Citrus yield prediction using deep learning techniques: A combination of field and satellite data
The goal of this paper is to develop a deep learning model for predicting citrus yield. The data used consists of two sources: (1) field data that includes information on fertilization and phytosanitary treatment products, water quantities used for irrigation, climatic data (temperature, precipitati...
Saved in:
Published in | Journal of open innovation Vol. 9; no. 2; p. 100075 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The goal of this paper is to develop a deep learning model for predicting citrus yield. The data used consists of two sources: (1) field data that includes information on fertilization and phytosanitary treatment products, water quantities used for irrigation, climatic data (temperature, precipitation, humidity, wind speed, and solar radiation), parcel sizes, and rootstock types for each parcel. (2) The second source comprises images representing the normalized difference vegetation index (NDVI) and the normalized difference water index (NDWI), extracted from Sentinel-2 images taken before the harvest period.
The data was collected over a period of 5 years, from 2015 to 2019, and pertains to 50 parcels within a Moroccan orchard. Following data preparation, we constructed a deep learning neural network model with multiple layers and parameters. This model takes the information from each parcel as input for training purposes. Subsequently, we evaluated the model using new data obtained from additional parcels located at various sites within our orchard.
The test phase resulted in the following scores: 0.0458 (Mean Squared Error), 0.1450 (Mean Absolute Error), and 0.10 (Percentage Error). These scores reflect the strong predictive capability of our approach.
•Deep learning model predicts citrus yield using field data and satellite images.•Model takes NDVI and NDWI images as input along with field data.•Data collected from Moroccan citrus orchard for 5 years.•Prediction error below 10 %. |
---|---|
AbstractList | The goal of this paper is to develop a deep learning model for predicting citrus yield. The data used consists of two sources: (1) field data that includes information on fertilization and phytosanitary treatment products, water quantities used for irrigation, climatic data (temperature, precipitation, humidity, wind speed, and solar radiation), parcel sizes, and rootstock types for each parcel. (2) The second source comprises images representing the normalized difference vegetation index (NDVI) and the normalized difference water index (NDWI), extracted from Sentinel-2 images taken before the harvest period.The data was collected over a period of 5 years, from 2015 to 2019, and pertains to 50 parcels within a Moroccan orchard. Following data preparation, we constructed a deep learning neural network model with multiple layers and parameters. This model takes the information from each parcel as input for training purposes. Subsequently, we evaluated the model using new data obtained from additional parcels located at various sites within our orchard.The test phase resulted in the following scores: 0.0458 (Mean Squared Error), 0.1450 (Mean Absolute Error), and 0.10 (Percentage Error). These scores reflect the strong predictive capability of our approach. The goal of this paper is to develop a deep learning model for predicting citrus yield. The data used consists of two sources: (1) field data that includes information on fertilization and phytosanitary treatment products, water quantities used for irrigation, climatic data (temperature, precipitation, humidity, wind speed, and solar radiation), parcel sizes, and rootstock types for each parcel. (2) The second source comprises images representing the normalized difference vegetation index (NDVI) and the normalized difference water index (NDWI), extracted from Sentinel-2 images taken before the harvest period. The data was collected over a period of 5 years, from 2015 to 2019, and pertains to 50 parcels within a Moroccan orchard. Following data preparation, we constructed a deep learning neural network model with multiple layers and parameters. This model takes the information from each parcel as input for training purposes. Subsequently, we evaluated the model using new data obtained from additional parcels located at various sites within our orchard. The test phase resulted in the following scores: 0.0458 (Mean Squared Error), 0.1450 (Mean Absolute Error), and 0.10 (Percentage Error). These scores reflect the strong predictive capability of our approach. •Deep learning model predicts citrus yield using field data and satellite images.•Model takes NDVI and NDWI images as input along with field data.•Data collected from Moroccan citrus orchard for 5 years.•Prediction error below 10 %. |
ArticleNumber | 100075 |
Author | Lahlou, Ouiam El Fkihi, Sanaa Zennayi, Yahya Imani, Yasmina Moussaid, Abdellatif El Mansouri, Loubna Kassou, Ismail Bourzeix, François |
Author_xml | – sequence: 1 givenname: Abdellatif surname: Moussaid fullname: Moussaid, Abdellatif email: abdelatif.moussaid@gmail.com organization: Information Retrieval and Data Analytics Group, ADMIR Laboratory, Rabat IT Center, ENSIAS, Mohammed V University in Rabat, Rabat 10000, Morocco – sequence: 2 givenname: Sanaa surname: El Fkihi fullname: El Fkihi, Sanaa organization: Information Retrieval and Data Analytics Group, ADMIR Laboratory, Rabat IT Center, ENSIAS, Mohammed V University in Rabat, Rabat 10000, Morocco – sequence: 3 givenname: Yahya surname: Zennayi fullname: Zennayi, Yahya organization: Embedded Systems and Artificial Intelligence Department, Moroccan Foundation for Advanced Science Innovation and Research, Rabat 10100, Morocco – sequence: 4 givenname: Ismail surname: Kassou fullname: Kassou, Ismail organization: Information Retrieval and Data Analytics Group, ADMIR Laboratory, Rabat IT Center, ENSIAS, Mohammed V University in Rabat, Rabat 10000, Morocco – sequence: 5 givenname: François surname: Bourzeix fullname: Bourzeix, François organization: Embedded Systems and Artificial Intelligence Department, Moroccan Foundation for Advanced Science Innovation and Research, Rabat 10100, Morocco – sequence: 6 givenname: Ouiam surname: Lahlou fullname: Lahlou, Ouiam organization: Hassan II Institute of Agronomy and Veterinary, Morocco – sequence: 7 givenname: Loubna surname: El Mansouri fullname: El Mansouri, Loubna organization: Hassan II Institute of Agronomy and Veterinary, Morocco – sequence: 8 givenname: Yasmina surname: Imani fullname: Imani, Yasmina organization: Hassan II Institute of Agronomy and Veterinary, Morocco |
BookMark | eNp9kMtuHCEQRZHlSHYc_4EX_MBMeDRu2otI1igPS5aySdaogMKh1QMTYCL578NMR1FWWQHFraOq85ZcppyQkDvOtpzx-_fzds6x7d1WMCF7ibFRXZBrwadpo5Xkl__cr8htrXOP9Cxjg74msIutHCt9jbh4eijoo2sxJ3qsMb1Qj3igC0JJp1dD9yPFn0esD_SRury3McE5nQMNZwIkTys0XJbYkHpo8I68CbBUvP1z3pDvnz5-233ZPH_9_LR7fN44qbTa8CDd5HHiOqBSg7AMMIBgHO9l_9KeCctHzsFy3ffWjodRC3SDtAJAWXlDnlauzzCbQ4l7KK8mQzTnQi4vBkqLbkEjBx0mLUeOzg5OS7BKKR4E86OQduSdNawsV3KtBcNfHmfmZN3MZrVuTtbNar23fVjbsO_5K2Ix1UVMrkst6FofJP4f8Bt4L46m |
CitedBy_id | crossref_primary_10_1016_j_joitmc_2023_100161 crossref_primary_10_1016_j_sasc_2024_200103 |
Cites_doi | 10.1007/978-3-031-09173-5_22 10.1038/nature14539 10.1016/j.procs.2022.01.135 10.1016/j.agsy.2019.04.002 10.3390/jimaging7110241 10.3390/joitmc8020068 10.1186/s40852-018-0091-6 10.1080/01140671.2022.2040545 10.1049/ipr2.12171 10.1016/j.agsy.2017.01.023 10.3390/agronomy12112853 10.3917/jie.017.0117 10.3390/su15118562 10.1016/j.chemolab.2007.09.002 10.3390/joitmc7010040 10.1007/s11119-007-9032-2 10.1080/01431160802632231 10.1016/j.compag.2022.107017 10.1016/j.tifs.2023.05.012 10.3390/robotics6040024 10.24251/HICSS.2019.258 10.1016/j.compag.2020.105216 10.3389/fpls.2021.705737 10.1109/ICISC.2017.8068684 10.1126/science.aax0025 10.1093/hr/uhac003 10.1080/01431161.2023.2205984 10.1080/14479338.2016.1258995 10.1007/978-981-13-9042-5_56 10.1016/B978-0-323-85214-2.00011-2 10.1016/j.aej.2021.03.009 10.1016/j.compag.2018.07.011 10.1007/s12525-021-00475-2 10.1016/j.tplants.2018.11.007 10.3389/fpls.2021.611940 10.3390/su13105605 10.1109/CVCI51460.2020.9338663 10.1016/j.compag.2022.106812 10.1111/ajae.12212 10.5220/0010432001720178 10.3390/joitmc7010016 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) |
Copyright_xml | – notice: 2023 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.joitmc.2023.100075 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals - May need to register for free articles url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Business |
EISSN | 2199-8531 |
ExternalDocumentID | oai_doaj_org_article_348f98371ecb4c83ab5551f20d723b71 10_1016_j_joitmc_2023_100075 S2199853123001774 |
GroupedDBID | 6I. 7WY 8FL AADQD AAFTH AAKKN AAXUO AAYZJ ABDBF ABFTD ABJCF ABUWG ACACY ACGFS ADBBV ADINQ AEXQZ AFGXO AFKRA AFNRJ AFZYC AHBXF AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMRAJ ASPBG BCNDV BENPR BEZIV BGLVJ C24 C6C CCPQU DWQXO EBS EJD FDB FRNLG GROUPED_DOAJ HCIFZ IAO M0C M7S MODMG M~E OK1 PIMPY PQBIZ PQQKQ PTHSS RSV SOJ 0R~ 0SF AALRI AAYXX ABEEZ ACULB ADVLN AFJKZ AITUG AKRWK CITATION ITC PQBZA |
ID | FETCH-LOGICAL-c3585-1f3c9de918fe5542b0aefa201e63f3c8d02b1711ab181018c1f782ec43b2aa5b3 |
IEDL.DBID | DOA |
ISSN | 2199-8531 |
IngestDate | Tue Oct 22 15:06:42 EDT 2024 Thu Sep 26 16:25:22 EDT 2024 Fri Feb 23 02:35:39 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Deep learning Spectral data Citrus yield prediction Precision farming Open innovation Machine learning |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3585-1f3c9de918fe5542b0aefa201e63f3c8d02b1711ab181018c1f782ec43b2aa5b3 |
OpenAccessLink | https://doaj.org/article/348f98371ecb4c83ab5551f20d723b71 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_348f98371ecb4c83ab5551f20d723b71 crossref_primary_10_1016_j_joitmc_2023_100075 elsevier_sciencedirect_doi_10_1016_j_joitmc_2023_100075 |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of open innovation |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Hussain (bib22) 2022 Moussaid, A., El Fkihi, S., Zennayi, Y., 2020. Citrus orchards monitoring based on remote sensing and artificial intelligence techniques: a review of the literature. In: Proceedings of the 2nd International Conference on Advanced Technologies for Humanity—ICATH, Rabat, Morocco, pp. 20–21. Fan, J., Huo, T., Li, X., 2020. A review of one-stage detection algorithms in autonomous driving. In: Proceedings of the 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI). IEEE, pp. 210–214. Albrigo (bib4) 2019 Rejeb (bib43) 2022; 198 Beckman, Countryman (bib8) 2021; 103 Silva (bib47) 2023; 15 He (bib21) 2022; 195 Ye (bib57) 2008; 90 Gajdzik, Wolniak (bib16) 2022; 8 West, Bogers (bib53) 2017; 19 Alami Machichi (bib3) 2023; 44 Moussaid, Fkihi, Zennayi (bib36) 2021; 7 Al-Shanableh, F., 2022. Prediction of the annual yield of citrus growth in the guzelyurt district using fuzzy inference systems. In: Intelligent and Fuzzy Systems: Digital Acceleration and The New Normal-Proceedings of the INFUS 2022 Conference, Volume 1. Springer, pp. 168–176. Karthik, Paul, Karthikeyan (bib27) 2017 Meshram (bib32) 2021; 1 Nicolétis, É. et al., 2019. Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security. Ren (bib44) 2020; 169 Van der Burg, Bogaardt, Wolfert (bib52) 2019; 90 Dutta (bib13) 2022 Pathan (bib39) 2020; 4 Greene, D., Hoffmann, A.L., Stark, L., 2019. Better, nicer, clearer, fairer: a critical assessment of the movement for ethical artificial intelligence and machine learning. Terán-Bustamante, Martínez-Velasco, Dávila-Aragón (bib50) 2021; 7 Rodríguez (bib45) 2017; 15 . Raschka, S., 2018. Model evaluation, model selection, and algorithm selection in machine learning, arXiv preprint arXiv:1811.12808 [Preprint]. Hafeez (bib20) 2022 Wolfert (bib54) 2017; 153 Ye (bib58) 2009; 30 Singh, Kaur (bib48) 2022 Jha (bib24) 2019; 2 DJI, 2017. Agras MG-1S. Available at Moussaid (bib34) 2022 Zheng (bib61) 2021; 12 Loizou (bib30) 2019; 173 Zhang (bib60) 2022; 9 Janiesch, Zschech, Heinrich (bib23) 2021; 31 Jiang (bib25) 2022; 199 Xu (bib55) 2023 Saad El Imanni, El Harti, El Iysaouy (bib46) 2022; 12 Picon (bib40) 2022; 6 Bharati, Pramanik (bib10) 2020; 2019 Zhang, Lu (bib59) 2021; 23 Chesbrough (bib11) 2003 Karar (bib26) 2021; 60 Maes, Steppe (bib31) 2019; 24 Qiu, Zhou, Kim (bib41) 2021; 7 Touzard (bib51) 2015; 2 Berthet, Hickey, Klerkx (bib9) 2018 Molina (bib33) 2021; 13 Gan (bib17) 2018; 152 Talaviya (bib49) 2020; 4 Eshed, Lippman (bib14) 2019; 366 Ahmed (bib1) 2023 Becker, Eube (bib7) 2018; 4 Alami Machichi (bib2) 2022 LeCun, Bengio, Hinton (bib28) 2015; 521 Grimstad, From (bib19) 2017; 6 Ye (bib56) 2007; 8 Parvat, A., et al., 2017. A survey of deep-learning frameworks. In: 2017 International Conference on Inventive Systems and Control (ICISC). IEEE, pp. 1–7. Atefi (bib6) 2021; 12 Li (bib29) 2021; 15 Albrigo (10.1016/j.joitmc.2023.100075_bib4) 2019 Maes (10.1016/j.joitmc.2023.100075_bib31) 2019; 24 Saad El Imanni (10.1016/j.joitmc.2023.100075_bib46) 2022; 12 Loizou (10.1016/j.joitmc.2023.100075_bib30) 2019; 173 Qiu (10.1016/j.joitmc.2023.100075_bib41) 2021; 7 Touzard (10.1016/j.joitmc.2023.100075_bib51) 2015; 2 Eshed (10.1016/j.joitmc.2023.100075_bib14) 2019; 366 Alami Machichi (10.1016/j.joitmc.2023.100075_bib2) 2022 Beckman (10.1016/j.joitmc.2023.100075_bib8) 2021; 103 10.1016/j.joitmc.2023.100075_bib12 Zhang (10.1016/j.joitmc.2023.100075_bib60) 2022; 9 10.1016/j.joitmc.2023.100075_bib15 Chesbrough (10.1016/j.joitmc.2023.100075_bib11) 2003 10.1016/j.joitmc.2023.100075_bib18 LeCun (10.1016/j.joitmc.2023.100075_bib28) 2015; 521 Karthik (10.1016/j.joitmc.2023.100075_bib27) 2017 Molina (10.1016/j.joitmc.2023.100075_bib33) 2021; 13 Gajdzik (10.1016/j.joitmc.2023.100075_bib16) 2022; 8 Moussaid (10.1016/j.joitmc.2023.100075_bib36) 2021; 7 Alami Machichi (10.1016/j.joitmc.2023.100075_bib3) 2023; 44 Li (10.1016/j.joitmc.2023.100075_bib29) 2021; 15 Van der Burg (10.1016/j.joitmc.2023.100075_bib52) 2019; 90 Jha (10.1016/j.joitmc.2023.100075_bib24) 2019; 2 West (10.1016/j.joitmc.2023.100075_bib53) 2017; 19 Gan (10.1016/j.joitmc.2023.100075_bib17) 2018; 152 Terán-Bustamante (10.1016/j.joitmc.2023.100075_bib50) 2021; 7 Xu (10.1016/j.joitmc.2023.100075_bib55) 2023 Meshram (10.1016/j.joitmc.2023.100075_bib32) 2021; 1 Bharati (10.1016/j.joitmc.2023.100075_bib10) 2020; 2019 Singh (10.1016/j.joitmc.2023.100075_bib48) 2022 Dutta (10.1016/j.joitmc.2023.100075_bib13) 2022 He (10.1016/j.joitmc.2023.100075_bib21) 2022; 195 10.1016/j.joitmc.2023.100075_bib5 Silva (10.1016/j.joitmc.2023.100075_bib47) 2023; 15 10.1016/j.joitmc.2023.100075_bib42 Hafeez (10.1016/j.joitmc.2023.100075_bib20) 2022 Zheng (10.1016/j.joitmc.2023.100075_bib61) 2021; 12 Berthet (10.1016/j.joitmc.2023.100075_bib9) 2018 Picon (10.1016/j.joitmc.2023.100075_bib40) 2022; 6 Rejeb (10.1016/j.joitmc.2023.100075_bib43) 2022; 198 Karar (10.1016/j.joitmc.2023.100075_bib26) 2021; 60 Rodríguez (10.1016/j.joitmc.2023.100075_bib45) 2017; 15 Jiang (10.1016/j.joitmc.2023.100075_bib25) 2022; 199 Janiesch (10.1016/j.joitmc.2023.100075_bib23) 2021; 31 Talaviya (10.1016/j.joitmc.2023.100075_bib49) 2020; 4 10.1016/j.joitmc.2023.100075_bib35 10.1016/j.joitmc.2023.100075_bib37 10.1016/j.joitmc.2023.100075_bib38 Zhang (10.1016/j.joitmc.2023.100075_bib59) 2021; 23 Atefi (10.1016/j.joitmc.2023.100075_bib6) 2021; 12 Grimstad (10.1016/j.joitmc.2023.100075_bib19) 2017; 6 Hussain (10.1016/j.joitmc.2023.100075_bib22) 2022 Pathan (10.1016/j.joitmc.2023.100075_bib39) 2020; 4 Ahmed (10.1016/j.joitmc.2023.100075_bib1) 2023 Ye (10.1016/j.joitmc.2023.100075_bib58) 2009; 30 Becker (10.1016/j.joitmc.2023.100075_bib7) 2018; 4 Ren (10.1016/j.joitmc.2023.100075_bib44) 2020; 169 Moussaid (10.1016/j.joitmc.2023.100075_bib34) 2022 Wolfert (10.1016/j.joitmc.2023.100075_bib54) 2017; 153 Ye (10.1016/j.joitmc.2023.100075_bib57) 2008; 90 Ye (10.1016/j.joitmc.2023.100075_bib56) 2007; 8 |
References_xml | – volume: 2 start-page: 1 year: 2019 end-page: 12 ident: bib24 article-title: A comprehensive review on automation in agriculture using artificial intelligence publication-title: Artif. Intell. Agric. contributor: fullname: Jha – year: 2022 ident: bib20 article-title: Implementation of drone technology for farm monitoring & pesticide spraying: a review publication-title: Inf. Process. Agric. contributor: fullname: Hafeez – volume: 8 start-page: 111 year: 2007 end-page: 125 ident: bib56 article-title: Prediction of citrus yield from airborne hyperspectral imagery publication-title: Precis. Agric. contributor: fullname: Ye – start-page: 96 year: 2022 ident: bib2 article-title: CerealNet: a hybrid deep learning architecture for cereal crop mapping using Sentinel-2 time-series publication-title: Informatics contributor: fullname: Alami Machichi – volume: 23 year: 2021 ident: bib59 article-title: Study on artificial intelligence: the state of the art and future prospects publication-title: J. Ind. Inf. Integr. contributor: fullname: Lu – volume: 153 start-page: 69 year: 2017 end-page: 80 ident: bib54 article-title: Big data in smart farming–a review publication-title: Agric. Syst. contributor: fullname: Wolfert – start-page: 1 year: 2023 end-page: 97 ident: bib1 article-title: Deep learning modelling techniques: current progress, applications, advantages, and challenges publication-title: Artif. Intell. Rev. contributor: fullname: Ahmed – volume: 7 start-page: 241 year: 2021 ident: bib36 article-title: Tree crowns segmentation and classification in overlapping orchards based on satellite images and unsupervised learning algorithms publication-title: J. Imaging contributor: fullname: Zennayi – volume: 7 start-page: 40 year: 2021 ident: bib50 article-title: Knowledge management for open innovation: Bayesian networks through machine learning publication-title: J. Open Innov.: Technol., Mark., Complex. contributor: fullname: Dávila-Aragón – volume: 12 year: 2021 ident: bib6 article-title: Robotic technologies for high-throughput plant phenotyping: contemporary reviews and future perspectives publication-title: Front. Plant Sci. contributor: fullname: Atefi – volume: 198 year: 2022 ident: bib43 article-title: Drones in agriculture: a review and bibliometric analysis publication-title: Comput. Electron. Agric. contributor: fullname: Rejeb – volume: 4 start-page: 1 year: 2018 end-page: 16 ident: bib7 article-title: Open innovation concept: Integrating universities and business in digital age publication-title: J. Open Innov.: Technol. Mark. Complex. contributor: fullname: Eube – year: 2017 ident: bib27 article-title: Deep Learning Innovations and Their Convergence with Big Data contributor: fullname: Karthikeyan – volume: 1 year: 2021 ident: bib32 article-title: Machine learning in agriculture domain: a state-of-art survey publication-title: Artif. Intell. Life Sci. contributor: fullname: Meshram – volume: 7 start-page: 16 year: 2021 ident: bib41 article-title: A new path of sustainable development in traditional agricultural areas from the perspective of open innovation—a coupling and coordination study on the agricultural industry and the tourism industry publication-title: J. Open Innov.: Technol. Mark. Complex. contributor: fullname: Kim – volume: 169 year: 2020 ident: bib44 article-title: Agricultural robotics research applicable to poultry production: a review publication-title: Comput. Electron. Agric. contributor: fullname: Ren – volume: 366 start-page: eaax0025 year: 2019 ident: bib14 article-title: Revolutions in agriculture chart a course for targeted breeding of old and new crops publication-title: Science contributor: fullname: Lippman – volume: 15 start-page: 8562 year: 2023 ident: bib47 article-title: Open innovation in agribusiness: barriers and challenges in the transition to agriculture 4.0 publication-title: Sustainability contributor: fullname: Silva – volume: 24 start-page: 152 year: 2019 end-page: 164 ident: bib31 article-title: Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture publication-title: Trends Plant Sci. contributor: fullname: Steppe – volume: 60 start-page: 4423 year: 2021 end-page: 4432 ident: bib26 article-title: A new mobile application of agricultural pests recognition using deep learning in cloud computing system publication-title: Alex. Eng. J. contributor: fullname: Karar – volume: 4 start-page: 58 year: 2020 end-page: 73 ident: bib49 article-title: Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides publication-title: Artif. Intell. Agric. contributor: fullname: Talaviya – volume: 6 start-page: 24 year: 2017 ident: bib19 article-title: The Thorvald II agricultural robotic system publication-title: Robotics contributor: fullname: From – volume: 15 start-page: 7 year: 2017 ident: bib45 article-title: Machine learning applied to the prediction of citrus production publication-title: Span. J. Agric. Res. contributor: fullname: Rodríguez – year: 2019 ident: bib4 article-title: Citrus contributor: fullname: Albrigo – volume: 12 year: 2021 ident: bib61 article-title: A method of green citrus detection in natural environments using a deep convolutional neural network publication-title: Front. Plant Sci. contributor: fullname: Zheng – volume: 173 start-page: 482 year: 2019 end-page: 490 ident: bib30 article-title: The role of agriculture as a development tool for a regional economy publication-title: Agric. Syst. contributor: fullname: Loizou – volume: 195 year: 2022 ident: bib21 article-title: Fruit yield prediction and estimation in orchards: a state-of-the-art comprehensive review for both direct and indirect methods publication-title: Comput. Electron. Agric. contributor: fullname: He – volume: 2019 start-page: 657 year: 2020 end-page: 668 ident: bib10 article-title: Deep learning techniques—R-CNN to mask R-CNN: a survey publication-title: Comput. Intell. Pattern Recognit.: Proc. CIPR contributor: fullname: Pramanik – start-page: 57 year: 2022 end-page: 80 ident: bib48 article-title: A systematic review of artificial intelligence in agriculture publication-title: Deep Learn. Sustain. Agric. contributor: fullname: Kaur – year: 2022 ident: bib22 article-title: Design and Development of an Unmanned Aerial Vehicle for Precision Agriculture. PhD Thesis contributor: fullname: Hussain – volume: 30 start-page: 4621 year: 2009 end-page: 4642 ident: bib58 article-title: Estimation of citrus yield from canopy spectral features determined by airborne hyperspectral imagery publication-title: Int. J. Remote Sens. contributor: fullname: Ye – volume: 90 start-page: 132 year: 2008 end-page: 144 ident: bib57 article-title: Potential of airborne hyperspectral imagery to estimate fruit yield in citrus publication-title: Chemom. Intell. Lab. Syst. contributor: fullname: Ye – volume: 199 start-page: 1066 year: 2022 end-page: 1073 ident: bib25 article-title: A Review of Yolo algorithm developments publication-title: Procedia Comput. Sci. contributor: fullname: Jiang – volume: 19 start-page: 43 year: 2017 end-page: 50 ident: bib53 article-title: Open innovation: current status and research opportunities publication-title: Innovation contributor: fullname: Bogers – volume: 152 start-page: 117 year: 2018 end-page: 125 ident: bib17 article-title: Immature green citrus fruit detection using color and thermal images publication-title: Comput. Electron. Agric. contributor: fullname: Gan – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib28 article-title: Deep learning publication-title: Nature contributor: fullname: Hinton – volume: 15 start-page: 1998 year: 2021 end-page: 2009 ident: bib29 article-title: Lemon-YOLO: an efficient object detection method for lemons in the natural environment publication-title: IET Image Process. contributor: fullname: Li – volume: 4 start-page: 81 year: 2020 end-page: 95 ident: bib39 article-title: Artificial cognition for applications in smart agriculture: a comprehensive review publication-title: Artif. Intell. Agric. contributor: fullname: Pathan – volume: 103 start-page: 1595 year: 2021 end-page: 1611 ident: bib8 article-title: The importance of agriculture in the economy: impacts from COVID-19 publication-title: Am. J. Agric. Econ. contributor: fullname: Countryman – volume: 9 year: 2022 ident: bib60 article-title: Deep-learning-based in-field citrus fruit detection and tracking publication-title: Hortic. Res. contributor: fullname: Zhang – start-page: 80 year: 2022 ident: bib34 article-title: Machine learning applied to tree crop yield prediction using field data and satellite imagery: a case study in a citrus orchard publication-title: Informatics contributor: fullname: Moussaid – volume: 44 start-page: 2717 year: 2023 end-page: 2753 ident: bib3 article-title: Crop mapping using supervised machine learning and deep learning: a systematic literature review publication-title: Int. J. Remote Sens. contributor: fullname: Alami Machichi – volume: 6 start-page: 199 year: 2022 end-page: 210 ident: bib40 article-title: Deep convolutional neural network for damaged vegetation segmentation from RGB images based on virtual NIR-channel estimation publication-title: Artif. Intell. Agric. contributor: fullname: Picon – volume: 8 start-page: 68 year: 2022 ident: bib16 article-title: Smart production workers in terms of creativity and innovation: the implication for open innovation publication-title: J. Open Innov.: Technol. Mark. Complex. contributor: fullname: Wolniak – year: 2023 ident: bib55 article-title: Trends in valorization of citrus by-products from the net-zero perspective: Green processing innovation combined with applications in emission reduction publication-title: Trends Food Sci. Technol. contributor: fullname: Xu – volume: 13 start-page: 5605 year: 2021 ident: bib33 article-title: Farmers’ participation in operational groups to foster innovation in the agricultural sector: an Italian case study publication-title: Sustainability contributor: fullname: Molina – volume: 12 start-page: 2853 year: 2022 ident: bib46 article-title: Wheat yield estimation using remote sensing indices derived from sentinel-2 time series and google earth engine in a highly fragmented and heterogeneous agricultural region publication-title: Agronomy contributor: fullname: El Iysaouy – start-page: 1 year: 2022 end-page: 22 ident: bib13 article-title: Factors associated with citrus fruit abscission and management strategies developed so far: a review publication-title: N. Z. J. Crop Hortic. Sci. contributor: fullname: Dutta – volume: 31 start-page: 685 year: 2021 end-page: 695 ident: bib23 article-title: Machine learning and deep learning publication-title: Electron. Mark. contributor: fullname: Heinrich – volume: 2 start-page: 117 year: 2015 end-page: 142 ident: bib51 article-title: Innovation systems and knowledge communities in the agriculture and agrifood sector: a literature review 1 publication-title: J. Innov. Econ. Manag. contributor: fullname: Touzard – volume: 90 year: 2019 ident: bib52 article-title: Ethics of smart farming: Current questions and directions for responsible innovation towards the future publication-title: NJAS-Wagening. J. Life Sci. contributor: fullname: Wolfert – year: 2003 ident: bib11 article-title: Open Innovation: The New Imperative for Creating and Profiting from Technology contributor: fullname: Chesbrough – year: 2018 ident: bib9 article-title: Opening Design and Innovation Processes in Agriculture: Insights from Design and Management Sciences and Future Directions, Agricultural Systems contributor: fullname: Klerkx – year: 2003 ident: 10.1016/j.joitmc.2023.100075_bib11 contributor: fullname: Chesbrough – year: 2022 ident: 10.1016/j.joitmc.2023.100075_bib20 article-title: Implementation of drone technology for farm monitoring & pesticide spraying: a review publication-title: Inf. Process. Agric. contributor: fullname: Hafeez – ident: 10.1016/j.joitmc.2023.100075_bib5 doi: 10.1007/978-3-031-09173-5_22 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.joitmc.2023.100075_bib28 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 contributor: fullname: LeCun – volume: 199 start-page: 1066 year: 2022 ident: 10.1016/j.joitmc.2023.100075_bib25 article-title: A Review of Yolo algorithm developments publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2022.01.135 contributor: fullname: Jiang – volume: 173 start-page: 482 year: 2019 ident: 10.1016/j.joitmc.2023.100075_bib30 article-title: The role of agriculture as a development tool for a regional economy publication-title: Agric. Syst. doi: 10.1016/j.agsy.2019.04.002 contributor: fullname: Loizou – start-page: 80 year: 2022 ident: 10.1016/j.joitmc.2023.100075_bib34 article-title: Machine learning applied to tree crop yield prediction using field data and satellite imagery: a case study in a citrus orchard contributor: fullname: Moussaid – year: 2019 ident: 10.1016/j.joitmc.2023.100075_bib4 contributor: fullname: Albrigo – volume: 7 start-page: 241 issue: 11 year: 2021 ident: 10.1016/j.joitmc.2023.100075_bib36 article-title: Tree crowns segmentation and classification in overlapping orchards based on satellite images and unsupervised learning algorithms publication-title: J. Imaging doi: 10.3390/jimaging7110241 contributor: fullname: Moussaid – start-page: 1 year: 2023 ident: 10.1016/j.joitmc.2023.100075_bib1 article-title: Deep learning modelling techniques: current progress, applications, advantages, and challenges publication-title: Artif. Intell. Rev. contributor: fullname: Ahmed – volume: 8 start-page: 68 issue: 2 year: 2022 ident: 10.1016/j.joitmc.2023.100075_bib16 article-title: Smart production workers in terms of creativity and innovation: the implication for open innovation publication-title: J. Open Innov.: Technol. Mark. Complex. doi: 10.3390/joitmc8020068 contributor: fullname: Gajdzik – volume: 2 start-page: 1 year: 2019 ident: 10.1016/j.joitmc.2023.100075_bib24 article-title: A comprehensive review on automation in agriculture using artificial intelligence publication-title: Artif. Intell. Agric. contributor: fullname: Jha – volume: 4 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.joitmc.2023.100075_bib7 article-title: Open innovation concept: Integrating universities and business in digital age publication-title: J. Open Innov.: Technol. Mark. Complex. doi: 10.1186/s40852-018-0091-6 contributor: fullname: Becker – start-page: 1 year: 2022 ident: 10.1016/j.joitmc.2023.100075_bib13 article-title: Factors associated with citrus fruit abscission and management strategies developed so far: a review publication-title: N. Z. J. Crop Hortic. Sci. doi: 10.1080/01140671.2022.2040545 contributor: fullname: Dutta – volume: 15 start-page: 1998 issue: 9 year: 2021 ident: 10.1016/j.joitmc.2023.100075_bib29 article-title: Lemon-YOLO: an efficient object detection method for lemons in the natural environment publication-title: IET Image Process. doi: 10.1049/ipr2.12171 contributor: fullname: Li – volume: 153 start-page: 69 year: 2017 ident: 10.1016/j.joitmc.2023.100075_bib54 article-title: Big data in smart farming–a review publication-title: Agric. Syst. doi: 10.1016/j.agsy.2017.01.023 contributor: fullname: Wolfert – volume: 4 start-page: 81 year: 2020 ident: 10.1016/j.joitmc.2023.100075_bib39 article-title: Artificial cognition for applications in smart agriculture: a comprehensive review publication-title: Artif. Intell. Agric. contributor: fullname: Pathan – volume: 12 start-page: 2853 issue: 11 year: 2022 ident: 10.1016/j.joitmc.2023.100075_bib46 article-title: Wheat yield estimation using remote sensing indices derived from sentinel-2 time series and google earth engine in a highly fragmented and heterogeneous agricultural region publication-title: Agronomy doi: 10.3390/agronomy12112853 contributor: fullname: Saad El Imanni – volume: 2 start-page: 117 year: 2015 ident: 10.1016/j.joitmc.2023.100075_bib51 article-title: Innovation systems and knowledge communities in the agriculture and agrifood sector: a literature review 1 publication-title: J. Innov. Econ. Manag. doi: 10.3917/jie.017.0117 contributor: fullname: Touzard – volume: 15 start-page: 8562 issue: 11 year: 2023 ident: 10.1016/j.joitmc.2023.100075_bib47 article-title: Open innovation in agribusiness: barriers and challenges in the transition to agriculture 4.0 publication-title: Sustainability doi: 10.3390/su15118562 contributor: fullname: Silva – volume: 23 year: 2021 ident: 10.1016/j.joitmc.2023.100075_bib59 article-title: Study on artificial intelligence: the state of the art and future prospects publication-title: J. Ind. Inf. Integr. contributor: fullname: Zhang – volume: 1 year: 2021 ident: 10.1016/j.joitmc.2023.100075_bib32 article-title: Machine learning in agriculture domain: a state-of-art survey publication-title: Artif. Intell. Life Sci. contributor: fullname: Meshram – year: 2018 ident: 10.1016/j.joitmc.2023.100075_bib9 contributor: fullname: Berthet – volume: 15 start-page: 7 issue: 2 year: 2017 ident: 10.1016/j.joitmc.2023.100075_bib45 article-title: Machine learning applied to the prediction of citrus production publication-title: Span. J. Agric. Res. contributor: fullname: Rodríguez – volume: 90 start-page: 132 issue: 2 year: 2008 ident: 10.1016/j.joitmc.2023.100075_bib57 article-title: Potential of airborne hyperspectral imagery to estimate fruit yield in citrus publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2007.09.002 contributor: fullname: Ye – volume: 7 start-page: 40 issue: 1 year: 2021 ident: 10.1016/j.joitmc.2023.100075_bib50 article-title: Knowledge management for open innovation: Bayesian networks through machine learning publication-title: J. Open Innov.: Technol., Mark., Complex. doi: 10.3390/joitmc7010040 contributor: fullname: Terán-Bustamante – volume: 6 start-page: 199 year: 2022 ident: 10.1016/j.joitmc.2023.100075_bib40 article-title: Deep convolutional neural network for damaged vegetation segmentation from RGB images based on virtual NIR-channel estimation publication-title: Artif. Intell. Agric. contributor: fullname: Picon – volume: 8 start-page: 111 year: 2007 ident: 10.1016/j.joitmc.2023.100075_bib56 article-title: Prediction of citrus yield from airborne hyperspectral imagery publication-title: Precis. Agric. doi: 10.1007/s11119-007-9032-2 contributor: fullname: Ye – volume: 30 start-page: 4621 issue: 18 year: 2009 ident: 10.1016/j.joitmc.2023.100075_bib58 article-title: Estimation of citrus yield from canopy spectral features determined by airborne hyperspectral imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802632231 contributor: fullname: Ye – volume: 198 year: 2022 ident: 10.1016/j.joitmc.2023.100075_bib43 article-title: Drones in agriculture: a review and bibliometric analysis publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107017 contributor: fullname: Rejeb – year: 2023 ident: 10.1016/j.joitmc.2023.100075_bib55 article-title: Trends in valorization of citrus by-products from the net-zero perspective: Green processing innovation combined with applications in emission reduction publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2023.05.012 contributor: fullname: Xu – ident: 10.1016/j.joitmc.2023.100075_bib42 – volume: 6 start-page: 24 issue: 4 year: 2017 ident: 10.1016/j.joitmc.2023.100075_bib19 article-title: The Thorvald II agricultural robotic system publication-title: Robotics doi: 10.3390/robotics6040024 contributor: fullname: Grimstad – ident: 10.1016/j.joitmc.2023.100075_bib18 doi: 10.24251/HICSS.2019.258 – volume: 169 year: 2020 ident: 10.1016/j.joitmc.2023.100075_bib44 article-title: Agricultural robotics research applicable to poultry production: a review publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105216 contributor: fullname: Ren – volume: 12 year: 2021 ident: 10.1016/j.joitmc.2023.100075_bib61 article-title: A method of green citrus detection in natural environments using a deep convolutional neural network publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.705737 contributor: fullname: Zheng – ident: 10.1016/j.joitmc.2023.100075_bib38 doi: 10.1109/ICISC.2017.8068684 – volume: 366 start-page: eaax0025 issue: 6466 year: 2019 ident: 10.1016/j.joitmc.2023.100075_bib14 article-title: Revolutions in agriculture chart a course for targeted breeding of old and new crops publication-title: Science doi: 10.1126/science.aax0025 contributor: fullname: Eshed – volume: 9 year: 2022 ident: 10.1016/j.joitmc.2023.100075_bib60 article-title: Deep-learning-based in-field citrus fruit detection and tracking publication-title: Hortic. Res. doi: 10.1093/hr/uhac003 contributor: fullname: Zhang – volume: 4 start-page: 58 year: 2020 ident: 10.1016/j.joitmc.2023.100075_bib49 article-title: Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides publication-title: Artif. Intell. Agric. contributor: fullname: Talaviya – volume: 44 start-page: 2717 issue: 8 year: 2023 ident: 10.1016/j.joitmc.2023.100075_bib3 article-title: Crop mapping using supervised machine learning and deep learning: a systematic literature review publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2023.2205984 contributor: fullname: Alami Machichi – volume: 19 start-page: 43 issue: 1 year: 2017 ident: 10.1016/j.joitmc.2023.100075_bib53 article-title: Open innovation: current status and research opportunities publication-title: Innovation doi: 10.1080/14479338.2016.1258995 contributor: fullname: West – volume: 2019 start-page: 657 year: 2020 ident: 10.1016/j.joitmc.2023.100075_bib10 article-title: Deep learning techniques—R-CNN to mask R-CNN: a survey publication-title: Comput. Intell. Pattern Recognit.: Proc. CIPR doi: 10.1007/978-981-13-9042-5_56 contributor: fullname: Bharati – ident: 10.1016/j.joitmc.2023.100075_bib37 – start-page: 57 year: 2022 ident: 10.1016/j.joitmc.2023.100075_bib48 article-title: A systematic review of artificial intelligence in agriculture publication-title: Deep Learn. Sustain. Agric. doi: 10.1016/B978-0-323-85214-2.00011-2 contributor: fullname: Singh – volume: 90 year: 2019 ident: 10.1016/j.joitmc.2023.100075_bib52 article-title: Ethics of smart farming: Current questions and directions for responsible innovation towards the future publication-title: NJAS-Wagening. J. Life Sci. contributor: fullname: Van der Burg – volume: 60 start-page: 4423 issue: 5 year: 2021 ident: 10.1016/j.joitmc.2023.100075_bib26 article-title: A new mobile application of agricultural pests recognition using deep learning in cloud computing system publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.03.009 contributor: fullname: Karar – volume: 152 start-page: 117 year: 2018 ident: 10.1016/j.joitmc.2023.100075_bib17 article-title: Immature green citrus fruit detection using color and thermal images publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.07.011 contributor: fullname: Gan – start-page: 96 year: 2022 ident: 10.1016/j.joitmc.2023.100075_bib2 article-title: CerealNet: a hybrid deep learning architecture for cereal crop mapping using Sentinel-2 time-series contributor: fullname: Alami Machichi – volume: 31 start-page: 685 issue: 3 year: 2021 ident: 10.1016/j.joitmc.2023.100075_bib23 article-title: Machine learning and deep learning publication-title: Electron. Mark. doi: 10.1007/s12525-021-00475-2 contributor: fullname: Janiesch – volume: 24 start-page: 152 issue: 2 year: 2019 ident: 10.1016/j.joitmc.2023.100075_bib31 article-title: Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2018.11.007 contributor: fullname: Maes – ident: 10.1016/j.joitmc.2023.100075_bib12 – volume: 12 year: 2021 ident: 10.1016/j.joitmc.2023.100075_bib6 article-title: Robotic technologies for high-throughput plant phenotyping: contemporary reviews and future perspectives publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.611940 contributor: fullname: Atefi – volume: 13 start-page: 5605 issue: 10 year: 2021 ident: 10.1016/j.joitmc.2023.100075_bib33 article-title: Farmers’ participation in operational groups to foster innovation in the agricultural sector: an Italian case study publication-title: Sustainability doi: 10.3390/su13105605 contributor: fullname: Molina – ident: 10.1016/j.joitmc.2023.100075_bib15 doi: 10.1109/CVCI51460.2020.9338663 – volume: 195 year: 2022 ident: 10.1016/j.joitmc.2023.100075_bib21 article-title: Fruit yield prediction and estimation in orchards: a state-of-the-art comprehensive review for both direct and indirect methods publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106812 contributor: fullname: He – year: 2022 ident: 10.1016/j.joitmc.2023.100075_bib22 contributor: fullname: Hussain – volume: 103 start-page: 1595 issue: 5 year: 2021 ident: 10.1016/j.joitmc.2023.100075_bib8 article-title: The importance of agriculture in the economy: impacts from COVID-19 publication-title: Am. J. Agric. Econ. doi: 10.1111/ajae.12212 contributor: fullname: Beckman – year: 2017 ident: 10.1016/j.joitmc.2023.100075_bib27 contributor: fullname: Karthik – ident: 10.1016/j.joitmc.2023.100075_bib35 doi: 10.5220/0010432001720178 – volume: 7 start-page: 16 issue: 1 year: 2021 ident: 10.1016/j.joitmc.2023.100075_bib41 article-title: A new path of sustainable development in traditional agricultural areas from the perspective of open innovation—a coupling and coordination study on the agricultural industry and the tourism industry publication-title: J. Open Innov.: Technol. Mark. Complex. doi: 10.3390/joitmc7010016 contributor: fullname: Qiu |
SSID | ssj0002020048 |
Score | 2.3008099 |
Snippet | The goal of this paper is to develop a deep learning model for predicting citrus yield. The data used consists of two sources: (1) field data that includes... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 100075 |
SubjectTerms | Citrus yield prediction Deep learning Machine learning Open innovation Precision farming Spectral data |
Title | Citrus yield prediction using deep learning techniques: A combination of field and satellite data |
URI | https://dx.doi.org/10.1016/j.joitmc.2023.100075 https://doaj.org/article/348f98371ecb4c83ab5551f20d723b71 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA1SQdyIT6yPkoXbwcljJhl3tViKRRdisbshydyUFmyL7ca_N4-ZMivduJ2EZDgncO8lJ-cidMchp7rQkFjLRMJJahOZaZnoQmoCSglu_Hvnl9d8NOHP02zaavXlNWHRHjgCd8-4tIWroggYzY1kSmcuyFuaVoIyLWLhkxatYmoRrtc8-7J5KxcEXYvVfPvpXQsp89qA1EsLW7EoWPa3QlIrzAyP0VGdH-J-_K8TtAfLU3TQyNPPkBqEZxL42yvP8PrL37N4bLGfMcMVwBrXnSBmeGfQunnAfezOliuDAxN4ZXHQrmG1rPBGBVvOLWCvFz1Hk-HT-2CU1G0SEsNcsp8Qy0xRQUGkBZccUJ0qsMoFdsiZG5JVSjURhChNvJuXNMS6tAAMZ5oqlWl2gTrL1RIuEU5zYJk1mckAuJCFFg57TblgboBQ0UVJA1i5jm4YZSMTW5QR4NIDXEaAu-jRo7qb672swwfHcFkzXP7FcBeJhpOyTgtiuHdLzX_d_uo_tr9Gh37JKA-7QR1HMty6RGSre2i_P377GPfC2fsBiZjc3Q |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Citrus+yield+prediction+using+deep+learning+techniques%3A+A+combination+of+field+and+satellite+data&rft.jtitle=Journal+of+open+innovation&rft.au=Abdellatif+Moussaid&rft.au=Sanaa+El+Fkihi&rft.au=Yahya+Zennayi&rft.au=Ismail+Kassou&rft.date=2023-06-01&rft.pub=Elsevier&rft.eissn=2199-8531&rft.volume=9&rft.issue=2&rft.spage=100075&rft_id=info:doi/10.1016%2Fj.joitmc.2023.100075&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_348f98371ecb4c83ab5551f20d723b71 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-8531&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-8531&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-8531&client=summon |