Citrus yield prediction using deep learning techniques: A combination of field and satellite data

The goal of this paper is to develop a deep learning model for predicting citrus yield. The data used consists of two sources: (1) field data that includes information on fertilization and phytosanitary treatment products, water quantities used for irrigation, climatic data (temperature, precipitati...

Full description

Saved in:
Bibliographic Details
Published inJournal of open innovation Vol. 9; no. 2; p. 100075
Main Authors Moussaid, Abdellatif, El Fkihi, Sanaa, Zennayi, Yahya, Kassou, Ismail, Bourzeix, François, Lahlou, Ouiam, El Mansouri, Loubna, Imani, Yasmina
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The goal of this paper is to develop a deep learning model for predicting citrus yield. The data used consists of two sources: (1) field data that includes information on fertilization and phytosanitary treatment products, water quantities used for irrigation, climatic data (temperature, precipitation, humidity, wind speed, and solar radiation), parcel sizes, and rootstock types for each parcel. (2) The second source comprises images representing the normalized difference vegetation index (NDVI) and the normalized difference water index (NDWI), extracted from Sentinel-2 images taken before the harvest period. The data was collected over a period of 5 years, from 2015 to 2019, and pertains to 50 parcels within a Moroccan orchard. Following data preparation, we constructed a deep learning neural network model with multiple layers and parameters. This model takes the information from each parcel as input for training purposes. Subsequently, we evaluated the model using new data obtained from additional parcels located at various sites within our orchard. The test phase resulted in the following scores: 0.0458 (Mean Squared Error), 0.1450 (Mean Absolute Error), and 0.10 (Percentage Error). These scores reflect the strong predictive capability of our approach. •Deep learning model predicts citrus yield using field data and satellite images.•Model takes NDVI and NDWI images as input along with field data.•Data collected from Moroccan citrus orchard for 5 years.•Prediction error below 10 %.
AbstractList The goal of this paper is to develop a deep learning model for predicting citrus yield. The data used consists of two sources: (1) field data that includes information on fertilization and phytosanitary treatment products, water quantities used for irrigation, climatic data (temperature, precipitation, humidity, wind speed, and solar radiation), parcel sizes, and rootstock types for each parcel. (2) The second source comprises images representing the normalized difference vegetation index (NDVI) and the normalized difference water index (NDWI), extracted from Sentinel-2 images taken before the harvest period.The data was collected over a period of 5 years, from 2015 to 2019, and pertains to 50 parcels within a Moroccan orchard. Following data preparation, we constructed a deep learning neural network model with multiple layers and parameters. This model takes the information from each parcel as input for training purposes. Subsequently, we evaluated the model using new data obtained from additional parcels located at various sites within our orchard.The test phase resulted in the following scores: 0.0458 (Mean Squared Error), 0.1450 (Mean Absolute Error), and 0.10 (Percentage Error). These scores reflect the strong predictive capability of our approach.
The goal of this paper is to develop a deep learning model for predicting citrus yield. The data used consists of two sources: (1) field data that includes information on fertilization and phytosanitary treatment products, water quantities used for irrigation, climatic data (temperature, precipitation, humidity, wind speed, and solar radiation), parcel sizes, and rootstock types for each parcel. (2) The second source comprises images representing the normalized difference vegetation index (NDVI) and the normalized difference water index (NDWI), extracted from Sentinel-2 images taken before the harvest period. The data was collected over a period of 5 years, from 2015 to 2019, and pertains to 50 parcels within a Moroccan orchard. Following data preparation, we constructed a deep learning neural network model with multiple layers and parameters. This model takes the information from each parcel as input for training purposes. Subsequently, we evaluated the model using new data obtained from additional parcels located at various sites within our orchard. The test phase resulted in the following scores: 0.0458 (Mean Squared Error), 0.1450 (Mean Absolute Error), and 0.10 (Percentage Error). These scores reflect the strong predictive capability of our approach. •Deep learning model predicts citrus yield using field data and satellite images.•Model takes NDVI and NDWI images as input along with field data.•Data collected from Moroccan citrus orchard for 5 years.•Prediction error below 10 %.
ArticleNumber 100075
Author Lahlou, Ouiam
El Fkihi, Sanaa
Zennayi, Yahya
Imani, Yasmina
Moussaid, Abdellatif
El Mansouri, Loubna
Kassou, Ismail
Bourzeix, François
Author_xml – sequence: 1
  givenname: Abdellatif
  surname: Moussaid
  fullname: Moussaid, Abdellatif
  email: abdelatif.moussaid@gmail.com
  organization: Information Retrieval and Data Analytics Group, ADMIR Laboratory, Rabat IT Center, ENSIAS, Mohammed V University in Rabat, Rabat 10000, Morocco
– sequence: 2
  givenname: Sanaa
  surname: El Fkihi
  fullname: El Fkihi, Sanaa
  organization: Information Retrieval and Data Analytics Group, ADMIR Laboratory, Rabat IT Center, ENSIAS, Mohammed V University in Rabat, Rabat 10000, Morocco
– sequence: 3
  givenname: Yahya
  surname: Zennayi
  fullname: Zennayi, Yahya
  organization: Embedded Systems and Artificial Intelligence Department, Moroccan Foundation for Advanced Science Innovation and Research, Rabat 10100, Morocco
– sequence: 4
  givenname: Ismail
  surname: Kassou
  fullname: Kassou, Ismail
  organization: Information Retrieval and Data Analytics Group, ADMIR Laboratory, Rabat IT Center, ENSIAS, Mohammed V University in Rabat, Rabat 10000, Morocco
– sequence: 5
  givenname: François
  surname: Bourzeix
  fullname: Bourzeix, François
  organization: Embedded Systems and Artificial Intelligence Department, Moroccan Foundation for Advanced Science Innovation and Research, Rabat 10100, Morocco
– sequence: 6
  givenname: Ouiam
  surname: Lahlou
  fullname: Lahlou, Ouiam
  organization: Hassan II Institute of Agronomy and Veterinary, Morocco
– sequence: 7
  givenname: Loubna
  surname: El Mansouri
  fullname: El Mansouri, Loubna
  organization: Hassan II Institute of Agronomy and Veterinary, Morocco
– sequence: 8
  givenname: Yasmina
  surname: Imani
  fullname: Imani, Yasmina
  organization: Hassan II Institute of Agronomy and Veterinary, Morocco
BookMark eNp9kMtuHCEQRZHlSHYc_4EX_MBMeDRu2otI1igPS5aySdaogMKh1QMTYCL578NMR1FWWQHFraOq85ZcppyQkDvOtpzx-_fzds6x7d1WMCF7ibFRXZBrwadpo5Xkl__cr8htrXOP9Cxjg74msIutHCt9jbh4eijoo2sxJ3qsMb1Qj3igC0JJp1dD9yPFn0esD_SRury3McE5nQMNZwIkTys0XJbYkHpo8I68CbBUvP1z3pDvnz5-233ZPH_9_LR7fN44qbTa8CDd5HHiOqBSg7AMMIBgHO9l_9KeCctHzsFy3ffWjodRC3SDtAJAWXlDnlauzzCbQ4l7KK8mQzTnQi4vBkqLbkEjBx0mLUeOzg5OS7BKKR4E86OQduSdNawsV3KtBcNfHmfmZN3MZrVuTtbNar23fVjbsO_5K2Ix1UVMrkst6FofJP4f8Bt4L46m
CitedBy_id crossref_primary_10_1016_j_joitmc_2023_100161
crossref_primary_10_1016_j_sasc_2024_200103
Cites_doi 10.1007/978-3-031-09173-5_22
10.1038/nature14539
10.1016/j.procs.2022.01.135
10.1016/j.agsy.2019.04.002
10.3390/jimaging7110241
10.3390/joitmc8020068
10.1186/s40852-018-0091-6
10.1080/01140671.2022.2040545
10.1049/ipr2.12171
10.1016/j.agsy.2017.01.023
10.3390/agronomy12112853
10.3917/jie.017.0117
10.3390/su15118562
10.1016/j.chemolab.2007.09.002
10.3390/joitmc7010040
10.1007/s11119-007-9032-2
10.1080/01431160802632231
10.1016/j.compag.2022.107017
10.1016/j.tifs.2023.05.012
10.3390/robotics6040024
10.24251/HICSS.2019.258
10.1016/j.compag.2020.105216
10.3389/fpls.2021.705737
10.1109/ICISC.2017.8068684
10.1126/science.aax0025
10.1093/hr/uhac003
10.1080/01431161.2023.2205984
10.1080/14479338.2016.1258995
10.1007/978-981-13-9042-5_56
10.1016/B978-0-323-85214-2.00011-2
10.1016/j.aej.2021.03.009
10.1016/j.compag.2018.07.011
10.1007/s12525-021-00475-2
10.1016/j.tplants.2018.11.007
10.3389/fpls.2021.611940
10.3390/su13105605
10.1109/CVCI51460.2020.9338663
10.1016/j.compag.2022.106812
10.1111/ajae.12212
10.5220/0010432001720178
10.3390/joitmc7010016
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.joitmc.2023.100075
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals - May need to register for free articles
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 2199-8531
ExternalDocumentID oai_doaj_org_article_348f98371ecb4c83ab5551f20d723b71
10_1016_j_joitmc_2023_100075
S2199853123001774
GroupedDBID 6I.
7WY
8FL
AADQD
AAFTH
AAKKN
AAXUO
AAYZJ
ABDBF
ABFTD
ABJCF
ABUWG
ACACY
ACGFS
ADBBV
ADINQ
AEXQZ
AFGXO
AFKRA
AFNRJ
AFZYC
AHBXF
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMRAJ
ASPBG
BCNDV
BENPR
BEZIV
BGLVJ
C24
C6C
CCPQU
DWQXO
EBS
EJD
FDB
FRNLG
GROUPED_DOAJ
HCIFZ
IAO
M0C
M7S
MODMG
M~E
OK1
PIMPY
PQBIZ
PQQKQ
PTHSS
RSV
SOJ
0R~
0SF
AALRI
AAYXX
ABEEZ
ACULB
ADVLN
AFJKZ
AITUG
AKRWK
CITATION
ITC
PQBZA
ID FETCH-LOGICAL-c3585-1f3c9de918fe5542b0aefa201e63f3c8d02b1711ab181018c1f782ec43b2aa5b3
IEDL.DBID DOA
ISSN 2199-8531
IngestDate Tue Oct 22 15:06:42 EDT 2024
Thu Sep 26 16:25:22 EDT 2024
Fri Feb 23 02:35:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
Spectral data
Citrus yield prediction
Precision farming
Open innovation
Machine learning
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3585-1f3c9de918fe5542b0aefa201e63f3c8d02b1711ab181018c1f782ec43b2aa5b3
OpenAccessLink https://doaj.org/article/348f98371ecb4c83ab5551f20d723b71
ParticipantIDs doaj_primary_oai_doaj_org_article_348f98371ecb4c83ab5551f20d723b71
crossref_primary_10_1016_j_joitmc_2023_100075
elsevier_sciencedirect_doi_10_1016_j_joitmc_2023_100075
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of open innovation
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Hussain (bib22) 2022
Moussaid, A., El Fkihi, S., Zennayi, Y., 2020. Citrus orchards monitoring based on remote sensing and artificial intelligence techniques: a review of the literature. In: Proceedings of the 2nd International Conference on Advanced Technologies for Humanity—ICATH, Rabat, Morocco, pp. 20–21.
Fan, J., Huo, T., Li, X., 2020. A review of one-stage detection algorithms in autonomous driving. In: Proceedings of the 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI). IEEE, pp. 210–214.
Albrigo (bib4) 2019
Rejeb (bib43) 2022; 198
Beckman, Countryman (bib8) 2021; 103
Silva (bib47) 2023; 15
He (bib21) 2022; 195
Ye (bib57) 2008; 90
Gajdzik, Wolniak (bib16) 2022; 8
West, Bogers (bib53) 2017; 19
Alami Machichi (bib3) 2023; 44
Moussaid, Fkihi, Zennayi (bib36) 2021; 7
Al-Shanableh, F., 2022. Prediction of the annual yield of citrus growth in the guzelyurt district using fuzzy inference systems. In: Intelligent and Fuzzy Systems: Digital Acceleration and The New Normal-Proceedings of the INFUS 2022 Conference, Volume 1. Springer, pp. 168–176.
Karthik, Paul, Karthikeyan (bib27) 2017
Meshram (bib32) 2021; 1
Nicolétis, É. et al., 2019. Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security.
Ren (bib44) 2020; 169
Van der Burg, Bogaardt, Wolfert (bib52) 2019; 90
Dutta (bib13) 2022
Pathan (bib39) 2020; 4
Greene, D., Hoffmann, A.L., Stark, L., 2019. Better, nicer, clearer, fairer: a critical assessment of the movement for ethical artificial intelligence and machine learning.
Terán-Bustamante, Martínez-Velasco, Dávila-Aragón (bib50) 2021; 7
Rodríguez (bib45) 2017; 15
.
Raschka, S., 2018. Model evaluation, model selection, and algorithm selection in machine learning, arXiv preprint arXiv:1811.12808 [Preprint].
Hafeez (bib20) 2022
Wolfert (bib54) 2017; 153
Ye (bib58) 2009; 30
Singh, Kaur (bib48) 2022
Jha (bib24) 2019; 2
DJI, 2017. Agras MG-1S. Available at
Moussaid (bib34) 2022
Zheng (bib61) 2021; 12
Loizou (bib30) 2019; 173
Zhang (bib60) 2022; 9
Janiesch, Zschech, Heinrich (bib23) 2021; 31
Jiang (bib25) 2022; 199
Xu (bib55) 2023
Saad El Imanni, El Harti, El Iysaouy (bib46) 2022; 12
Picon (bib40) 2022; 6
Bharati, Pramanik (bib10) 2020; 2019
Zhang, Lu (bib59) 2021; 23
Chesbrough (bib11) 2003
Karar (bib26) 2021; 60
Maes, Steppe (bib31) 2019; 24
Qiu, Zhou, Kim (bib41) 2021; 7
Touzard (bib51) 2015; 2
Berthet, Hickey, Klerkx (bib9) 2018
Molina (bib33) 2021; 13
Gan (bib17) 2018; 152
Talaviya (bib49) 2020; 4
Eshed, Lippman (bib14) 2019; 366
Ahmed (bib1) 2023
Becker, Eube (bib7) 2018; 4
Alami Machichi (bib2) 2022
LeCun, Bengio, Hinton (bib28) 2015; 521
Grimstad, From (bib19) 2017; 6
Ye (bib56) 2007; 8
Parvat, A., et al., 2017. A survey of deep-learning frameworks. In: 2017 International Conference on Inventive Systems and Control (ICISC). IEEE, pp. 1–7.
Atefi (bib6) 2021; 12
Li (bib29) 2021; 15
Albrigo (10.1016/j.joitmc.2023.100075_bib4) 2019
Maes (10.1016/j.joitmc.2023.100075_bib31) 2019; 24
Saad El Imanni (10.1016/j.joitmc.2023.100075_bib46) 2022; 12
Loizou (10.1016/j.joitmc.2023.100075_bib30) 2019; 173
Qiu (10.1016/j.joitmc.2023.100075_bib41) 2021; 7
Touzard (10.1016/j.joitmc.2023.100075_bib51) 2015; 2
Eshed (10.1016/j.joitmc.2023.100075_bib14) 2019; 366
Alami Machichi (10.1016/j.joitmc.2023.100075_bib2) 2022
Beckman (10.1016/j.joitmc.2023.100075_bib8) 2021; 103
10.1016/j.joitmc.2023.100075_bib12
Zhang (10.1016/j.joitmc.2023.100075_bib60) 2022; 9
10.1016/j.joitmc.2023.100075_bib15
Chesbrough (10.1016/j.joitmc.2023.100075_bib11) 2003
10.1016/j.joitmc.2023.100075_bib18
LeCun (10.1016/j.joitmc.2023.100075_bib28) 2015; 521
Karthik (10.1016/j.joitmc.2023.100075_bib27) 2017
Molina (10.1016/j.joitmc.2023.100075_bib33) 2021; 13
Gajdzik (10.1016/j.joitmc.2023.100075_bib16) 2022; 8
Moussaid (10.1016/j.joitmc.2023.100075_bib36) 2021; 7
Alami Machichi (10.1016/j.joitmc.2023.100075_bib3) 2023; 44
Li (10.1016/j.joitmc.2023.100075_bib29) 2021; 15
Van der Burg (10.1016/j.joitmc.2023.100075_bib52) 2019; 90
Jha (10.1016/j.joitmc.2023.100075_bib24) 2019; 2
West (10.1016/j.joitmc.2023.100075_bib53) 2017; 19
Gan (10.1016/j.joitmc.2023.100075_bib17) 2018; 152
Terán-Bustamante (10.1016/j.joitmc.2023.100075_bib50) 2021; 7
Xu (10.1016/j.joitmc.2023.100075_bib55) 2023
Meshram (10.1016/j.joitmc.2023.100075_bib32) 2021; 1
Bharati (10.1016/j.joitmc.2023.100075_bib10) 2020; 2019
Singh (10.1016/j.joitmc.2023.100075_bib48) 2022
Dutta (10.1016/j.joitmc.2023.100075_bib13) 2022
He (10.1016/j.joitmc.2023.100075_bib21) 2022; 195
10.1016/j.joitmc.2023.100075_bib5
Silva (10.1016/j.joitmc.2023.100075_bib47) 2023; 15
10.1016/j.joitmc.2023.100075_bib42
Hafeez (10.1016/j.joitmc.2023.100075_bib20) 2022
Zheng (10.1016/j.joitmc.2023.100075_bib61) 2021; 12
Berthet (10.1016/j.joitmc.2023.100075_bib9) 2018
Picon (10.1016/j.joitmc.2023.100075_bib40) 2022; 6
Rejeb (10.1016/j.joitmc.2023.100075_bib43) 2022; 198
Karar (10.1016/j.joitmc.2023.100075_bib26) 2021; 60
Rodríguez (10.1016/j.joitmc.2023.100075_bib45) 2017; 15
Jiang (10.1016/j.joitmc.2023.100075_bib25) 2022; 199
Janiesch (10.1016/j.joitmc.2023.100075_bib23) 2021; 31
Talaviya (10.1016/j.joitmc.2023.100075_bib49) 2020; 4
10.1016/j.joitmc.2023.100075_bib35
10.1016/j.joitmc.2023.100075_bib37
10.1016/j.joitmc.2023.100075_bib38
Zhang (10.1016/j.joitmc.2023.100075_bib59) 2021; 23
Atefi (10.1016/j.joitmc.2023.100075_bib6) 2021; 12
Grimstad (10.1016/j.joitmc.2023.100075_bib19) 2017; 6
Hussain (10.1016/j.joitmc.2023.100075_bib22) 2022
Pathan (10.1016/j.joitmc.2023.100075_bib39) 2020; 4
Ahmed (10.1016/j.joitmc.2023.100075_bib1) 2023
Ye (10.1016/j.joitmc.2023.100075_bib58) 2009; 30
Becker (10.1016/j.joitmc.2023.100075_bib7) 2018; 4
Ren (10.1016/j.joitmc.2023.100075_bib44) 2020; 169
Moussaid (10.1016/j.joitmc.2023.100075_bib34) 2022
Wolfert (10.1016/j.joitmc.2023.100075_bib54) 2017; 153
Ye (10.1016/j.joitmc.2023.100075_bib57) 2008; 90
Ye (10.1016/j.joitmc.2023.100075_bib56) 2007; 8
References_xml – volume: 2
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib24
  article-title: A comprehensive review on automation in agriculture using artificial intelligence
  publication-title: Artif. Intell. Agric.
  contributor:
    fullname: Jha
– year: 2022
  ident: bib20
  article-title: Implementation of drone technology for farm monitoring & pesticide spraying: a review
  publication-title: Inf. Process. Agric.
  contributor:
    fullname: Hafeez
– volume: 8
  start-page: 111
  year: 2007
  end-page: 125
  ident: bib56
  article-title: Prediction of citrus yield from airborne hyperspectral imagery
  publication-title: Precis. Agric.
  contributor:
    fullname: Ye
– start-page: 96
  year: 2022
  ident: bib2
  article-title: CerealNet: a hybrid deep learning architecture for cereal crop mapping using Sentinel-2 time-series
  publication-title: Informatics
  contributor:
    fullname: Alami Machichi
– volume: 23
  year: 2021
  ident: bib59
  article-title: Study on artificial intelligence: the state of the art and future prospects
  publication-title: J. Ind. Inf. Integr.
  contributor:
    fullname: Lu
– volume: 153
  start-page: 69
  year: 2017
  end-page: 80
  ident: bib54
  article-title: Big data in smart farming–a review
  publication-title: Agric. Syst.
  contributor:
    fullname: Wolfert
– start-page: 1
  year: 2023
  end-page: 97
  ident: bib1
  article-title: Deep learning modelling techniques: current progress, applications, advantages, and challenges
  publication-title: Artif. Intell. Rev.
  contributor:
    fullname: Ahmed
– volume: 7
  start-page: 241
  year: 2021
  ident: bib36
  article-title: Tree crowns segmentation and classification in overlapping orchards based on satellite images and unsupervised learning algorithms
  publication-title: J. Imaging
  contributor:
    fullname: Zennayi
– volume: 7
  start-page: 40
  year: 2021
  ident: bib50
  article-title: Knowledge management for open innovation: Bayesian networks through machine learning
  publication-title: J. Open Innov.: Technol., Mark., Complex.
  contributor:
    fullname: Dávila-Aragón
– volume: 12
  year: 2021
  ident: bib6
  article-title: Robotic technologies for high-throughput plant phenotyping: contemporary reviews and future perspectives
  publication-title: Front. Plant Sci.
  contributor:
    fullname: Atefi
– volume: 198
  year: 2022
  ident: bib43
  article-title: Drones in agriculture: a review and bibliometric analysis
  publication-title: Comput. Electron. Agric.
  contributor:
    fullname: Rejeb
– volume: 4
  start-page: 1
  year: 2018
  end-page: 16
  ident: bib7
  article-title: Open innovation concept: Integrating universities and business in digital age
  publication-title: J. Open Innov.: Technol. Mark. Complex.
  contributor:
    fullname: Eube
– year: 2017
  ident: bib27
  article-title: Deep Learning Innovations and Their Convergence with Big Data
  contributor:
    fullname: Karthikeyan
– volume: 1
  year: 2021
  ident: bib32
  article-title: Machine learning in agriculture domain: a state-of-art survey
  publication-title: Artif. Intell. Life Sci.
  contributor:
    fullname: Meshram
– volume: 7
  start-page: 16
  year: 2021
  ident: bib41
  article-title: A new path of sustainable development in traditional agricultural areas from the perspective of open innovation—a coupling and coordination study on the agricultural industry and the tourism industry
  publication-title: J. Open Innov.: Technol. Mark. Complex.
  contributor:
    fullname: Kim
– volume: 169
  year: 2020
  ident: bib44
  article-title: Agricultural robotics research applicable to poultry production: a review
  publication-title: Comput. Electron. Agric.
  contributor:
    fullname: Ren
– volume: 366
  start-page: eaax0025
  year: 2019
  ident: bib14
  article-title: Revolutions in agriculture chart a course for targeted breeding of old and new crops
  publication-title: Science
  contributor:
    fullname: Lippman
– volume: 15
  start-page: 8562
  year: 2023
  ident: bib47
  article-title: Open innovation in agribusiness: barriers and challenges in the transition to agriculture 4.0
  publication-title: Sustainability
  contributor:
    fullname: Silva
– volume: 24
  start-page: 152
  year: 2019
  end-page: 164
  ident: bib31
  article-title: Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture
  publication-title: Trends Plant Sci.
  contributor:
    fullname: Steppe
– volume: 60
  start-page: 4423
  year: 2021
  end-page: 4432
  ident: bib26
  article-title: A new mobile application of agricultural pests recognition using deep learning in cloud computing system
  publication-title: Alex. Eng. J.
  contributor:
    fullname: Karar
– volume: 4
  start-page: 58
  year: 2020
  end-page: 73
  ident: bib49
  article-title: Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides
  publication-title: Artif. Intell. Agric.
  contributor:
    fullname: Talaviya
– volume: 6
  start-page: 24
  year: 2017
  ident: bib19
  article-title: The Thorvald II agricultural robotic system
  publication-title: Robotics
  contributor:
    fullname: From
– volume: 15
  start-page: 7
  year: 2017
  ident: bib45
  article-title: Machine learning applied to the prediction of citrus production
  publication-title: Span. J. Agric. Res.
  contributor:
    fullname: Rodríguez
– year: 2019
  ident: bib4
  article-title: Citrus
  contributor:
    fullname: Albrigo
– volume: 12
  year: 2021
  ident: bib61
  article-title: A method of green citrus detection in natural environments using a deep convolutional neural network
  publication-title: Front. Plant Sci.
  contributor:
    fullname: Zheng
– volume: 173
  start-page: 482
  year: 2019
  end-page: 490
  ident: bib30
  article-title: The role of agriculture as a development tool for a regional economy
  publication-title: Agric. Syst.
  contributor:
    fullname: Loizou
– volume: 195
  year: 2022
  ident: bib21
  article-title: Fruit yield prediction and estimation in orchards: a state-of-the-art comprehensive review for both direct and indirect methods
  publication-title: Comput. Electron. Agric.
  contributor:
    fullname: He
– volume: 2019
  start-page: 657
  year: 2020
  end-page: 668
  ident: bib10
  article-title: Deep learning techniques—R-CNN to mask R-CNN: a survey
  publication-title: Comput. Intell. Pattern Recognit.: Proc. CIPR
  contributor:
    fullname: Pramanik
– start-page: 57
  year: 2022
  end-page: 80
  ident: bib48
  article-title: A systematic review of artificial intelligence in agriculture
  publication-title: Deep Learn. Sustain. Agric.
  contributor:
    fullname: Kaur
– year: 2022
  ident: bib22
  article-title: Design and Development of an Unmanned Aerial Vehicle for Precision Agriculture. PhD Thesis
  contributor:
    fullname: Hussain
– volume: 30
  start-page: 4621
  year: 2009
  end-page: 4642
  ident: bib58
  article-title: Estimation of citrus yield from canopy spectral features determined by airborne hyperspectral imagery
  publication-title: Int. J. Remote Sens.
  contributor:
    fullname: Ye
– volume: 90
  start-page: 132
  year: 2008
  end-page: 144
  ident: bib57
  article-title: Potential of airborne hyperspectral imagery to estimate fruit yield in citrus
  publication-title: Chemom. Intell. Lab. Syst.
  contributor:
    fullname: Ye
– volume: 199
  start-page: 1066
  year: 2022
  end-page: 1073
  ident: bib25
  article-title: A Review of Yolo algorithm developments
  publication-title: Procedia Comput. Sci.
  contributor:
    fullname: Jiang
– volume: 19
  start-page: 43
  year: 2017
  end-page: 50
  ident: bib53
  article-title: Open innovation: current status and research opportunities
  publication-title: Innovation
  contributor:
    fullname: Bogers
– volume: 152
  start-page: 117
  year: 2018
  end-page: 125
  ident: bib17
  article-title: Immature green citrus fruit detection using color and thermal images
  publication-title: Comput. Electron. Agric.
  contributor:
    fullname: Gan
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib28
  article-title: Deep learning
  publication-title: Nature
  contributor:
    fullname: Hinton
– volume: 15
  start-page: 1998
  year: 2021
  end-page: 2009
  ident: bib29
  article-title: Lemon-YOLO: an efficient object detection method for lemons in the natural environment
  publication-title: IET Image Process.
  contributor:
    fullname: Li
– volume: 4
  start-page: 81
  year: 2020
  end-page: 95
  ident: bib39
  article-title: Artificial cognition for applications in smart agriculture: a comprehensive review
  publication-title: Artif. Intell. Agric.
  contributor:
    fullname: Pathan
– volume: 103
  start-page: 1595
  year: 2021
  end-page: 1611
  ident: bib8
  article-title: The importance of agriculture in the economy: impacts from COVID-19
  publication-title: Am. J. Agric. Econ.
  contributor:
    fullname: Countryman
– volume: 9
  year: 2022
  ident: bib60
  article-title: Deep-learning-based in-field citrus fruit detection and tracking
  publication-title: Hortic. Res.
  contributor:
    fullname: Zhang
– start-page: 80
  year: 2022
  ident: bib34
  article-title: Machine learning applied to tree crop yield prediction using field data and satellite imagery: a case study in a citrus orchard
  publication-title: Informatics
  contributor:
    fullname: Moussaid
– volume: 44
  start-page: 2717
  year: 2023
  end-page: 2753
  ident: bib3
  article-title: Crop mapping using supervised machine learning and deep learning: a systematic literature review
  publication-title: Int. J. Remote Sens.
  contributor:
    fullname: Alami Machichi
– volume: 6
  start-page: 199
  year: 2022
  end-page: 210
  ident: bib40
  article-title: Deep convolutional neural network for damaged vegetation segmentation from RGB images based on virtual NIR-channel estimation
  publication-title: Artif. Intell. Agric.
  contributor:
    fullname: Picon
– volume: 8
  start-page: 68
  year: 2022
  ident: bib16
  article-title: Smart production workers in terms of creativity and innovation: the implication for open innovation
  publication-title: J. Open Innov.: Technol. Mark. Complex.
  contributor:
    fullname: Wolniak
– year: 2023
  ident: bib55
  article-title: Trends in valorization of citrus by-products from the net-zero perspective: Green processing innovation combined with applications in emission reduction
  publication-title: Trends Food Sci. Technol.
  contributor:
    fullname: Xu
– volume: 13
  start-page: 5605
  year: 2021
  ident: bib33
  article-title: Farmers’ participation in operational groups to foster innovation in the agricultural sector: an Italian case study
  publication-title: Sustainability
  contributor:
    fullname: Molina
– volume: 12
  start-page: 2853
  year: 2022
  ident: bib46
  article-title: Wheat yield estimation using remote sensing indices derived from sentinel-2 time series and google earth engine in a highly fragmented and heterogeneous agricultural region
  publication-title: Agronomy
  contributor:
    fullname: El Iysaouy
– start-page: 1
  year: 2022
  end-page: 22
  ident: bib13
  article-title: Factors associated with citrus fruit abscission and management strategies developed so far: a review
  publication-title: N. Z. J. Crop Hortic. Sci.
  contributor:
    fullname: Dutta
– volume: 31
  start-page: 685
  year: 2021
  end-page: 695
  ident: bib23
  article-title: Machine learning and deep learning
  publication-title: Electron. Mark.
  contributor:
    fullname: Heinrich
– volume: 2
  start-page: 117
  year: 2015
  end-page: 142
  ident: bib51
  article-title: Innovation systems and knowledge communities in the agriculture and agrifood sector: a literature review 1
  publication-title: J. Innov. Econ. Manag.
  contributor:
    fullname: Touzard
– volume: 90
  year: 2019
  ident: bib52
  article-title: Ethics of smart farming: Current questions and directions for responsible innovation towards the future
  publication-title: NJAS-Wagening. J. Life Sci.
  contributor:
    fullname: Wolfert
– year: 2003
  ident: bib11
  article-title: Open Innovation: The New Imperative for Creating and Profiting from Technology
  contributor:
    fullname: Chesbrough
– year: 2018
  ident: bib9
  article-title: Opening Design and Innovation Processes in Agriculture: Insights from Design and Management Sciences and Future Directions, Agricultural Systems
  contributor:
    fullname: Klerkx
– year: 2003
  ident: 10.1016/j.joitmc.2023.100075_bib11
  contributor:
    fullname: Chesbrough
– year: 2022
  ident: 10.1016/j.joitmc.2023.100075_bib20
  article-title: Implementation of drone technology for farm monitoring & pesticide spraying: a review
  publication-title: Inf. Process. Agric.
  contributor:
    fullname: Hafeez
– ident: 10.1016/j.joitmc.2023.100075_bib5
  doi: 10.1007/978-3-031-09173-5_22
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.joitmc.2023.100075_bib28
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
  contributor:
    fullname: LeCun
– volume: 199
  start-page: 1066
  year: 2022
  ident: 10.1016/j.joitmc.2023.100075_bib25
  article-title: A Review of Yolo algorithm developments
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2022.01.135
  contributor:
    fullname: Jiang
– volume: 173
  start-page: 482
  year: 2019
  ident: 10.1016/j.joitmc.2023.100075_bib30
  article-title: The role of agriculture as a development tool for a regional economy
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2019.04.002
  contributor:
    fullname: Loizou
– start-page: 80
  year: 2022
  ident: 10.1016/j.joitmc.2023.100075_bib34
  article-title: Machine learning applied to tree crop yield prediction using field data and satellite imagery: a case study in a citrus orchard
  contributor:
    fullname: Moussaid
– year: 2019
  ident: 10.1016/j.joitmc.2023.100075_bib4
  contributor:
    fullname: Albrigo
– volume: 7
  start-page: 241
  issue: 11
  year: 2021
  ident: 10.1016/j.joitmc.2023.100075_bib36
  article-title: Tree crowns segmentation and classification in overlapping orchards based on satellite images and unsupervised learning algorithms
  publication-title: J. Imaging
  doi: 10.3390/jimaging7110241
  contributor:
    fullname: Moussaid
– start-page: 1
  year: 2023
  ident: 10.1016/j.joitmc.2023.100075_bib1
  article-title: Deep learning modelling techniques: current progress, applications, advantages, and challenges
  publication-title: Artif. Intell. Rev.
  contributor:
    fullname: Ahmed
– volume: 8
  start-page: 68
  issue: 2
  year: 2022
  ident: 10.1016/j.joitmc.2023.100075_bib16
  article-title: Smart production workers in terms of creativity and innovation: the implication for open innovation
  publication-title: J. Open Innov.: Technol. Mark. Complex.
  doi: 10.3390/joitmc8020068
  contributor:
    fullname: Gajdzik
– volume: 2
  start-page: 1
  year: 2019
  ident: 10.1016/j.joitmc.2023.100075_bib24
  article-title: A comprehensive review on automation in agriculture using artificial intelligence
  publication-title: Artif. Intell. Agric.
  contributor:
    fullname: Jha
– volume: 4
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.joitmc.2023.100075_bib7
  article-title: Open innovation concept: Integrating universities and business in digital age
  publication-title: J. Open Innov.: Technol. Mark. Complex.
  doi: 10.1186/s40852-018-0091-6
  contributor:
    fullname: Becker
– start-page: 1
  year: 2022
  ident: 10.1016/j.joitmc.2023.100075_bib13
  article-title: Factors associated with citrus fruit abscission and management strategies developed so far: a review
  publication-title: N. Z. J. Crop Hortic. Sci.
  doi: 10.1080/01140671.2022.2040545
  contributor:
    fullname: Dutta
– volume: 15
  start-page: 1998
  issue: 9
  year: 2021
  ident: 10.1016/j.joitmc.2023.100075_bib29
  article-title: Lemon-YOLO: an efficient object detection method for lemons in the natural environment
  publication-title: IET Image Process.
  doi: 10.1049/ipr2.12171
  contributor:
    fullname: Li
– volume: 153
  start-page: 69
  year: 2017
  ident: 10.1016/j.joitmc.2023.100075_bib54
  article-title: Big data in smart farming–a review
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2017.01.023
  contributor:
    fullname: Wolfert
– volume: 4
  start-page: 81
  year: 2020
  ident: 10.1016/j.joitmc.2023.100075_bib39
  article-title: Artificial cognition for applications in smart agriculture: a comprehensive review
  publication-title: Artif. Intell. Agric.
  contributor:
    fullname: Pathan
– volume: 12
  start-page: 2853
  issue: 11
  year: 2022
  ident: 10.1016/j.joitmc.2023.100075_bib46
  article-title: Wheat yield estimation using remote sensing indices derived from sentinel-2 time series and google earth engine in a highly fragmented and heterogeneous agricultural region
  publication-title: Agronomy
  doi: 10.3390/agronomy12112853
  contributor:
    fullname: Saad El Imanni
– volume: 2
  start-page: 117
  year: 2015
  ident: 10.1016/j.joitmc.2023.100075_bib51
  article-title: Innovation systems and knowledge communities in the agriculture and agrifood sector: a literature review 1
  publication-title: J. Innov. Econ. Manag.
  doi: 10.3917/jie.017.0117
  contributor:
    fullname: Touzard
– volume: 15
  start-page: 8562
  issue: 11
  year: 2023
  ident: 10.1016/j.joitmc.2023.100075_bib47
  article-title: Open innovation in agribusiness: barriers and challenges in the transition to agriculture 4.0
  publication-title: Sustainability
  doi: 10.3390/su15118562
  contributor:
    fullname: Silva
– volume: 23
  year: 2021
  ident: 10.1016/j.joitmc.2023.100075_bib59
  article-title: Study on artificial intelligence: the state of the art and future prospects
  publication-title: J. Ind. Inf. Integr.
  contributor:
    fullname: Zhang
– volume: 1
  year: 2021
  ident: 10.1016/j.joitmc.2023.100075_bib32
  article-title: Machine learning in agriculture domain: a state-of-art survey
  publication-title: Artif. Intell. Life Sci.
  contributor:
    fullname: Meshram
– year: 2018
  ident: 10.1016/j.joitmc.2023.100075_bib9
  contributor:
    fullname: Berthet
– volume: 15
  start-page: 7
  issue: 2
  year: 2017
  ident: 10.1016/j.joitmc.2023.100075_bib45
  article-title: Machine learning applied to the prediction of citrus production
  publication-title: Span. J. Agric. Res.
  contributor:
    fullname: Rodríguez
– volume: 90
  start-page: 132
  issue: 2
  year: 2008
  ident: 10.1016/j.joitmc.2023.100075_bib57
  article-title: Potential of airborne hyperspectral imagery to estimate fruit yield in citrus
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2007.09.002
  contributor:
    fullname: Ye
– volume: 7
  start-page: 40
  issue: 1
  year: 2021
  ident: 10.1016/j.joitmc.2023.100075_bib50
  article-title: Knowledge management for open innovation: Bayesian networks through machine learning
  publication-title: J. Open Innov.: Technol., Mark., Complex.
  doi: 10.3390/joitmc7010040
  contributor:
    fullname: Terán-Bustamante
– volume: 6
  start-page: 199
  year: 2022
  ident: 10.1016/j.joitmc.2023.100075_bib40
  article-title: Deep convolutional neural network for damaged vegetation segmentation from RGB images based on virtual NIR-channel estimation
  publication-title: Artif. Intell. Agric.
  contributor:
    fullname: Picon
– volume: 8
  start-page: 111
  year: 2007
  ident: 10.1016/j.joitmc.2023.100075_bib56
  article-title: Prediction of citrus yield from airborne hyperspectral imagery
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-007-9032-2
  contributor:
    fullname: Ye
– volume: 30
  start-page: 4621
  issue: 18
  year: 2009
  ident: 10.1016/j.joitmc.2023.100075_bib58
  article-title: Estimation of citrus yield from canopy spectral features determined by airborne hyperspectral imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160802632231
  contributor:
    fullname: Ye
– volume: 198
  year: 2022
  ident: 10.1016/j.joitmc.2023.100075_bib43
  article-title: Drones in agriculture: a review and bibliometric analysis
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107017
  contributor:
    fullname: Rejeb
– year: 2023
  ident: 10.1016/j.joitmc.2023.100075_bib55
  article-title: Trends in valorization of citrus by-products from the net-zero perspective: Green processing innovation combined with applications in emission reduction
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2023.05.012
  contributor:
    fullname: Xu
– ident: 10.1016/j.joitmc.2023.100075_bib42
– volume: 6
  start-page: 24
  issue: 4
  year: 2017
  ident: 10.1016/j.joitmc.2023.100075_bib19
  article-title: The Thorvald II agricultural robotic system
  publication-title: Robotics
  doi: 10.3390/robotics6040024
  contributor:
    fullname: Grimstad
– ident: 10.1016/j.joitmc.2023.100075_bib18
  doi: 10.24251/HICSS.2019.258
– volume: 169
  year: 2020
  ident: 10.1016/j.joitmc.2023.100075_bib44
  article-title: Agricultural robotics research applicable to poultry production: a review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105216
  contributor:
    fullname: Ren
– volume: 12
  year: 2021
  ident: 10.1016/j.joitmc.2023.100075_bib61
  article-title: A method of green citrus detection in natural environments using a deep convolutional neural network
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.705737
  contributor:
    fullname: Zheng
– ident: 10.1016/j.joitmc.2023.100075_bib38
  doi: 10.1109/ICISC.2017.8068684
– volume: 366
  start-page: eaax0025
  issue: 6466
  year: 2019
  ident: 10.1016/j.joitmc.2023.100075_bib14
  article-title: Revolutions in agriculture chart a course for targeted breeding of old and new crops
  publication-title: Science
  doi: 10.1126/science.aax0025
  contributor:
    fullname: Eshed
– volume: 9
  year: 2022
  ident: 10.1016/j.joitmc.2023.100075_bib60
  article-title: Deep-learning-based in-field citrus fruit detection and tracking
  publication-title: Hortic. Res.
  doi: 10.1093/hr/uhac003
  contributor:
    fullname: Zhang
– volume: 4
  start-page: 58
  year: 2020
  ident: 10.1016/j.joitmc.2023.100075_bib49
  article-title: Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides
  publication-title: Artif. Intell. Agric.
  contributor:
    fullname: Talaviya
– volume: 44
  start-page: 2717
  issue: 8
  year: 2023
  ident: 10.1016/j.joitmc.2023.100075_bib3
  article-title: Crop mapping using supervised machine learning and deep learning: a systematic literature review
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2023.2205984
  contributor:
    fullname: Alami Machichi
– volume: 19
  start-page: 43
  issue: 1
  year: 2017
  ident: 10.1016/j.joitmc.2023.100075_bib53
  article-title: Open innovation: current status and research opportunities
  publication-title: Innovation
  doi: 10.1080/14479338.2016.1258995
  contributor:
    fullname: West
– volume: 2019
  start-page: 657
  year: 2020
  ident: 10.1016/j.joitmc.2023.100075_bib10
  article-title: Deep learning techniques—R-CNN to mask R-CNN: a survey
  publication-title: Comput. Intell. Pattern Recognit.: Proc. CIPR
  doi: 10.1007/978-981-13-9042-5_56
  contributor:
    fullname: Bharati
– ident: 10.1016/j.joitmc.2023.100075_bib37
– start-page: 57
  year: 2022
  ident: 10.1016/j.joitmc.2023.100075_bib48
  article-title: A systematic review of artificial intelligence in agriculture
  publication-title: Deep Learn. Sustain. Agric.
  doi: 10.1016/B978-0-323-85214-2.00011-2
  contributor:
    fullname: Singh
– volume: 90
  year: 2019
  ident: 10.1016/j.joitmc.2023.100075_bib52
  article-title: Ethics of smart farming: Current questions and directions for responsible innovation towards the future
  publication-title: NJAS-Wagening. J. Life Sci.
  contributor:
    fullname: Van der Burg
– volume: 60
  start-page: 4423
  issue: 5
  year: 2021
  ident: 10.1016/j.joitmc.2023.100075_bib26
  article-title: A new mobile application of agricultural pests recognition using deep learning in cloud computing system
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.03.009
  contributor:
    fullname: Karar
– volume: 152
  start-page: 117
  year: 2018
  ident: 10.1016/j.joitmc.2023.100075_bib17
  article-title: Immature green citrus fruit detection using color and thermal images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.07.011
  contributor:
    fullname: Gan
– start-page: 96
  year: 2022
  ident: 10.1016/j.joitmc.2023.100075_bib2
  article-title: CerealNet: a hybrid deep learning architecture for cereal crop mapping using Sentinel-2 time-series
  contributor:
    fullname: Alami Machichi
– volume: 31
  start-page: 685
  issue: 3
  year: 2021
  ident: 10.1016/j.joitmc.2023.100075_bib23
  article-title: Machine learning and deep learning
  publication-title: Electron. Mark.
  doi: 10.1007/s12525-021-00475-2
  contributor:
    fullname: Janiesch
– volume: 24
  start-page: 152
  issue: 2
  year: 2019
  ident: 10.1016/j.joitmc.2023.100075_bib31
  article-title: Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2018.11.007
  contributor:
    fullname: Maes
– ident: 10.1016/j.joitmc.2023.100075_bib12
– volume: 12
  year: 2021
  ident: 10.1016/j.joitmc.2023.100075_bib6
  article-title: Robotic technologies for high-throughput plant phenotyping: contemporary reviews and future perspectives
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.611940
  contributor:
    fullname: Atefi
– volume: 13
  start-page: 5605
  issue: 10
  year: 2021
  ident: 10.1016/j.joitmc.2023.100075_bib33
  article-title: Farmers’ participation in operational groups to foster innovation in the agricultural sector: an Italian case study
  publication-title: Sustainability
  doi: 10.3390/su13105605
  contributor:
    fullname: Molina
– ident: 10.1016/j.joitmc.2023.100075_bib15
  doi: 10.1109/CVCI51460.2020.9338663
– volume: 195
  year: 2022
  ident: 10.1016/j.joitmc.2023.100075_bib21
  article-title: Fruit yield prediction and estimation in orchards: a state-of-the-art comprehensive review for both direct and indirect methods
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106812
  contributor:
    fullname: He
– year: 2022
  ident: 10.1016/j.joitmc.2023.100075_bib22
  contributor:
    fullname: Hussain
– volume: 103
  start-page: 1595
  issue: 5
  year: 2021
  ident: 10.1016/j.joitmc.2023.100075_bib8
  article-title: The importance of agriculture in the economy: impacts from COVID-19
  publication-title: Am. J. Agric. Econ.
  doi: 10.1111/ajae.12212
  contributor:
    fullname: Beckman
– year: 2017
  ident: 10.1016/j.joitmc.2023.100075_bib27
  contributor:
    fullname: Karthik
– ident: 10.1016/j.joitmc.2023.100075_bib35
  doi: 10.5220/0010432001720178
– volume: 7
  start-page: 16
  issue: 1
  year: 2021
  ident: 10.1016/j.joitmc.2023.100075_bib41
  article-title: A new path of sustainable development in traditional agricultural areas from the perspective of open innovation—a coupling and coordination study on the agricultural industry and the tourism industry
  publication-title: J. Open Innov.: Technol. Mark. Complex.
  doi: 10.3390/joitmc7010016
  contributor:
    fullname: Qiu
SSID ssj0002020048
Score 2.3008099
Snippet The goal of this paper is to develop a deep learning model for predicting citrus yield. The data used consists of two sources: (1) field data that includes...
SourceID doaj
crossref
elsevier
SourceType Open Website
Aggregation Database
Publisher
StartPage 100075
SubjectTerms Citrus yield prediction
Deep learning
Machine learning
Open innovation
Precision farming
Spectral data
Title Citrus yield prediction using deep learning techniques: A combination of field and satellite data
URI https://dx.doi.org/10.1016/j.joitmc.2023.100075
https://doaj.org/article/348f98371ecb4c83ab5551f20d723b71
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA1SQdyIT6yPkoXbwcljJhl3tViKRRdisbshydyUFmyL7ca_N4-ZMivduJ2EZDgncO8lJ-cidMchp7rQkFjLRMJJahOZaZnoQmoCSglu_Hvnl9d8NOHP02zaavXlNWHRHjgCd8-4tIWroggYzY1kSmcuyFuaVoIyLWLhkxatYmoRrtc8-7J5KxcEXYvVfPvpXQsp89qA1EsLW7EoWPa3QlIrzAyP0VGdH-J-_K8TtAfLU3TQyNPPkBqEZxL42yvP8PrL37N4bLGfMcMVwBrXnSBmeGfQunnAfezOliuDAxN4ZXHQrmG1rPBGBVvOLWCvFz1Hk-HT-2CU1G0SEsNcsp8Qy0xRQUGkBZccUJ0qsMoFdsiZG5JVSjURhChNvJuXNMS6tAAMZ5oqlWl2gTrL1RIuEU5zYJk1mckAuJCFFg57TblgboBQ0UVJA1i5jm4YZSMTW5QR4NIDXEaAu-jRo7qb672swwfHcFkzXP7FcBeJhpOyTgtiuHdLzX_d_uo_tr9Gh37JKA-7QR1HMty6RGSre2i_P377GPfC2fsBiZjc3Q
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Citrus+yield+prediction+using+deep+learning+techniques%3A+A+combination+of+field+and+satellite+data&rft.jtitle=Journal+of+open+innovation&rft.au=Abdellatif+Moussaid&rft.au=Sanaa+El+Fkihi&rft.au=Yahya+Zennayi&rft.au=Ismail+Kassou&rft.date=2023-06-01&rft.pub=Elsevier&rft.eissn=2199-8531&rft.volume=9&rft.issue=2&rft.spage=100075&rft_id=info:doi/10.1016%2Fj.joitmc.2023.100075&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_348f98371ecb4c83ab5551f20d723b71
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-8531&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-8531&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-8531&client=summon