139_ssrn_3025469
crossref_primary_10_1007_s10888_007_9055_y
crossref_primary_10_3390_econometrics6020022
crossref_primary_10_1162_REST_a_00644
crossref_primary_10_1111_roiw_12031
crossref_primary_10_1080_07474938_2019_1630077
crossref_primary_10_1177_1536867X241297918
crossref_primary_10_1080_02331888_2015_1135924
crossref_primary_10_1080_00036846_2013_778952
crossref_primary_10_1111_joes_12435
Cites_doi 10.1111/j.2517-6161.1970.tb00845.x
10.1016/0022-0531(76)90068-5
10.2307/3315587
10.2307/2171925
10.2307/1912718
10.1111/j.1475-6803.1990.tb00541.x
10.1016/0771-050X(81)90013-9
10.1080/01621459.1974.10482962
10.1111/1467-9868.00093
10.1080/01621459.1997.10473631
10.1002/0471725277
10.1002/0471725250
10.2307/2223525
10.2307/1391885
10.2307/1913475
10.1093/wber/8.1.75
10.2307/1912053
10.1016/0014-2921(95)00048-8
10.1007/BF01205775
10.2307/1914015
10.1111/j.2517-6161.1977.tb01600.x
10.1016/0014-2921(80)90051-3
10.1080/01621459.1994.10476822
10.1111/j.2517-6161.1962.tb00468.x
10.1214/aoms/1177703732
10.1016/0022-0531(76)90037-5
10.1111/j.2517-6161.1984.tb01318.x
ContentType Journal Article
Copyright Copyright 2000 International Statistical Institute
2001 INIST-CNRS
Copyright_xml – notice: Copyright 2000 International Statistical Institute
– notice: 2001 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
DOI 10.1111/j.1751-5823.2000.tb00331.x
DatabaseName Istex
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Applied Sciences
Mathematics
EISSN 1751-5823
EndPage 293
ExternalDocumentID 833694
10_1111_j_1751_5823_2000_tb00331_x
INSR277
1403414
ark_67375_WNG_K4K97WX3_1
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
29J
31~
33P
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5RE
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AABCJ
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWIL
AAXRX
AAYCA
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABEML
ABFAN
ABIVO
ABJNI
ABLJU
ABPVW
ABQDR
ABXSQ
ABYWD
ACAHQ
ACBWZ
ACCZN
ACDIW
ACGFO
ACGFS
ACHJO
ACIWK
ACMTB
ACNCT
ACPOU
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADODI
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AELLO
AENEX
AEUPB
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFVYC
AFWVQ
AFZJQ
AGHNM
AGLNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AIHAF
AITYG
AIURR
AJXKR
AKBRZ
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DU5
EBS
ECEWR
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GIFXF
GODZA
H.T
H.X
HF~
HGD
HGLYW
HQ6
HVGLF
HZ~
H~9
IPSME
IX1
J0M
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RBU
RNS
ROL
RPE
RX1
SA0
SUPJJ
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
YYP
ZZTAW
~02
~IA
~WT
AAHHS
AAKYL
ACCFJ
AEEZP
AELPN
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
BHOJU
JSODD
WRC
AAYXX
CITATION
IQODW
ID FETCH-LOGICAL-c3587-5ee588f46b90d9ee346048d970965bf91c0f24990b9b4b21173a86281cafae0a3
IEDL.DBID DR2
ISSN 0306-7734
IngestDate Mon Jul 21 09:12:12 EDT 2025
Thu Apr 24 22:51:27 EDT 2025
Tue Jul 01 00:48:41 EDT 2025
Wed Jan 22 16:46:51 EST 2025
Thu Jul 03 21:14:02 EDT 2025
Tue Sep 09 05:32:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Statistical analysis
Mixture distribution
Censored sample
Life test
Statistical method
Income distribution
Stochastic dominance
Trade
Survey
Influence function
Mathematical economy
Economic model
Analysis method
Data forms
Econometrics
Reliability
Inequality
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3587-5ee588f46b90d9ee346048d970965bf91c0f24990b9b4b21173a86281cafae0a3
Notes ArticleID:INSR277
istex:A5CE099074F4FBFAB2427B64F30FD10FB759A3D1
ark:/67375/WNG-K4K97WX3-1
PageCount 17
ParticipantIDs pascalfrancis_primary_833694
crossref_citationtrail_10_1111_j_1751_5823_2000_tb00331_x
crossref_primary_10_1111_j_1751_5823_2000_tb00331_x
wiley_primary_10_1111_j_1751_5823_2000_tb00331_x_INSR277
jstor_primary_10_2307_1403414
istex_primary_ark_67375_WNG_K4K97WX3_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2000
PublicationDateYYYYMMDD 2000-12-01
PublicationDate_xml – month: 12
  year: 2000
  text: December 2000
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Malden, MA
PublicationTitle International statistical review
PublicationYear 2000
Publisher Blackwell Publishing Ltd
International Statistical Institute and Instituto Nacional de Estadistica Geografia e Informatica
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: International Statistical Institute and Instituto Nacional de Estadistica Geografia e Informatica
– name: Blackwell
References Theil, H. (1967). Economics and Information Theory. Amsterdam : North-Holland.
Victoria-Feser, M.-P. & Ronchetti, E. (1997). Robust estimation for grouped data. Journal of the American Statistical Association, 92, 333-340.
Cressie, N.A.C. & Read, T.R.C. (1984). Multinomial goodness-of-fit test. Journal of the Royal Statistical Society, Serie B, 46, 440-464.
Huber, P.J. (1981). Robust Statistics. New York : John Wiley.
Little, R.J.A. & Rubin, D.B. (1987). Statistical Analysis with Missing Data. New York : Wiley.
Foster, J., Greer, J. & Thorbeke, E. (1984). A class of decomposable poverty measures. Econometrica, 52, 761-765.
Sen, A.K. (1976). Poverty: An ordinal approach to measurement. Econometrica, 44, 219-231.
Cowell, F.A. & Victoria-Feser, M.-P. (1996a). Poverty measurement with contaminated data: A robust approach. European Economic Revue, 40, 1761-1771.
Huber, P.J. (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics, 35, 73-101.
Van Praag, B., Hagenaars, A. & Van Eck, W. (1983). The influence of classification and observation erors on the measurement of income inequality. Econometrica, 51, 1093-1108.
Department of Social Security (1992). Households below Average Income, 1979-1988/89. London : HMSO.
Gini, C. (1955). Memorie di Metodologia Statistica. Roma : Pizetti e Salvemini Libreria Eredi Virgilio Veschi.
Groves, R.M. (1989). Survey Errors and Survey Costs. New York : John Wiley.
Cowell, F.A. (1980). Generalized entropy and the measurement of distributional change. European Economic Review, 13, 147-159.
Cowell, F.A. & Victoria-Feser, M.-P. (1996b). Robustness properties of inequality measures. Econometrica, 64, 77-101.
Ben Horim, M. (1990). Stochastic dominance and truncates sample data. Journal of Financial Research, 13, 105-116.
Victoria-Feser, M.-P. (1997). Robust model choice test for non-nested hypothesis. Journal of the Royal Statistical Society, Series B, 59, 715-727.
Dalton, H. (1920). The measurement of the inequality of incomes. Economic Journal, 30, 348-361.
Jenkins, S.P. (1997). Trends in real income in Britain: A microeconomic analysis. Empirical Economics, 22, 483-500.
Hampel, F.R. (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69, 383-393.
Kolm, S.C. (1976b). Unequal inequalities. Journal of Economic Theory, 13, 82-111. Part II.
Atkinson, A.C. (1970). A method for discriminating between models. Journal of the Royal Statistical Society, Serie B, 32, 323-353.
Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. & Stahel, W.A. (1986). Robust Statistics: The Approach Based on Influence Functions. New York : John Wiley.
Kolm, S.C. (1976a). Unequal inequalities. Journal of Economic Theory, 12, 416-442. Part I.
Victoria-Feser, M.-P. & Ronchetti, E. (1994). Robust methods for personal income distribution models. The Canadian Journal of Statistics, 22, 247-258.
Cox, D.R. (1962). Further results on tests of separate families of hypotheses. Journal of the Royal Statistical Society, Serie B, 24, 406-424.
Fichtenbaum, R. & Shahidi, H. (1988). Truncation bias and the measurement of income inequality. Journal of Business and Economics Statistics, 6, 335-337.
Ravallion, M. (1993). Poverty comparison, Volume 56 of Fundamentals of Pure and Applies Economics. Chur , Switzerland : Harwood Academic Press.
Dempster, A.P., Laird, M.N. & Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Serie B, 39, 1-22.
McDonald, J.B. & Ransom, M.R. (1979). Functional forms, estimation techniques and the distribution of income. Econometrica, 47, 1513-1525.
Ravallion, M. & Bidani, B. (1994). How robust is a poverty profile The World Bank Economic Review, 8, 75-102.
Rousseeuw, P.J. & Ronchetti, E. (1981). Influence curves for general statistics. Journal of Computational and Applied Mathematics, 7, 161-166.
Heritier, S. & Ronchetti, E. (1994). Robust bounded-influence test in general parametric models. Journal of the American Statististical Asspciation, 89(427), 897-904.
Dagum, C. (1980). Generating systems and properties of income distribution models. Metron, 38, (3-4), 3-26.
1990; 13
1976; 44
1997; 22
1984; 46
1998
1910
1994; 89
1981; 7
1994; 22
1970; 32
1996
1983; 51
1994
1993
1992
1979
1955
1980; 38
1994; 8
1984; 52
1974; 69
1996b; 64
1920; 30
1979; 47
1997; 92
1990
1996a; 40
1977; 39
1976a; 12
1980; 13
1988; 6
1997; 59
1987
1986
1996c
2000b
2000a
1961
1962; 24
1982
1981
1964; 35
1976b; 13
1968
1989
1967
Heritier S. (e_1_2_1_27_1) 1994; 89
Ravallion M. (e_1_2_1_37_1) 1993
Dagum C. (e_1_2_1_15_1) 1980; 38
e_1_2_1_42_1
Atkinson A.C. (e_1_2_1_2_1) 1970; 32
e_1_2_1_20_1
Little R.J.A. (e_1_2_1_33_1) 1987
e_1_2_1_41_1
Cox D.R. (e_1_2_1_12_1) 1961
e_1_2_1_40_1
Cressie N.A.C. (e_1_2_1_14_1) 1984; 46
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_24_1
e_1_2_1_45_1
Department of Social Security (e_1_2_1_18_1) 1992
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_28_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_47_1
e_1_2_1_29_1
Cox D.R. (e_1_2_1_13_1) 1962; 24
e_1_2_1_7_1
e_1_2_1_31_1
Theil H. (e_1_2_1_43_1) 1967
e_1_2_1_8_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_6_1
Hampel F.R. (e_1_2_1_26_1) 1986
e_1_2_1_3_1
e_1_2_1_35_1
e_1_2_1_4_1
e_1_2_1_34_1
e_1_2_1_10_1
e_1_2_1_11_1
Dempster A.P. (e_1_2_1_17_1) 1977; 39
e_1_2_1_32_1
e_1_2_1_16_1
e_1_2_1_39_1
Gini C. (e_1_2_1_22_1) 1955
e_1_2_1_38_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – reference: Atkinson, A.C. (1970). A method for discriminating between models. Journal of the Royal Statistical Society, Serie B, 32, 323-353.
– reference: Hampel, F.R. (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69, 383-393.
– reference: Rousseeuw, P.J. & Ronchetti, E. (1981). Influence curves for general statistics. Journal of Computational and Applied Mathematics, 7, 161-166.
– reference: Theil, H. (1967). Economics and Information Theory. Amsterdam : North-Holland.
– reference: Victoria-Feser, M.-P. (1997). Robust model choice test for non-nested hypothesis. Journal of the Royal Statistical Society, Series B, 59, 715-727.
– reference: Dagum, C. (1980). Generating systems and properties of income distribution models. Metron, 38, (3-4), 3-26.
– reference: McDonald, J.B. & Ransom, M.R. (1979). Functional forms, estimation techniques and the distribution of income. Econometrica, 47, 1513-1525.
– reference: Little, R.J.A. & Rubin, D.B. (1987). Statistical Analysis with Missing Data. New York : Wiley.
– reference: Fichtenbaum, R. & Shahidi, H. (1988). Truncation bias and the measurement of income inequality. Journal of Business and Economics Statistics, 6, 335-337.
– reference: Heritier, S. & Ronchetti, E. (1994). Robust bounded-influence test in general parametric models. Journal of the American Statististical Asspciation, 89(427), 897-904.
– reference: Groves, R.M. (1989). Survey Errors and Survey Costs. New York : John Wiley.
– reference: Ben Horim, M. (1990). Stochastic dominance and truncates sample data. Journal of Financial Research, 13, 105-116.
– reference: Gini, C. (1955). Memorie di Metodologia Statistica. Roma : Pizetti e Salvemini Libreria Eredi Virgilio Veschi.
– reference: Foster, J., Greer, J. & Thorbeke, E. (1984). A class of decomposable poverty measures. Econometrica, 52, 761-765.
– reference: Kolm, S.C. (1976b). Unequal inequalities. Journal of Economic Theory, 13, 82-111. Part II.
– reference: Van Praag, B., Hagenaars, A. & Van Eck, W. (1983). The influence of classification and observation erors on the measurement of income inequality. Econometrica, 51, 1093-1108.
– reference: Ravallion, M. & Bidani, B. (1994). How robust is a poverty profile The World Bank Economic Review, 8, 75-102.
– reference: Cox, D.R. (1962). Further results on tests of separate families of hypotheses. Journal of the Royal Statistical Society, Serie B, 24, 406-424.
– reference: Cowell, F.A. & Victoria-Feser, M.-P. (1996b). Robustness properties of inequality measures. Econometrica, 64, 77-101.
– reference: Ravallion, M. (1993). Poverty comparison, Volume 56 of Fundamentals of Pure and Applies Economics. Chur , Switzerland : Harwood Academic Press.
– reference: Kolm, S.C. (1976a). Unequal inequalities. Journal of Economic Theory, 12, 416-442. Part I.
– reference: Huber, P.J. (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics, 35, 73-101.
– reference: Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. & Stahel, W.A. (1986). Robust Statistics: The Approach Based on Influence Functions. New York : John Wiley.
– reference: Cowell, F.A. & Victoria-Feser, M.-P. (1996a). Poverty measurement with contaminated data: A robust approach. European Economic Revue, 40, 1761-1771.
– reference: Huber, P.J. (1981). Robust Statistics. New York : John Wiley.
– reference: Cowell, F.A. (1980). Generalized entropy and the measurement of distributional change. European Economic Review, 13, 147-159.
– reference: Dempster, A.P., Laird, M.N. & Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Serie B, 39, 1-22.
– reference: Victoria-Feser, M.-P. & Ronchetti, E. (1994). Robust methods for personal income distribution models. The Canadian Journal of Statistics, 22, 247-258.
– reference: Dalton, H. (1920). The measurement of the inequality of incomes. Economic Journal, 30, 348-361.
– reference: Department of Social Security (1992). Households below Average Income, 1979-1988/89. London : HMSO.
– reference: Jenkins, S.P. (1997). Trends in real income in Britain: A microeconomic analysis. Empirical Economics, 22, 483-500.
– reference: Victoria-Feser, M.-P. & Ronchetti, E. (1997). Robust estimation for grouped data. Journal of the American Statistical Association, 92, 333-340.
– reference: Sen, A.K. (1976). Poverty: An ordinal approach to measurement. Econometrica, 44, 219-231.
– reference: Cressie, N.A.C. & Read, T.R.C. (1984). Multinomial goodness-of-fit test. Journal of the Royal Statistical Society, Serie B, 46, 440-464.
– volume: 35
  start-page: 73
  year: 1964
  end-page: 101
  article-title: Robust estimation of a location parameter
  publication-title: Annals of Mathematical Statistics
– year: 1981
– volume: 32
  start-page: 323
  year: 1970
  end-page: 353
  article-title: A method for discriminating between models
  publication-title: Journal of the Royal Statistical Society, Serie B
– volume: 52
  start-page: 761
  year: 1984
  end-page: 765
  article-title: A class of decomposable poverty measures
  publication-title: Econometrica
– volume: 59
  start-page: 715
  year: 1997
  end-page: 727
  article-title: Robust model choice test for non‐nested hypothesis
  publication-title: Journal of the Royal Statistical Society
– year: 1968
– year: 1987
– year: 1989
– volume: 22
  start-page: 483
  year: 1997
  end-page: 500
  article-title: Trends in real income in Britain: A microeconomic analysis
  publication-title: Empirical Economics
– year: 1996
– volume: 30
  start-page: 348
  year: 1920
  end-page: 361
  article-title: The measurement of the inequality of incomes
  publication-title: Economic Journal
– volume: 6
  start-page: 335
  year: 1988
  end-page: 337
  article-title: Truncation bias and the measurement of income inequality
  publication-title: Journal of Business and Economics Statistics
– volume: 12
  start-page: 416
  year: 1976a
  end-page: 442
  article-title: Unequal inequalities
  publication-title: Journal of Economic Theory
– start-page: 374
  year: 1990
  end-page: 379
– volume: 46
  start-page: 440
  year: 1984
  end-page: 464
  article-title: Multinomial goodness‐of‐fit test
  publication-title: Journal of the Royal Statistical Society, Serie B
– volume: 13
  start-page: 105
  year: 1990
  end-page: 116
  article-title: Stochastic dominance and truncates sample data
  publication-title: Journal of Financial Research
– year: 1979
– volume: 89
  start-page: 897
  issue: 427
  year: 1994
  end-page: 904
  article-title: Robust bounded‐influence test in general parametric models
  publication-title: Journal of the American Statististical Asspciation
– year: 1992
– volume: 92
  start-page: 333
  year: 1997
  end-page: 340
  article-title: Robust estimation for grouped data
  publication-title: Journal of the American Statistical Association
– year: 1994
– volume: 38
  start-page: 3
  issue: 3–4
  year: 1980
  end-page: 26
  article-title: Generating systems and properties of income distribution models
  publication-title: Metron
– volume: 39
  start-page: 1
  year: 1977
  end-page: 22
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society, Serie B
– year: 2000b
– volume: 13
  start-page: 82
  year: 1976b
  end-page: 111
  article-title: Unequal inequalities
  publication-title: Journal of Economic Theory
– year: 1998
– start-page: 3
  year: 1910
  end-page: 120
– volume: 8
  start-page: 75
  year: 1994
  end-page: 102
  article-title: How robust is a poverty profile
  publication-title: The World Bank Economic Review
– volume: 24
  start-page: 406
  year: 1962
  end-page: 424
  article-title: Further results on tests of separate families of hypotheses
  publication-title: Journal of the Royal Statistical Society, Serie B
– volume: 51
  start-page: 1093
  year: 1983
  end-page: 1108
  article-title: The influence of classification and observation erors on the measurement of income inequality
  publication-title: Econometrica
– year: 1986
– volume: 47
  start-page: 1513
  year: 1979
  end-page: 1525
  article-title: Functional forms, estimation techniques and the distribution of income
  publication-title: Econometrica
– year: 1996c
– year: 1982
– volume: 69
  start-page: 383
  year: 1974
  end-page: 393
  article-title: The influence curve and its role in robust estimation
  publication-title: Journal of the American Statistical Association
– year: 1967
– volume: 22
  start-page: 247
  year: 1994
  end-page: 258
  article-title: Robust methods for personal income distribution models
  publication-title: The Canadian Journal of Statistics
– start-page: 105
  year: 1961
  end-page: 123
– volume: 13
  start-page: 147
  year: 1980
  end-page: 159
  article-title: Generalized entropy and the measurement of distributional change
  publication-title: European Economic Review
– volume: 7
  start-page: 161
  year: 1981
  end-page: 166
  article-title: Influence curves for general statistics
  publication-title: Journal of Computational and Applied Mathematics
– volume: 64
  start-page: 77
  year: 1996b
  end-page: 101
  article-title: Robustness properties of inequality measures
  publication-title: Econometrica
– year: 1955
– year: 1993
– volume: 44
  start-page: 219
  year: 1976
  end-page: 231
  article-title: Poverty: An ordinal approach to measurement
  publication-title: Econometrica
– year: 2000a
– volume: 40
  start-page: 1761
  year: 1996a
  end-page: 1771
  article-title: Poverty measurement with contaminated data: A robust approach
  publication-title: European Economic Revue
– ident: e_1_2_1_35_1
– volume: 32
  start-page: 323
  year: 1970
  ident: e_1_2_1_2_1
  article-title: A method for discriminating between models
  publication-title: Journal of the Royal Statistical Society, Serie B
  doi: 10.1111/j.2517-6161.1970.tb00845.x
– ident: e_1_2_1_21_1
– ident: e_1_2_1_32_1
  doi: 10.1016/0022-0531(76)90068-5
– ident: e_1_2_1_40_1
– ident: e_1_2_1_24_1
– ident: e_1_2_1_47_1
  doi: 10.2307/3315587
– start-page: 105
  volume-title: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability 1
  year: 1961
  ident: e_1_2_1_12_1
– volume-title: Robust Statistics: The Approach Based on Influence Functions
  year: 1986
  ident: e_1_2_1_26_1
– ident: e_1_2_1_8_1
  doi: 10.2307/2171925
– volume-title: Poverty comparison, Volume 56 of Fundamentals of Pure and Applies Economics
  year: 1993
  ident: e_1_2_1_37_1
– ident: e_1_2_1_42_1
  doi: 10.2307/1912718
– ident: e_1_2_1_4_1
  doi: 10.1111/j.1475-6803.1990.tb00541.x
– volume-title: Economics and Information Theory
  year: 1967
  ident: e_1_2_1_43_1
– ident: e_1_2_1_41_1
  doi: 10.1016/0771-050X(81)90013-9
– ident: e_1_2_1_25_1
  doi: 10.1080/01621459.1974.10482962
– ident: e_1_2_1_46_1
  doi: 10.1111/1467-9868.00093
– volume: 38
  start-page: 3
  issue: 3
  year: 1980
  ident: e_1_2_1_15_1
  article-title: Generating systems and properties of income distribution models
  publication-title: Metron
– ident: e_1_2_1_48_1
  doi: 10.1080/01621459.1997.10473631
– ident: e_1_2_1_23_1
  doi: 10.1002/0471725277
– ident: e_1_2_1_29_1
  doi: 10.1002/0471725250
– ident: e_1_2_1_16_1
  doi: 10.2307/2223525
– ident: e_1_2_1_19_1
  doi: 10.2307/1391885
– ident: e_1_2_1_20_1
  doi: 10.2307/1913475
– ident: e_1_2_1_38_1
  doi: 10.1093/wber/8.1.75
– ident: e_1_2_1_44_1
  doi: 10.2307/1912053
– ident: e_1_2_1_6_1
– ident: e_1_2_1_7_1
  doi: 10.1016/0014-2921(95)00048-8
– ident: e_1_2_1_3_1
– ident: e_1_2_1_30_1
  doi: 10.1007/BF01205775
– ident: e_1_2_1_45_1
– volume-title: Households below Average Income, 1979–1988/89
  year: 1992
  ident: e_1_2_1_18_1
– ident: e_1_2_1_11_1
– ident: e_1_2_1_34_1
  doi: 10.2307/1914015
– volume-title: Memorie di Metodologia Statistica
  year: 1955
  ident: e_1_2_1_22_1
– volume: 39
  start-page: 1
  year: 1977
  ident: e_1_2_1_17_1
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society, Serie B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_1_5_1
  doi: 10.1016/0014-2921(80)90051-3
– volume: 89
  start-page: 897
  issue: 427
  year: 1994
  ident: e_1_2_1_27_1
  article-title: Robust bounded‐influence test in general parametric models
  publication-title: Journal of the American Statististical Asspciation
  doi: 10.1080/01621459.1994.10476822
– ident: e_1_2_1_39_1
– ident: e_1_2_1_9_1
– ident: e_1_2_1_10_1
– volume: 24
  start-page: 406
  year: 1962
  ident: e_1_2_1_13_1
  article-title: Further results on tests of separate families of hypotheses
  publication-title: Journal of the Royal Statistical Society, Serie B
  doi: 10.1111/j.2517-6161.1962.tb00468.x
– ident: e_1_2_1_28_1
  doi: 10.1214/aoms/1177703732
– ident: e_1_2_1_31_1
  doi: 10.1016/0022-0531(76)90037-5
– ident: e_1_2_1_36_1
– volume: 46
  start-page: 440
  year: 1984
  ident: e_1_2_1_14_1
  article-title: Multinomial goodness‐of‐fit test
  publication-title: Journal of the Royal Statistical Society, Serie B
  doi: 10.1111/j.2517-6161.1984.tb01318.x
– volume-title: Statistical Analysis with Missing Data
  year: 1987
  ident: e_1_2_1_33_1
SSID ssj0003284
Score 1.6457577
Snippet Income distribution embeds a large field of research subjects in economics. It is important to study how incomes are distributed among the members of a...
Summary Income distribution embeds a large field of research subjects in economics. It is important to study how incomes are distributed among the members of a...
SourceID pascalfrancis
crossref
wiley
jstor
istex
SourceType Index Database
Enrichment Source
Publisher
StartPage 277
SubjectTerms Applications
Applied sciences
Censored data
Economic models
Estimators
Exact sciences and technology
Grouped data
Income distribution
Income estimates
Income inequality
Inequality
Influence function
Insurance, economics, finance
Lorenz curve
Mathematics
Maximum likelihood estimation
Model choice
Operational research and scientific management
Operational research. Management science
Parametric models
Poverty
Poverty line
Probability and statistics
Robust statistics
Sciences and techniques of general use
Statistics
Stochastic dominance
Title Robust Methods for the Analysis of Income Distribution, Inequality and Poverty
URI https://api.istex.fr/ark:/67375/WNG-K4K97WX3-1/fulltext.pdf
https://www.jstor.org/stable/1403414
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1751-5823.2000.tb00331.x
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqcukFCqVi6UM-oJ7IKsnYsX1E9AVVV9VC1b1ZtmNf2u6iblZq-fV4nGTpVhwo4ppkrGQyM56xvvmGkA_B5UYEV2fScJcxDyYzPFSZs5yZClwlEk_B-ag6vWRfJ3zStUdjL0zLD7E8cEPPSPEaHdzY-aqTC15kXJaQ-k3SGSdAMcSMsoAKifQPx7-5pKCULZdULKGFANYxkPawnj8vtbJbvUDF3_fARURRmnlUZGgnYKxmt2l7On5FbvsPa1Ep18NFY4fu5xPOx__15ZvkZZfH0k-t4b0ma376hmxg6toyP2-R0XhmF_OGnqcZ1XMas2Mas03a06DQWaAxOs1uPT1E9t5u8NbHeNG3rZ4P1ExreoEg0-bhLbk8Pvr--TTrpjdkDniMXNx7LmVglVV5rbwHVsVoUSuBfDM2qMLlIdZ-KrfKMhvrUAEmlleycCYYnxvYJuvT2dS_I5TVvC6DzE2AgpWhNMLXgeVgSnAMAAZE9X9Ju47aHCds3OhHJU5UmUaV4eDNXHcq0_cDAkvZHy3Bx19JHSRjWIqYu2uEyAmur0Yn-oydKXE1AV0MyF6ylsdrI_ZeI08iK9iA7K5Y0fI5CVCpeFsmS3jGq-kvo2_jUoj3_y66QzYS40BC7eyS9eZu4fdi7tXY_eRTvwBPhx2v
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1V7YFe-EYstOAD4kRWScaO4yOilC3bjdDSqnuzbMe-FLKom5Vafj22kyxdxAEQ1yRjJZMZ-431_AbglTOp4s7USamYSahFlSjmisRoRlWBpuBRp2BWFZNz-nHBFjswG87CdPoQmw23kBlxvg4JHjakt7OcsyxhZY7xwEnc5ETMxh5S7lGPPEItdjT_qSaFedmpSfkimnOkvQbpQOz5_Vhb69VecP31QF0MPEq18q50XQ-MbXwbF6jje9AMn9bxUi7H61aPzfdfVB__27ffh7s9lCVvu9h7ADu2eQj7Ab124s-PoJov9XrVkllsU70iHiATDzjJoIRClo74CWr51ZKjIODb99564y_a7rTnDVFNTT4Fnml78xjOj9-fvZskfQOHxCDzkxezlpWlo4UWaS2sRVr4CaMWPEjOaCcykzpf_olUC021L0U5Kl9hlZlRTtlU4RPYbZaNfQqE1qzOXZkqhxnNXa64rR1NUeVoKCKOQAy_SZpe3Tw02fgib1U53mUyuCz03kxl7zJ5PQLc2H7rND7-yOp1jIaNibq6DCw5zuRF9UFO6VTwiwXKbASHMVxujx3o9zJIJdKMjuBgK4w2z5WIhfC3yxgKf_Fq8qT6PM85f_bvpi_hzuRsdipPT6rpc9iPAgSRxHMAu-3V2h56KNbqFzHBfgBEFCHO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqkCouLfShbsvDh6qnZpVk7Ng-ImCBbonQUsTeLNuxL5RdxGYl4NdjO8nCVhxo1WuSseLxjP2NNfMNQl-dSRVzpkq4oiYhFlSiqCsSoylRBZiCRZ6Ck7I4Oic_xnTclkeHWpiGH2Jx4RY8I-7XwcGvK7fs5IxmCeU5xHqTeMcJkPU9olwlhYcWASKNHsmkIOcNmZSPoRkD0lKQdnk9z4-1dFytBs3fdpmLIY1SzbwmXdMCYxnexvNp8BZddTNr0lIu-_Na9839H6SP_2vq6-hNC2TxbmN5G-iVnbxDawG7NtTP71E5mur5rMYnsUn1DHt4jD3cxB0PCp467Len6ZXF-4G-t-289d0_tE2t5x1WkwqfhizT-u4DOh8c_No7Str2DYkB6rcuai3l3JFCi7QS1oJfFMIrwQLhjHYiM6nzwZ9ItdBE-0CUgfLxFc-McsqmCj6ilcl0Yj8hTCpa5Y6nykFGcpcrZitHUlA5GAIAPSS6VZKm5TYPLTZ-yycxjleZDCoLnTdT2apM3vYQLGSvG4aPF0l9i8awEFE3lyFHjlF5UR7KIRkKdjEGmfXQVrSWp2OH5HsZiBJJRnpoc8mKFt9xgEL41zxawl_8mjwuz0Y5Y5__XXQHvT7dH8ifx-XwC1qL7AMxg2cTrdQ3c7vlcVitt6N7PQCsfCB9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Methods+for+the+Analysis+of+Income+Distribution%2C+Inequality+and+Poverty&rft.jtitle=International+statistical+review&rft.au=Victoria%E2%80%90Feser%2C+Maria%E2%80%90Pia&rft.date=2000-12-01&rft.issn=0306-7734&rft.eissn=1751-5823&rft.volume=68&rft.issue=3&rft.spage=277&rft.epage=293&rft_id=info:doi/10.1111%2Fj.1751-5823.2000.tb00331.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1751_5823_2000_tb00331_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-7734&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-7734&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-7734&client=summon