Identifying resting‐state effective connectivity abnormalities in drug‐naïve major depressive disorder diagnosis via graph convolutional networks

Major depressive disorder (MDD) is a leading cause of disability; its symptoms interfere with social, occupational, interpersonal, and academic functioning. However, the diagnosis of MDD is still made by phenomenological approach. The advent of neuroimaging techniques allowed numerous studies to use...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 41; no. 17; pp. 4997 - 5014
Main Authors Jun, Eunji, Na, Kyoung‐Sae, Kang, Wooyoung, Lee, Jiyeon, Suk, Heung‐Il, Ham, Byung‐Joo
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Major depressive disorder (MDD) is a leading cause of disability; its symptoms interfere with social, occupational, interpersonal, and academic functioning. However, the diagnosis of MDD is still made by phenomenological approach. The advent of neuroimaging techniques allowed numerous studies to use resting‐state functional magnetic resonance imaging (rs‐fMRI) and estimate functional connectivity for brain‐disease identification. Recently, attempts have been made to investigate effective connectivity (EC) that represents causal relations among regions of interest. In the meantime, to identify meaningful phenotypes for clinical diagnosis, graph‐based approaches such as graph convolutional networks (GCNs) have been leveraged recently to explore complex pairwise similarities in imaging/nonimaging features among subjects. In this study, we validate the use of EC for MDD identification by estimating its measures via a group sparse representation along with a structured equation modeling approach in a whole‐brain data‐driven manner from rs‐fMRI. To distinguish drug‐naïve MDD patients from healthy controls, we utilize spectral GCNs based on a population graph to successfully integrate EC and nonimaging phenotypic information. Furthermore, we devise a novel sensitivity analysis method to investigate the discriminant connections for MDD identification in our trained GCNs. Our experimental results validated the effectiveness of our method in various scenarios, and we identified altered connectivities associated with the diagnosis of MDD. This study validated the use of effective connectivity (EC) for major depressive disorder (MDD) identification by estimating its measures via a group sparse representation along with a structured equation modeling approach in a whole‐brain data‐driven manner from resting‐state functional magnetic resonance imaging. To distinguish drug‐naive MDD patients from healthy controls, we utilize spectral graph convolutional networks (GCNs) based on a population graph to successfully integrate EC and nonimaging phenotypic information. Furthermore, we devise a novel sensitivity analysis method to investigate the discriminant connections for MDD identification in our trained GCNs.
AbstractList Abstract Major depressive disorder (MDD) is a leading cause of disability; its symptoms interfere with social, occupational, interpersonal, and academic functioning. However, the diagnosis of MDD is still made by phenomenological approach. The advent of neuroimaging techniques allowed numerous studies to use resting‐state functional magnetic resonance imaging (rs‐fMRI) and estimate functional connectivity for brain‐disease identification. Recently, attempts have been made to investigate effective connectivity (EC) that represents causal relations among regions of interest. In the meantime, to identify meaningful phenotypes for clinical diagnosis, graph‐based approaches such as graph convolutional networks (GCNs) have been leveraged recently to explore complex pairwise similarities in imaging/nonimaging features among subjects. In this study, we validate the use of EC for MDD identification by estimating its measures via a group sparse representation along with a structured equation modeling approach in a whole‐brain data‐driven manner from rs‐fMRI. To distinguish drug‐naïve MDD patients from healthy controls, we utilize spectral GCNs based on a population graph to successfully integrate EC and nonimaging phenotypic information. Furthermore, we devise a novel sensitivity analysis method to investigate the discriminant connections for MDD identification in our trained GCNs. Our experimental results validated the effectiveness of our method in various scenarios, and we identified altered connectivities associated with the diagnosis of MDD.
Major depressive disorder (MDD) is a leading cause of disability; its symptoms interfere with social, occupational, interpersonal, and academic functioning. However, the diagnosis of MDD is still made by phenomenological approach. The advent of neuroimaging techniques allowed numerous studies to use resting-state functional magnetic resonance imaging (rs-fMRI) and estimate functional connectivity for brain-disease identification. Recently, attempts have been made to investigate effective connectivity (EC) that represents causal relations among regions of interest. In the meantime, to identify meaningful phenotypes for clinical diagnosis, graph-based approaches such as graph convolutional networks (GCNs) have been leveraged recently to explore complex pairwise similarities in imaging/nonimaging features among subjects. In this study, we validate the use of EC for MDD identification by estimating its measures via a group sparse representation along with a structured equation modeling approach in a whole-brain data-driven manner from rs-fMRI. To distinguish drug-naïve MDD patients from healthy controls, we utilize spectral GCNs based on a population graph to successfully integrate EC and nonimaging phenotypic information. Furthermore, we devise a novel sensitivity analysis method to investigate the discriminant connections for MDD identification in our trained GCNs. Our experimental results validated the effectiveness of our method in various scenarios, and we identified altered connectivities associated with the diagnosis of MDD.
Major depressive disorder (MDD) is a leading cause of disability; its symptoms interfere with social, occupational, interpersonal, and academic functioning. However, the diagnosis of MDD is still made by phenomenological approach. The advent of neuroimaging techniques allowed numerous studies to use resting‐state functional magnetic resonance imaging (rs‐fMRI) and estimate functional connectivity for brain‐disease identification. Recently, attempts have been made to investigate effective connectivity (EC) that represents causal relations among regions of interest. In the meantime, to identify meaningful phenotypes for clinical diagnosis, graph‐based approaches such as graph convolutional networks (GCNs) have been leveraged recently to explore complex pairwise similarities in imaging/nonimaging features among subjects. In this study, we validate the use of EC for MDD identification by estimating its measures via a group sparse representation along with a structured equation modeling approach in a whole‐brain data‐driven manner from rs‐fMRI. To distinguish drug‐naïve MDD patients from healthy controls, we utilize spectral GCNs based on a population graph to successfully integrate EC and nonimaging phenotypic information. Furthermore, we devise a novel sensitivity analysis method to investigate the discriminant connections for MDD identification in our trained GCNs. Our experimental results validated the effectiveness of our method in various scenarios, and we identified altered connectivities associated with the diagnosis of MDD. This study validated the use of effective connectivity (EC) for major depressive disorder (MDD) identification by estimating its measures via a group sparse representation along with a structured equation modeling approach in a whole‐brain data‐driven manner from resting‐state functional magnetic resonance imaging. To distinguish drug‐naive MDD patients from healthy controls, we utilize spectral graph convolutional networks (GCNs) based on a population graph to successfully integrate EC and nonimaging phenotypic information. Furthermore, we devise a novel sensitivity analysis method to investigate the discriminant connections for MDD identification in our trained GCNs.
Author Suk, Heung‐Il
Lee, Jiyeon
Kang, Wooyoung
Jun, Eunji
Ham, Byung‐Joo
Na, Kyoung‐Sae
AuthorAffiliation 5 Department of Psychiatry Korea University Anam Hospital, Korea University College of Medicine Seoul Republic of Korea
1 Department of Brain and Cognitive Engineering Korea University Seoul Republic of Korea
3 Department of Biomedical Sciences Korea University College of Medicine Seoul Republic of Korea
2 Department of Psychiatry Gachon University Gil Medical Center Incheon Republic of Korea
4 Department of Artificial Intelligence Korea University Seoul Republic of Korea
AuthorAffiliation_xml – name: 3 Department of Biomedical Sciences Korea University College of Medicine Seoul Republic of Korea
– name: 5 Department of Psychiatry Korea University Anam Hospital, Korea University College of Medicine Seoul Republic of Korea
– name: 1 Department of Brain and Cognitive Engineering Korea University Seoul Republic of Korea
– name: 2 Department of Psychiatry Gachon University Gil Medical Center Incheon Republic of Korea
– name: 4 Department of Artificial Intelligence Korea University Seoul Republic of Korea
Author_xml – sequence: 1
  givenname: Eunji
  orcidid: 0000-0002-3121-7734
  surname: Jun
  fullname: Jun, Eunji
  organization: Korea University
– sequence: 2
  givenname: Kyoung‐Sae
  orcidid: 0000-0002-0148-9827
  surname: Na
  fullname: Na, Kyoung‐Sae
  organization: Gachon University Gil Medical Center
– sequence: 3
  givenname: Wooyoung
  orcidid: 0000-0003-4733-027X
  surname: Kang
  fullname: Kang, Wooyoung
  organization: Korea University College of Medicine
– sequence: 4
  givenname: Jiyeon
  orcidid: 0000-0002-8400-2729
  surname: Lee
  fullname: Lee, Jiyeon
  organization: Korea University
– sequence: 5
  givenname: Heung‐Il
  orcidid: 0000-0001-7019-8962
  surname: Suk
  fullname: Suk, Heung‐Il
  email: heungilsuk@gmail.com
  organization: Korea University
– sequence: 6
  givenname: Byung‐Joo
  orcidid: 0000-0002-0108-2058
  surname: Ham
  fullname: Ham, Byung‐Joo
  email: byungjoo.ham@gmail.com
  organization: Korea University Anam Hospital, Korea University College of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32813309$$D View this record in MEDLINE/PubMed
BookMark eNp1kU-OFCEUh4kZ4_zRhRcwJG50UTNQQFfVxkQn6kwyxo2uCQWPbtoqaIHqSe88giuv4SG8iSeRmh4nauKKF_jel8f7HaMDHzwg9JiSU0pIfbbqx9Na0EbcQ0eUdE1FaMcO5nohqo439BAdp7QmhFJB6AN0yOqWMka6I_Tt0oDPzu6cX-IIKZfz55evKasMGKwFnd0WsA7e35Qu77DqfYijGlx2kLDz2MRpbvLqx_fCjmodIjawKbo0NxuXQjRQ7pxa-pBcwlun8DKqzWo2b8MwZRe8GrCHfB3ip_QQ3bdqSPDo9jxBH9-8_nB-UV29f3t5_vKq0ky0orKLWimjhTVUcK4BOgat4jVjvCbU1IT3VLRa911POrCGgxaKWKaobfuW9uwEvdh7N1M_gtFlF1ENchPdqOJOBuXk3y_ereQybGWz4Iy1rAie3Qpi-DyV_cnRJQ3DoDyEKcmaMyFYWfyMPv0HXYcpll_PlGgEZ13TFOr5ntIxpBTB3g1DiZzTliVteZN2YZ_8Of0d-TveApztgWs3wO7_Jnnx6t1e-Qv8n751
CitedBy_id crossref_primary_10_1002_hbm_26343
crossref_primary_10_1007_s11063_021_10545_3
crossref_primary_10_3389_fpsyt_2023_1014866
crossref_primary_10_1016_j_ebiom_2022_103977
crossref_primary_10_1093_schbul_sbac047
crossref_primary_10_1016_j_media_2022_102707
crossref_primary_10_1109_TBME_2022_3187942
crossref_primary_10_3233_JAD_215497
crossref_primary_10_1093_cercor_bhab507
crossref_primary_10_1016_j_neucom_2024_128098
crossref_primary_10_3389_fpsyt_2023_1125339
crossref_primary_10_3390_sym15051036
crossref_primary_10_1109_TAFFC_2022_3205652
crossref_primary_10_1016_j_jad_2023_07_077
crossref_primary_10_3390_diagnostics11081402
crossref_primary_10_1142_S0219519421400686
crossref_primary_10_1016_j_jad_2022_11_029
crossref_primary_10_3389_fnins_2023_1174080
Cites_doi 10.1007/s10548-014-0404-4
10.1093/cercor/7.8.768
10.1371/journal.pone.0133775
10.9758/cpn.2011.9.3.117
10.1016/j.neuroimage.2008.05.036
10.1016/j.neuroimage.2008.08.002
10.1111/pcn.12106
10.1016/j.pscychresns.2013.09.008
10.1016/j.jad.2017.04.040
10.1007/978-3-642-40763-5_78
10.1371/journal.pcbi.1000100
10.1002/hbm.22278
10.1126/science.1238411
10.1038/mp.2010.46
10.1016/j.neuroimage.2011.03.051
10.1007/s00429-013-0524-8
10.1177/2398212817723443
10.1111/cns.13048
10.1371/journal.pone.0130140
10.1016/j.tics.2009.08.009
10.1016/S0166-2236(98)01374-5
10.2307/1912791
10.1016/j.acha.2010.04.005
10.1152/jn.00783.2009
10.1136/jnnp.23.1.56
10.1016/j.media.2018.06.001
10.1016/j.biopsych.2005.02.021
10.1016/j.bpsc.2017.10.004
10.3389/fnins.2018.00038
10.1016/j.pnpbp.2017.06.024
10.1038/nn.2921
10.4103/1673-5374.125344
10.1109/MSP.2012.2235192
10.1016/j.jclinepi.2004.12.009
10.1016/S0925-4927(97)00018-8
10.1016/j.nicl.2016.07.012
10.3389/fninf.2011.00007
10.1007/978-3-642-33418-4_27
10.1037/0021-843X.109.3.504
10.1111/j.1749-6632.2012.06751.x
10.1111/acps.12752
10.1109/MMAR.2016.7575202
10.3758/s13415-016-0449-9
10.1016/j.neuroimage.2016.09.046
10.1126/science.284.5419.1531
10.1016/j.media.2011.12.003
10.1016/j.neuroimage.2010.11.007
10.1177/2398212818757098
10.1002/hbm.20324
10.1371/journal.pone.0179638
10.1038/89044
10.1016/j.nicl.2016.02.018
10.1002/mrm.22159
10.1016/j.patcog.2016.10.009
10.1016/S0304-3800(02)00257-0
10.1001/archgenpsychiatry.2011.60
10.1371/journal.pone.0041282
10.2174/1570159X13666150416224801
10.1016/j.neuroimage.2004.07.041
10.1002/cne.903500402
10.1007/978-3-030-32692-0_44
10.2174/1570159X1304150831121909
10.1038/nm.4246
10.1371/journal.pone.0144200
10.1016/j.biopsych.2006.09.020
10.1007/s12021-014-9241-6
10.1016/j.tics.2008.07.004
10.1371/journal.pone.0053148
10.1007/978-0-387-45528-0
10.1016/j.pnpbp.2015.06.014
10.1155/2017/3609821
10.1007/s00702-016-1673-8
10.1192/bjp.2019.88
10.1152/jn.00338.2011
10.18632/oncotarget.19860
10.1002/hbm.460020403
10.1093/aje/kwf182
10.1007/s11571-011-9175-8
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals LLC.
2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals LLC.
– notice: 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.25175
DatabaseName Wiley-Blackwell Open Access Titles
Wiley Online Library Free Content
PubMed
CrossRef
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
Technology Research Database


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Titles
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Jun et al
EISSN 1097-0193
EndPage 5014
ExternalDocumentID 10_1002_hbm_25175
32813309
HBM25175
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Institute of Information and Communications Technology Planning and Evaluation
  funderid: 2019‐0‐00079
– fundername: National Research Foundation of Korea
  funderid: NRF‐2017R1A2B4002090
– fundername: Institute of Information and Communications Technology Planning and Evaluation
  grantid: 2019-0-00079
– fundername: National Research Foundation of Korea
  grantid: NRF-2017R1A2B4002090
– fundername: Institute of Information and Communications Technology Planning and Evaluation
  grantid: 2019‐0‐00079
– fundername: ;
  grantid: NRF‐2017R1A2B4002090
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
ITC
NPM
AAYXX
CITATION
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c3585-f62aadc5fd1544cee93e8a42334201d204b158ccb9b09efd4ec5a0f3a1f8b81b3
IEDL.DBID RPM
ISSN 1065-9471
IngestDate Tue Sep 17 21:28:30 EDT 2024
Fri Aug 16 04:22:50 EDT 2024
Thu Oct 10 22:00:07 EDT 2024
Thu Sep 26 16:09:27 EDT 2024
Sat Sep 28 08:27:03 EDT 2024
Sat Aug 24 01:07:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords deep learning
Sparse Group LASSO
resting-state functional magnetic resonance imaging (rs-fMRI)
graph convolutional networks (GCNs)
major depressive disorder (MDD)
effective connectivity
Language English
License Attribution
2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3585-f62aadc5fd1544cee93e8a42334201d204b158ccb9b09efd4ec5a0f3a1f8b81b3
Notes Funding information
Institute of Information and Communications Technology Planning and Evaluation, Grant/Award Number: 2019‐0‐00079; National Research Foundation of Korea, Grant/Award Number: NRF‐2017R1A2B4002090
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Funding information Institute of Information and Communications Technology Planning and Evaluation, Grant/Award Number: 2019‐0‐00079; National Research Foundation of Korea, Grant/Award Number: NRF‐2017R1A2B4002090
ORCID 0000-0002-8400-2729
0000-0002-0108-2058
0000-0003-4733-027X
0000-0002-3121-7734
0000-0002-0148-9827
0000-0001-7019-8962
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643383/
PMID 32813309
PQID 2457543977
PQPubID 996345
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7643383
proquest_miscellaneous_2435530113
proquest_journals_2457543977
crossref_primary_10_1002_hbm_25175
pubmed_primary_32813309
wiley_primary_10_1002_hbm_25175_HBM25175
PublicationCentury 2000
PublicationDate December 2020
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2010; 11
2017; 8
2017; 1
2014; 219
2004; 23
2018; 80
2014; 68
2011; 54
1999; 284
2011; 56
1969; 37
2012; 16
2011; 14
2008; 4
2011; 16
2013; 8
2003; 157
2018; 48
1997; 7
2007; 28
2009; 13
2012; 1251
2018; 3
2018; 2
2013; 17
1997; 92
2003; 160
2011; 68
2007; 62
2014; 9
2017; 124
1992; 1
2015; 13
2017; 218
2017; 63
2013; 1312
2009; 62
2017; 2017
2012
1994; 350
2015; 10
2017; 23
2011; 30
2013; 342
2008; 12
1999; 22
2006
2016; 16
2017; 136
2011; 5
2016; 12
2018; 24
2011; 9
2016; 11
2015; 28
2011; 106
2001; 7
1960; 23
1997; 75
2017; 16
2013; 214
2000; 109
2013; 30
2017; 12
2016; 64
2019
2019; 215
2017
2014; 35
2016
2008; 43
2014
2013
2008; 42
2018; 12
2012; 6
2012; 7
2017; 146
1994; 2
2009; 103
2005; 57
2005; 58
e_1_2_13_24_1
e_1_2_13_49_1
American Psychiatric Association (e_1_2_13_3_1) 2013; 17
e_1_2_13_26_1
e_1_2_13_47_1
e_1_2_13_68_1
e_1_2_13_20_1
e_1_2_13_45_1
e_1_2_13_66_1
e_1_2_13_87_1
e_1_2_13_22_1
e_1_2_13_43_1
e_1_2_13_64_1
e_1_2_13_85_1
e_1_2_13_8_1
e_1_2_13_41_1
e_1_2_13_62_1
e_1_2_13_60_1
e_1_2_13_83_1
e_1_2_13_6_1
e_1_2_13_81_1
e_1_2_13_17_1
e_1_2_13_19_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_59_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_32_1
e_1_2_13_55_1
e_1_2_13_78_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_76_1
Azari N. (e_1_2_13_5_1) 1992; 1
e_1_2_13_51_1
e_1_2_13_74_1
e_1_2_13_30_1
e_1_2_13_72_1
e_1_2_13_70_1
Baehrens D. (e_1_2_13_7_1) 2010; 11
Defferrard M. (e_1_2_13_18_1) 2016
e_1_2_13_4_1
e_1_2_13_2_1
Simonyan K. (e_1_2_13_65_1) 2013; 1312
e_1_2_13_88_1
e_1_2_13_29_1
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_69_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_67_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_86_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_63_1
e_1_2_13_84_1
e_1_2_13_61_1
e_1_2_13_82_1
e_1_2_13_80_1
Wang X. (e_1_2_13_75_1) 2017; 2017
e_1_2_13_39_1
e_1_2_13_14_1
e_1_2_13_35_1
e_1_2_13_37_1
e_1_2_13_58_1
e_1_2_13_79_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_56_1
e_1_2_13_77_1
e_1_2_13_12_1
e_1_2_13_33_1
e_1_2_13_54_1
e_1_2_13_52_1
e_1_2_13_73_1
e_1_2_13_50_1
e_1_2_13_71_1
Chung F. R. (e_1_2_13_16_1) 1997
e_1_2_13_28_1
References_xml – volume: 28
  start-page: 967
  issue: 10
  year: 2007
  end-page: 978
  article-title: Altered functional connectivity in early Alzheimer's disease: A resting‐state fMRI study
  publication-title: Human Brain Mapping
– volume: 24
  start-page: 1037
  issue: 11
  year: 2018
  end-page: 1052
  article-title: Machine learning in major depression: From classification to treatment outcome prediction
  publication-title: CNS Neuroscience & Therapeutics
– volume: 4
  issue: 6
  year: 2008
  article-title: Network analysis of intrinsic functional brain connectivity in Alzheimer's disease
  publication-title: PLoS Computational Biology
– volume: 136
  start-page: 288
  issue: 3
  year: 2017
  end-page: 299
  article-title: Clinical utility of a short resting‐state MRI scan in differentiating bipolar from unipolar depression
  publication-title: Acta Psychiatrica Scandinavica
– volume: 62
  start-page: 429
  issue: 5
  year: 2007
  end-page: 437
  article-title: Resting‐state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus
  publication-title: Biological Psychiatry
– volume: 17
  start-page: 133
  year: 2013
  end-page: 137
  article-title: Diagnostic and statistical manual of mental disorders
  publication-title: BMC Medicine
– volume: 42
  start-page: 799
  issue: 2
  year: 2008
  end-page: 806
  article-title: Mapping the connectivity with structural equation modeling in an fMRI study of shape‐from‐motion task
  publication-title: NeuroImage
– volume: 1251
  start-page: E1
  year: 2012
  end-page: E24
  article-title: Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion
  publication-title: Annals of the New York Academy of Sciences
– volume: 1312
  start-page: 6034
  year: 2013
  article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps
  publication-title: ArXiv Preprint ArXiv
– volume: 64
  start-page: 1
  year: 2016
  end-page: 9
  article-title: Multivariate classification of autism spectrum disorder using frequency‐specific resting‐state functional connectivity: A multi‐center study
  publication-title: Progress in Neuro‐Psychopharmacology and Biological Psychiatry
– volume: 43
  start-page: 645
  issue: 3
  year: 2008
  end-page: 655
  article-title: Fronto‐cingulate effective connectivity in major depression: A study with fMRI and dynamic causal modeling
  publication-title: NeuroImage
– volume: 1
  start-page: 101
  issue: 1
  year: 1992
  end-page: 111
  article-title: Patterns of interregional correlations of cerebral glucose metabolic rates in patients with dementia of the Alzheimer type
  publication-title: Neurodegeneration
– volume: 350
  start-page: 497
  issue: 4
  year: 1994
  end-page: 533
  article-title: Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents
  publication-title: Journal of Comparative Neurology
– volume: 7
  issue: 8
  year: 2012
  article-title: Changes in community structure of resting state functional connectivity in unipolar depression
  publication-title: PLoS One
– volume: 215
  start-page: 404
  issue: 1
  year: 2019
  end-page: 408
  article-title: Pragmatic neuroscience for clinical psychiatry
  publication-title: The British Journal of Psychiatry
– volume: 62
  start-page: 1619
  issue: 6
  year: 2009
  end-page: 1628
  article-title: Disease state prediction from resting state functional connectivity
  publication-title: Magnetic Resonance in Medicine
– volume: 2
  year: 2018
  article-title: Retrosplenial cortex and its role in spatial cognition
  publication-title: Brain and Neuroscience Advances
– volume: 75
  start-page: 1
  issue: 1
  year: 1997
  end-page: 14
  article-title: Activation of left posterior cingulate gyrus by the auditory presentation of threat‐related words: An fMRI study
  publication-title: Psychiatry Research: Neuroimaging
– volume: 109
  start-page: 504
  issue: 3
  year: 2000
  end-page: 511
  article-title: The role of rumination in depressive disorders and mixed anxiety/depressive symptoms
  publication-title: Journal of Abnormal Psychology
– volume: 13
  start-page: 277
  issue: 3
  year: 2015
  end-page: 295
  article-title: Supervised discriminative group sparse representation for mild cognitive impairment diagnosis
  publication-title: Neuroinformatics
– year: 2014
– volume: 11
  issue: 1
  year: 2016
  article-title: A probabilistic atlas of diffuse WHO grade II glioma locations in the brain
  publication-title: PLoS One
– volume: 13
  start-page: 456
  issue: 11
  year: 2009
  end-page: 463
  article-title: A cognitive neuroscience hypothesis of mood and depression
  publication-title: Trends in Cognitive Sciences
– volume: 1
  year: 2017
  article-title: Hippocampal–diencephalic–cingulate networks for memory and emotion: An anatomical guide
  publication-title: Brain and Neuroscience Advances
– volume: 48
  start-page: 117
  year: 2018
  end-page: 130
  article-title: Disease prediction using graph convolutional networks: Application to autism spectrum disorder and Alzheimer's disease
  publication-title: Medical Image Analysis
– volume: 13
  start-page: 466
  issue: 4
  year: 2015
  end-page: 479
  article-title: Brain functional effects of psychopharmacological treatment in major depression: A focus on neural circuitry of affective processing
  publication-title: Current Neuropharmacology
– volume: 58
  start-page: 859
  issue: 8
  year: 2005
  end-page: 862
  article-title: Sample size calculation should be performed for design accuracy in diagnostic test studies
  publication-title: Journal of Clinical Epidemiology
– volume: 5
  start-page: 7
  year: 2011
  article-title: The retrosplenial cortex: Intrinsic connectivity and connections with the (Para) hippocampal region in the rat. An interactive connectome
  publication-title: Frontiers in Neuroinformatics
– volume: 9
  start-page: 153
  issue: 2
  year: 2014
  end-page: 163
  article-title: Resting‐state functional connectivity abnormalities in first‐onset unmedicated depression
  publication-title: Neural Regeneration Research
– volume: 9
  start-page: 117
  issue: 3
  year: 2011
  end-page: 121
  article-title: The diagnostic stability of DSM‐IV diagnoses: An examination of major depressive disorder, bipolar I disorder, and schizophrenia in korean patients
  publication-title: Clinical Psychopharmacology and Neuroscience
– volume: 146
  start-page: 1038
  year: 2017
  end-page: 1049
  article-title: BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment
  publication-title: NeuroImage
– volume: 8
  issue: 1
  year: 2013
  article-title: Alterations in regional homogeneity of spontaneous brain activity in late‐life subthreshold depression
  publication-title: PLoS One
– volume: 6
  start-page: 33
  year: 2012
  end-page: 42
  article-title: Granger causality's shortcomings and new causality measure
  publication-title: Cognitive Neurodynamics
– volume: 23
  start-page: 56
  issue: 1
  year: 1960
  end-page: 62
  article-title: A rating scale for depression
  publication-title: Journal of Neurology, Neurosurgery, and Psychiatry
– volume: 23
  start-page: S264
  year: 2004
  end-page: S274
  article-title: Modelling functional integration: A comparison of structural equation and dynamic causal models
  publication-title: NeuroImage
– volume: 157
  start-page: 98
  issue: 2
  year: 2003
  end-page: 112
  article-title: Socioeconomic inequalities in depression: A meta‐analysis
  publication-title: American Journal of Epidemiology
– volume: 63
  start-page: 171
  year: 2017
  end-page: 181
  article-title: Multi‐modal classification of Alzheimer's disease using nonlinear graph fusion
  publication-title: Pattern Recognition
– volume: 16
  start-page: 763
  issue: 7
  year: 2011
  end-page: 772
  article-title: Investigating neural primacy in major depressive disorder: Multivariate granger causality analysis of resting‐state fMRI time‐series data
  publication-title: Molecular Psychiatry
– volume: 23
  start-page: 28
  issue: 1
  year: 2017
  end-page: 38
  article-title: Resting‐state connectivity biomarkers define neurophysiological subtypes of depression
  publication-title: Nature Medicine
– volume: 22
  start-page: 310
  issue: 7
  year: 1999
  end-page: 316
  article-title: The retrosplenial cortex and emotion: New insights from functional neuroimaging of the human brain
  publication-title: Trends in Neurosciences
– year: 2019
– volume: 8
  start-page: 90452
  issue: 52
  year: 2017
  end-page: 90464
  article-title: Identifying current and remitted major depressive disorder with the Hurst exponent: A comparative study on two automated anatomical labeling atlases
  publication-title: Oncotarget
– volume: 124
  start-page: 589
  issue: 5
  year: 2017
  end-page: 605
  article-title: Diagnostic classification of unipolar depression based on resting‐state functional connectivity MRI: Effects of generalization to a diverse sample
  publication-title: Journal of Neural Transmission
– volume: 16
  start-page: 1017
  issue: 6
  year: 2016
  end-page: 1026
  article-title: Linking major depression and the neural substrates of associative processing
  publication-title: Cognitive, Affective, & Behavioral Neuroscience
– volume: 68
  start-page: 675
  issue: 7
  year: 2011
  end-page: 690
  article-title: Structural neuroimaging studies in major depressive disorder: Meta‐analysis and comparison with bipolar disorder
  publication-title: Archives of General Psychiatry
– volume: 3
  start-page: 187
  issue: 2
  year: 2018
  end-page: 197
  article-title: Effective connectivity in depression
  publication-title: Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
– start-page: 3844
  year: 2016
  end-page: 3852
– volume: 12
  start-page: 38
  year: 2018
  article-title: Multivariate classification of major depressive disorder using the effective connectivity and functional connectivity
  publication-title: Frontiers in Neuroscience
– volume: 214
  start-page: 306
  issue: 3
  year: 2013
  end-page: 312
  article-title: Identifying major depressive disorder using Hurst exponent of resting‐state brain networks
  publication-title: Psychiatry Research: Neuroimaging
– volume: 12
  start-page: 388
  issue: 10
  year: 2008
  end-page: 396
  article-title: Parahippocampal and retrosplenial contributions to human spatial navigation
  publication-title: Trends in Cognitive Sciences
– volume: 7
  start-page: 768
  issue: 8
  year: 1997
  end-page: 778
  article-title: Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modelling and fMRI
  publication-title: Cerebral Cortex (New York, NY: 1991)
– volume: 2
  start-page: 211
  issue: 4
  year: 1994
  end-page: 224
  article-title: Characterizing modulatory interactions between areas v1 and v2 in human cortex: A new treatment of functional MRI data
  publication-title: Human Brain Mapping
– volume: 218
  start-page: 346
  year: 2017
  end-page: 352
  article-title: Whole‐brain resting‐state functional connectivity identified major depressive disorder: A multivariate pattern analysis in two independent samples
  publication-title: Journal of Affective Disorders
– volume: 30
  start-page: 83
  issue: 3
  year: 2013
  end-page: 98
  article-title: The emerging field of signal processing on graphs: Extending high‐dimensional data analysis to networks and other irregular domains
  publication-title: IEEE Signal Processing Magazine
– volume: 16
  start-page: 390
  year: 2017
  end-page: 398
  article-title: Multivariate pattern analysis strategies in detection of remitted major depressive disorder using resting state functional connectivity
  publication-title: NeuroImage: Clinical
– volume: 160
  start-page: 249
  issue: 3
  year: 2003
  end-page: 264
  article-title: Review and comparison of methods to study the contribution of variables in artificial neural network models
  publication-title: Ecological Modelling
– volume: 219
  start-page: 641
  issue: 2
  year: 2014
  end-page: 656
  article-title: Group‐constrained sparse fMRI connectivity modeling for mild cognitive impairment identification
  publication-title: Brain Structure and Function
– year: 2016
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 11
  article-title: Depression disorder classification of fMRI data using sparse low‐rank functional brain network and graph‐based features
  publication-title: Computational and Mathematical Methods in Medicine
– volume: 106
  start-page: 1125
  issue: 3
  year: 2011
  end-page: 1165
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: Journal of Neurophysiology
– volume: 57
  start-page: 1079
  issue: 10
  year: 2005
  end-page: 1088
  article-title: Activity and connectivity of brain mood regulating circuit in depression: A functional magnetic resonance study
  publication-title: Biological Psychiatry
– volume: 14
  start-page: 1338
  issue: 10
  year: 2011
  end-page: 1344
  article-title: Medial prefrontal cortex as an action‐outcome predictor
  publication-title: Nature Neuroscience
– volume: 92
  year: 1997
– volume: 103
  start-page: 297
  issue: 1
  year: 2009
  end-page: 321
  article-title: Intrinsic functional connectivity as a tool for human connectomics: Theory, properties, and optimization
  publication-title: Journal of Neurophysiology
– year: 2012
– volume: 10
  issue: 7
  year: 2015
  article-title: On pixel‐wise explanations for non‐linear classifier decisions by layer‐wise relevance propagation
  publication-title: PLoS One
– volume: 13
  start-page: 458
  issue: 4
  year: 2015
  end-page: 465
  article-title: Brain structural effects of antidepressant treatment in major depression
  publication-title: Current Neuropharmacology
– volume: 54
  start-page: 2683
  issue: 4
  year: 2011
  end-page: 2694
  article-title: Small‐world directed networks in the human brain: Multivariate granger causality analysis of resting‐state fMRI
  publication-title: NeuroImage
– volume: 35
  start-page: 1630
  issue: 4
  year: 2014
  end-page: 1641
  article-title: Unsupervised classification of major depression using functional connectivity MRI
  publication-title: Human Brain Mapping
– volume: 28
  start-page: 541
  issue: 4
  year: 2015
  end-page: 547
  article-title: Point‐process deconvolution of fMRI BOLD signal reveals effective connectivity alterations in chronic pain patients
  publication-title: Brain Topography
– volume: 80
  start-page: 71
  year: 2018
  end-page: 80
  article-title: Application of machine learning classification for structural brain MRI in mood disorders: Critical review from a clinical perspective
  publication-title: Progress in Neuro‐Psychopharmacology and Biological Psychiatry
– year: 2006
– volume: 30
  start-page: 129
  issue: 2
  year: 2011
  end-page: 150
  article-title: Wavelets on graphs via spectral graph theory
  publication-title: Applied and Computational Harmonic Analysis
– volume: 342
  issue: 6158
  year: 2013
  article-title: Structural and functional brain networks: From connections to cognition
  publication-title: Science
– volume: 16
  start-page: 819
  issue: 4
  year: 2012
  end-page: 830
  article-title: Nonlinear dimensionality reduction combining MR imaging with non‐imaging information
  publication-title: Medical Image Analysis
– volume: 11
  start-page: 1803
  issue: Jun
  year: 2010
  end-page: 1831
  article-title: How to explain individual classification decisions
  publication-title: Journal of Machine Learning Research
– volume: 37
  start-page: 424
  issue: 3
  year: 1969
  end-page: 438
  article-title: Investigating causal relations by econometric models and cross‐spectral methods
  publication-title: Econometrica
– volume: 7
  start-page: 673
  issue: 6
  year: 2001
  end-page: 679
  article-title: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
  publication-title: Nature Medicine
– year: 2017
– volume: 12
  start-page: 320
  year: 2016
  end-page: 331
  article-title: Accuracy of automated classification of major depressive disorder as a function of symptom severity
  publication-title: NeuroImage: Clinical
– volume: 284
  start-page: 1531
  issue: 5419
  year: 1999
  end-page: 1533
  article-title: Interactions of prefrontal cortex in relation to awareness in sensory learning
  publication-title: Science
– volume: 68
  start-page: 110
  issue: 2
  year: 2014
  end-page: 119
  article-title: Aberrant functional connectivity for diagnosis of major depressive disorder: A discriminant analysis
  publication-title: Psychiatry and Clinical Neurosciences
– volume: 12
  issue: 7
  year: 2017
  article-title: Prediction of clinical depression scores and detection of changes in whole‐brain using resting‐state functional MRI data with partial least squares regression
  publication-title: PLoS One
– volume: 10
  issue: 9
  year: 2015
  article-title: Changes of functional brain networks in major depressive disorder: A graph theoretical analysis of resting‐state fMRI
  publication-title: PLoS One
– year: 2013
– volume: 56
  start-page: 2058
  issue: 4
  year: 2011
  end-page: 2067
  article-title: Discriminant analysis of functional connectivity patterns on Grassmann manifold
  publication-title: NeuroImage
– ident: e_1_2_13_82_1
  doi: 10.1007/s10548-014-0404-4
– ident: e_1_2_13_13_1
  doi: 10.1093/cercor/7.8.768
– ident: e_1_2_13_83_1
  doi: 10.1371/journal.pone.0133775
– ident: e_1_2_13_42_1
  doi: 10.9758/cpn.2011.9.3.117
– ident: e_1_2_13_88_1
  doi: 10.1016/j.neuroimage.2008.05.036
– ident: e_1_2_13_63_1
  doi: 10.1016/j.neuroimage.2008.08.002
– ident: e_1_2_13_14_1
  doi: 10.1111/pcn.12106
– ident: e_1_2_13_78_1
  doi: 10.1016/j.pscychresns.2013.09.008
– ident: e_1_2_13_87_1
  doi: 10.1016/j.jad.2017.04.040
– ident: e_1_2_13_11_1
  doi: 10.1007/978-3-642-40763-5_78
– ident: e_1_2_13_70_1
  doi: 10.1371/journal.pcbi.1000100
– ident: e_1_2_13_86_1
  doi: 10.1002/hbm.22278
– ident: e_1_2_13_59_1
  doi: 10.1126/science.1238411
– ident: e_1_2_13_32_1
  doi: 10.1038/mp.2010.46
– ident: e_1_2_13_23_1
  doi: 10.1016/j.neuroimage.2011.03.051
– ident: e_1_2_13_77_1
  doi: 10.1007/s00429-013-0524-8
– volume: 17
  start-page: 133
  year: 2013
  ident: e_1_2_13_3_1
  article-title: Diagnostic and statistical manual of mental disorders
  publication-title: BMC Medicine
  contributor:
    fullname: American Psychiatric Association
– volume: 1
  start-page: 101
  issue: 1
  year: 1992
  ident: e_1_2_13_5_1
  article-title: Patterns of interregional correlations of cerebral glucose metabolic rates in patients with dementia of the Alzheimer type
  publication-title: Neurodegeneration
  contributor:
    fullname: Azari N.
– ident: e_1_2_13_12_1
  doi: 10.1177/2398212817723443
– volume: 1312
  start-page: 6034
  year: 2013
  ident: e_1_2_13_65_1
  article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps
  publication-title: ArXiv Preprint ArXiv
  contributor:
    fullname: Simonyan K.
– ident: e_1_2_13_26_1
  doi: 10.1111/cns.13048
– ident: e_1_2_13_6_1
  doi: 10.1371/journal.pone.0130140
– ident: e_1_2_13_8_1
  doi: 10.1016/j.tics.2009.08.009
– ident: e_1_2_13_81_1
– ident: e_1_2_13_50_1
  doi: 10.1016/S0166-2236(98)01374-5
– ident: e_1_2_13_29_1
  doi: 10.2307/1912791
– ident: e_1_2_13_34_1
  doi: 10.1016/j.acha.2010.04.005
– ident: e_1_2_13_73_1
  doi: 10.1152/jn.00783.2009
– ident: e_1_2_13_33_1
  doi: 10.1136/jnnp.23.1.56
– ident: e_1_2_13_58_1
  doi: 10.1016/j.media.2018.06.001
– ident: e_1_2_13_4_1
  doi: 10.1016/j.biopsych.2005.02.021
– ident: e_1_2_13_62_1
  doi: 10.1016/j.bpsc.2017.10.004
– ident: e_1_2_13_27_1
  doi: 10.3389/fnins.2018.00038
– ident: e_1_2_13_43_1
  doi: 10.1016/j.pnpbp.2017.06.024
– ident: e_1_2_13_2_1
  doi: 10.1038/nn.2921
– ident: e_1_2_13_31_1
  doi: 10.4103/1673-5374.125344
– ident: e_1_2_13_64_1
  doi: 10.1109/MSP.2012.2235192
– ident: e_1_2_13_24_1
  doi: 10.1016/j.jclinepi.2004.12.009
– ident: e_1_2_13_51_1
  doi: 10.1016/S0925-4927(97)00018-8
– ident: e_1_2_13_61_1
  doi: 10.1016/j.nicl.2016.07.012
– ident: e_1_2_13_67_1
  doi: 10.3389/fninf.2011.00007
– ident: e_1_2_13_76_1
  doi: 10.1007/978-3-642-33418-4_27
– ident: e_1_2_13_54_1
  doi: 10.1037/0021-843X.109.3.504
– ident: e_1_2_13_55_1
  doi: 10.1111/j.1749-6632.2012.06751.x
– ident: e_1_2_13_45_1
  doi: 10.1111/acps.12752
– ident: e_1_2_13_38_1
  doi: 10.1109/MMAR.2016.7575202
– ident: e_1_2_13_35_1
  doi: 10.3758/s13415-016-0449-9
– ident: e_1_2_13_39_1
  doi: 10.1016/j.neuroimage.2016.09.046
– ident: e_1_2_13_44_1
– ident: e_1_2_13_52_1
  doi: 10.1126/science.284.5419.1531
– ident: e_1_2_13_80_1
  doi: 10.1016/j.media.2011.12.003
– ident: e_1_2_13_46_1
  doi: 10.1016/j.neuroimage.2010.11.007
– ident: e_1_2_13_53_1
  doi: 10.1177/2398212818757098
– ident: e_1_2_13_74_1
  doi: 10.1002/hbm.20324
– ident: e_1_2_13_85_1
  doi: 10.1371/journal.pone.0179638
– ident: e_1_2_13_41_1
  doi: 10.1038/89044
– ident: e_1_2_13_9_1
  doi: 10.1016/j.nicl.2016.02.018
– ident: e_1_2_13_17_1
  doi: 10.1002/mrm.22159
– ident: e_1_2_13_72_1
  doi: 10.1016/j.patcog.2016.10.009
– ident: e_1_2_13_28_1
  doi: 10.1016/S0304-3800(02)00257-0
– ident: e_1_2_13_40_1
  doi: 10.1001/archgenpsychiatry.2011.60
– ident: e_1_2_13_48_1
  doi: 10.1371/journal.pone.0041282
– ident: e_1_2_13_79_1
  doi: 10.2174/1570159X13666150416224801
– ident: e_1_2_13_60_1
  doi: 10.1016/j.neuroimage.2004.07.041
– ident: e_1_2_13_71_1
  doi: 10.1002/cne.903500402
– ident: e_1_2_13_21_1
  doi: 10.1007/978-3-030-32692-0_44
– ident: e_1_2_13_20_1
  doi: 10.2174/1570159X1304150831121909
– ident: e_1_2_13_19_1
  doi: 10.1038/nm.4246
– ident: e_1_2_13_57_1
  doi: 10.1371/journal.pone.0144200
– ident: e_1_2_13_30_1
  doi: 10.1016/j.biopsych.2006.09.020
– start-page: 3844
  volume-title: Advances in neural information processing systems
  year: 2016
  ident: e_1_2_13_18_1
  contributor:
    fullname: Defferrard M.
– ident: e_1_2_13_68_1
  doi: 10.1007/s12021-014-9241-6
– ident: e_1_2_13_22_1
  doi: 10.1016/j.tics.2008.07.004
– ident: e_1_2_13_49_1
  doi: 10.1371/journal.pone.0053148
– ident: e_1_2_13_10_1
  doi: 10.1007/978-0-387-45528-0
– ident: e_1_2_13_15_1
  doi: 10.1016/j.pnpbp.2015.06.014
– volume: 2017
  start-page: 1
  year: 2017
  ident: e_1_2_13_75_1
  article-title: Depression disorder classification of fMRI data using sparse low‐rank functional brain network and graph‐based features
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2017/3609821
  contributor:
    fullname: Wang X.
– volume: 11
  start-page: 1803
  year: 2010
  ident: e_1_2_13_7_1
  article-title: How to explain individual classification decisions
  publication-title: Journal of Machine Learning Research
  contributor:
    fullname: Baehrens D.
– ident: e_1_2_13_56_1
– ident: e_1_2_13_69_1
  doi: 10.1007/s00702-016-1673-8
– ident: e_1_2_13_66_1
  doi: 10.1192/bjp.2019.88
– ident: e_1_2_13_84_1
  doi: 10.1152/jn.00338.2011
– ident: e_1_2_13_37_1
  doi: 10.18632/oncotarget.19860
– volume-title: Spectral graph theory
  year: 1997
  ident: e_1_2_13_16_1
  contributor:
    fullname: Chung F. R.
– ident: e_1_2_13_25_1
  doi: 10.1002/hbm.460020403
– ident: e_1_2_13_47_1
  doi: 10.1093/aje/kwf182
– ident: e_1_2_13_36_1
  doi: 10.1007/s11571-011-9175-8
SSID ssj0011501
Score 2.508533
Snippet Major depressive disorder (MDD) is a leading cause of disability; its symptoms interfere with social, occupational, interpersonal, and academic functioning....
Abstract Major depressive disorder (MDD) is a leading cause of disability; its symptoms interfere with social, occupational, interpersonal, and academic...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4997
SubjectTerms Abnormalities
Artificial neural networks
Brain
Brain mapping
deep learning
Diagnosis
effective connectivity
Functional magnetic resonance imaging
graph convolutional networks (GCNs)
Magnetic resonance imaging
major depressive disorder (MDD)
Medical imaging
Mental depression
Neural networks
Neuroimaging
Phenotypes
resting‐state functional magnetic resonance imaging (rs‐fMRI)
Sensitivity analysis
Signs and symptoms
Sparse Group LASSO
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VPSAuUFp-lhZkEEJcsk3sZBOLU0FUK6TlgKjUA1Lkv6hbWC_an0pw4hE48Ro8BG_CkzBjJ4GlQkKcEsWO4yQz42_smc8Aj3jD5SgzLklzI5JcmTRRshDJKEVdQvfBOE3ZyJNXo_FJ_vK0ON2Cp10uTOSH6CfcSDOCvSYFV3p5-Is09EzPhsS3RQnmRKRHgOh1Tx1FQCc4WzjEJhItcMcqlPLD_s7NsegSwLwcJ_k7fg0D0PF1eNt1PcadvBuuV3poPv3B6vif77YD11pgyo6iJN2ALed3Ye_Io1M--8gesxAqGubgd-HKpF2R34OvMdM3ZEsx2ucDjz8-fwl5SiwGi6A9ZYbiaUzcqYIp7Qkpvw9krmzqmV2s6Savvn_DujN1Pl-wLkQXL9iWIRRPQlzgdMkupooFrm1q-aJVH-y-j1Hty5twcvzizfNx0u71kBiBHkvSjLhS1hSNJXogHLmlcJVCrCdyhCiWp7nOisoYLXUqXWNzZwqVNkJlTaUReotbsO3n3t0BJpUuaXUWLbfI0ZZrgT6wMqW01halLQfwsPvr9YdI6VFH8mZe44evw4cfwEEnD3Wr1cua5whuCcFhGw_6YtRHWmRR3s3XVEfQTkxZJgZwO4pP_xTBq0yIVA6g3BCsvgJxfW-W-OlZ4PwuETmKCtt8EuTm7x2vx88m4eTuv1fdh6ucphFClM4BbK8Wa3cPsdZK3w9K9RP4yy5e
  priority: 102
  providerName: Wiley-Blackwell
Title Identifying resting‐state effective connectivity abnormalities in drug‐naïve major depressive disorder diagnosis via graph convolutional networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25175
https://www.ncbi.nlm.nih.gov/pubmed/32813309
https://www.proquest.com/docview/2457543977
https://search.proquest.com/docview/2435530113
https://pubmed.ncbi.nlm.nih.gov/PMC7643383
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NattAEB7iHEovpU36ozY121JKL7Kl3ZVlHdPQYAouoTSQm9g_EZVoHew40FsfIae8Rh8ib5In6exIMgmhl15kYa2khZnd_Ub7zTcAH3jFi0lqXJxII2KpTBKrIhPxJMGxhOGDcTpkI8-_TWbH8utJdrIFWZ8LQ6R9o-uRP2tGvj4lbuV5Y8Y9T2x8ND_IcRnFyGo8gEEuRB-id1sHiHAoysK1NS5w6u3lhBI-PtXNKEh0hXI1gk8xPAs8xLvr0QOQ-ZAreRfD0iJ0-BSedOiR7be9fAZbzu_A7r7HyLn5xT4y4nPSh_IdeDTvts134bpNx6WUJhaKceDv7e8rSiZiLaMDJz1mAunFtOUkmNI-wNkzUlxltWd2uQ43eXXzB9s26udiyXoeLf5hOxlPPCHyXr1il7ViJIgdnnzZ-Th237fU89VzOD788uNgFncFGWIjMKyIqwlXypqsskHDB5fXQripQkAmJOIIyxOp02xqjC50UrjKSmcylVRCpdVUIz4WL2DbL7x7BaxQOg9bqDi9CokTrhYYqCqTF9baLLd5BO97s5Tnre5G2Sos8xLNWJIZI9jrDVZ2Q29VcokINMAsfMa7zWUcNGEnRHm3WIc2IpRLSlMRwcvWvpu39I4RQX7P8psGQZD7_hX0UxLm7vwygk_kI__ueDn7PKeT1__9kjfwmIfQn5g1e7B9sVy7t4iPLvQQBlweDenrQjh-50MaIX8BQKUaEQ
link.rule.ids 230,315,733,786,790,870,891,1382,11589,27955,27956,46085,46327,46509,46751,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIgGXAi2lgQIGIcQl2cRONptjqagWaCoOLeot8k-iBhpvtT-V4MQjcOI1eAjehCdhbMerlooDnDZae_OjnfF8E3_zDcBz2tBimMg6jFPJwpTLOORFxsJhjL6E6YOshalGLg-G46P07XF2vAKZr4WxpH0p2kifdpFuTyy38qyTA88TG7wvd3MMo5hZDa7BdfRXmvkkvd88QIxj8yyMrmGBi68XFIrp4ER0kRHpMg1rGB1hgmaYiBcj0hWYeZUteRHF2jC0dxs--Adw7JNP0WIuIvnlD23Hf37CO7DWA1Oy44bvwkqt12FjR2NS3n0mL4ilitp38Otwo-x35Dfgu6v0tdVSxPT5wM9fX7_ZOiXiyCK4nhJp-DTSdaogXGiDlE-tmCtpNVHThfmR5j9_4NyOf5xMiafo4heqVwjFA8sLbGfkvOXEam2bM5_37oO3rx2rfXYPjvZeH-6Ow77XQygZZixhM6ScK5k1ysgDYeQuWD3iiPVYihBF0TgVSTaSUhQiLupGpbXMeNwwnjQjgdCbbcKqnuh6C0jBRW52Z3HlZimu5YJhDsxlXiilslzlATzz_3d15iQ9KifeTCu0j8raRwDb3hKq3qtnFU0R3BoEh-d4uhxGfzSbLFzXk4WZw0wnpiRhAdx3hrO8ire4APJLJrWcYLS-L4-ggVjN794gAnhpje_vN16NX5X24MF_X-QJ3BwflvvV_puDdw_hFjVvGCyBZxtW59NF_Qhh2Fw8tk73G8HIOVQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2CIlVsCrRAU0oxCCE2ednJZLIsLaPhMVUXVKrYRH4kamjjGc2jEqz4BFb8Bh_Bn_AlXNvJaErFpqtEiRMnyr2-58bH5wK8pBXNe7Es_SiRzE-4jHyep8zvRehLmD7IUpjVyKOj3vAkeX-anq6U-rKkfSnqQF80ga7PLLdy0siw44mFx6ODDMMoZlbhRFXhbbiDPkuzLlFvJxAQ59hcCyOsn-MA3IkKRTQ8E01ghLpM0RpG-5ikGTbialS6BjWvMyZXkawNRYN78Ll7CcdAOQ8WcxHIb__oO97oLe_DRgtQyb5r8gBulXoTtvY1JufNV_KKWMqo_Re_CeujdmZ-C366Fb921RQx9T5w--f7D7teiTjSCI6rRBpejXQVKwgX2iDmCyvqSmpN1HRhLtL89y9s2_Av4ynpqLp4QLVKobhj-YH1jFzWnFjNbXPny9aN8PG1Y7fPHsLJ4O2ng6Hf1nzwJcPMxa96lHMl00oZmSCM4Dkr-xwxH0sQqigaJSJO-1KKXER5WamklCmPKsbjqi8QgrNHsKbHutwGknORmVlaHMFZgmO6YJgLc5nlSqk0U5kHL7pvXkyctEfhRJxpgTZSWBvxYLezhqL17llBEwS5BsnhPZ4vT6NfmskWrsvxwrRhpiJTHDMPHjvjWfbSWZ0H2RWzWjYwmt9Xz6CRWO3v1ig8eG0N8P8PXgzfjOzOzo07eQbrx4eD4uO7ow9P4C41Pxosj2cX1ubTRfkU0dhc7Fm_-wtFJzvU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+resting-state+effective+connectivity+abnormalities+in+drug-na%C3%AFve+major+depressive+disorder+diagnosis+via+graph+convolutional+networks&rft.jtitle=Human+brain+mapping&rft.au=Jun%2C+Eunji&rft.au=Na%2C+Kyoung-Sae&rft.au=Kang%2C+Wooyoung&rft.au=Lee%2C+Jiyeon&rft.date=2020-12-01&rft.eissn=1097-0193&rft.volume=41&rft.issue=17&rft.spage=4997&rft_id=info:doi/10.1002%2Fhbm.25175&rft_id=info%3Apmid%2F32813309&rft.externalDocID=32813309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon