β‐Catenin regulation of farnesoid X receptor signaling and bile acid metabolism during murine cholestasis

Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β‐catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver‐specific β‐catenin knockout...

Full description

Saved in:
Bibliographic Details
Published inHepatology (Baltimore, Md.) Vol. 67; no. 3; pp. 955 - 971
Main Authors Thompson, Michael D., Moghe, Akshata, Cornuet, Pamela, Marino, Rebecca, Tian, Jianmin, Wang, Pengcheng, Ma, Xiaochao, Abrams, Marc, Locker, Joseph, Monga, Satdarshan P., Nejak‐Bowen, Kari
Format Journal Article
LanguageEnglish
Published United States Wolters Kluwer Health, Inc 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β‐catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver‐specific β‐catenin knockout mice and wild‐type littermates were subjected to cholestatic injury through bile duct ligation or short‐term exposure to 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine diet. Intriguingly, knockout mice exhibit a dramatic protection from liver injury, fibrosis, and atypical ductular proliferation, which coincides with significantly decreased total hepatic bile acids (BAs). This led to the discovery of a role for β‐catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that β‐catenin functions as both an inhibitor of nuclear translocation and a nuclear corepressor through formation of a physical complex with FXR. Loss of β‐catenin expedited FXR nuclear localization and FXR/retinoic X receptor alpha association, culminating in small heterodimer protein promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of β‐catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of β‐catenin expression during cholestatic injury reduces β‐catenin/FXR complex activation of FXR to decrease total BA and alleviate hepatic injury. Conclusion: We have identified an FXR/β‐catenin interaction whose modulation through β‐catenin suppression promotes FXR activation and decreases hepatic BAs, which may provide unique therapeutic opportunities in cholestatic liver diseases. (Hepatology 2018;67:955–971)
AbstractList Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation (ADP), and fibrosis. The Wnt/β-catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver-specific β-catenin knockout (KO) mice and wild-type (WT) littermates were subjected to cholestatic injury via bile duct ligation or short-term exposure to 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet. Intriguingly, KO exhibit a dramatic protection from liver injury, fibrosis, and ADP, which coincided with significantly decreased total hepatic bile acids (BA). This led to the discovery of a novel role for β-catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that β-catenin functions as both an inhibitor of nuclear translocation and as a nuclear co-repressor through formation of a physical complex with FXR. Loss of β-catenin expedited FXR nuclear localization and FXR/RXRα association, culminating in small heterodimer protein (SHP) promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of β-catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of β-catenin expression during cholestatic injury reduces β-catenin/FXR complex, activates FXR to decrease total BA and alleviates hepatic injury.
Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β‐catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver‐specific β‐catenin knockout mice and wild‐type littermates were subjected to cholestatic injury through bile duct ligation or short‐term exposure to 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine diet. Intriguingly, knockout mice exhibit a dramatic protection from liver injury, fibrosis, and atypical ductular proliferation, which coincides with significantly decreased total hepatic bile acids (BAs). This led to the discovery of a role for β‐catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that β‐catenin functions as both an inhibitor of nuclear translocation and a nuclear corepressor through formation of a physical complex with FXR. Loss of β‐catenin expedited FXR nuclear localization and FXR/retinoic X receptor alpha association, culminating in small heterodimer protein promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of β‐catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of β‐catenin expression during cholestatic injury reduces β‐catenin/FXR complex activation of FXR to decrease total BA and alleviate hepatic injury. Conclusion: We have identified an FXR/β‐catenin interaction whose modulation through β‐catenin suppression promotes FXR activation and decreases hepatic BAs, which may provide unique therapeutic opportunities in cholestatic liver diseases. (H epatology 2018;67:955–971)
Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β‐catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver‐specific β‐catenin knockout mice and wild‐type littermates were subjected to cholestatic injury through bile duct ligation or short‐term exposure to 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine diet. Intriguingly, knockout mice exhibit a dramatic protection from liver injury, fibrosis, and atypical ductular proliferation, which coincides with significantly decreased total hepatic bile acids (BAs). This led to the discovery of a role for β‐catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that β‐catenin functions as both an inhibitor of nuclear translocation and a nuclear corepressor through formation of a physical complex with FXR. Loss of β‐catenin expedited FXR nuclear localization and FXR/retinoic X receptor alpha association, culminating in small heterodimer protein promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of β‐catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of β‐catenin expression during cholestatic injury reduces β‐catenin/FXR complex activation of FXR to decrease total BA and alleviate hepatic injury. Conclusion: We have identified an FXR/β‐catenin interaction whose modulation through β‐catenin suppression promotes FXR activation and decreases hepatic BAs, which may provide unique therapeutic opportunities in cholestatic liver diseases. (Hepatology 2018;67:955–971)
Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β-catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver-specific β-catenin knockout mice and wild-type littermates were subjected to cholestatic injury through bile duct ligation or short-term exposure to 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet. Intriguingly, knockout mice exhibit a dramatic protection from liver injury, fibrosis, and atypical ductular proliferation, which coincides with significantly decreased total hepatic bile acids (BAs). This led to the discovery of a role for β-catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that β-catenin functions as both an inhibitor of nuclear translocation and a nuclear corepressor through formation of a physical complex with FXR. Loss of β-catenin expedited FXR nuclear localization and FXR/retinoic X receptor alpha association, culminating in small heterodimer protein promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of β-catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of β-catenin expression during cholestatic injury reduces β-catenin/FXR complex activation of FXR to decrease total BA and alleviate hepatic injury. We have identified an FXR/β-catenin interaction whose modulation through β-catenin suppression promotes FXR activation and decreases hepatic BAs, which may provide unique therapeutic opportunities in cholestatic liver diseases. (Hepatology 2018;67:955-971).
Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β-catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver-specific β-catenin knockout mice and wild-type littermates were subjected to cholestatic injury through bile duct ligation or short-term exposure to 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet. Intriguingly, knockout mice exhibit a dramatic protection from liver injury, fibrosis, and atypical ductular proliferation, which coincides with significantly decreased total hepatic bile acids (BAs). This led to the discovery of a role for β-catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that β-catenin functions as both an inhibitor of nuclear translocation and a nuclear corepressor through formation of a physical complex with FXR. Loss of β-catenin expedited FXR nuclear localization and FXR/retinoic X receptor alpha association, culminating in small heterodimer protein promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of β-catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of β-catenin expression during cholestatic injury reduces β-catenin/FXR complex activation of FXR to decrease total BA and alleviate hepatic injury.Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β-catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver-specific β-catenin knockout mice and wild-type littermates were subjected to cholestatic injury through bile duct ligation or short-term exposure to 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet. Intriguingly, knockout mice exhibit a dramatic protection from liver injury, fibrosis, and atypical ductular proliferation, which coincides with significantly decreased total hepatic bile acids (BAs). This led to the discovery of a role for β-catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that β-catenin functions as both an inhibitor of nuclear translocation and a nuclear corepressor through formation of a physical complex with FXR. Loss of β-catenin expedited FXR nuclear localization and FXR/retinoic X receptor alpha association, culminating in small heterodimer protein promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of β-catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of β-catenin expression during cholestatic injury reduces β-catenin/FXR complex activation of FXR to decrease total BA and alleviate hepatic injury.We have identified an FXR/β-catenin interaction whose modulation through β-catenin suppression promotes FXR activation and decreases hepatic BAs, which may provide unique therapeutic opportunities in cholestatic liver diseases. (Hepatology 2018;67:955-971).CONCLUSIONWe have identified an FXR/β-catenin interaction whose modulation through β-catenin suppression promotes FXR activation and decreases hepatic BAs, which may provide unique therapeutic opportunities in cholestatic liver diseases. (Hepatology 2018;67:955-971).
Author Ma, Xiaochao
Thompson, Michael D.
Cornuet, Pamela
Moghe, Akshata
Locker, Joseph
Monga, Satdarshan P.
Nejak‐Bowen, Kari
Marino, Rebecca
Abrams, Marc
Tian, Jianmin
Wang, Pengcheng
AuthorAffiliation 2 Department of Medicine, University of Pittsburgh, Pittsburgh, PA
6 Dicerna Pharmaceuticals, Inc, Cambridge, MA
4 Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
5 School of Pharmacy, University of Pittsburgh, Pittsburgh, PA
1 Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
3 Department of Pathology, University of Pittsburgh, Pittsburgh, PA
AuthorAffiliation_xml – name: 4 Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
– name: 5 School of Pharmacy, University of Pittsburgh, Pittsburgh, PA
– name: 2 Department of Medicine, University of Pittsburgh, Pittsburgh, PA
– name: 6 Dicerna Pharmaceuticals, Inc, Cambridge, MA
– name: 1 Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
– name: 3 Department of Pathology, University of Pittsburgh, Pittsburgh, PA
Author_xml – sequence: 1
  givenname: Michael D.
  surname: Thompson
  fullname: Thompson, Michael D.
  organization: Washington University School of Medicine
– sequence: 2
  givenname: Akshata
  surname: Moghe
  fullname: Moghe, Akshata
  organization: University of Pittsburgh
– sequence: 3
  givenname: Pamela
  surname: Cornuet
  fullname: Cornuet, Pamela
  organization: University of Pittsburgh
– sequence: 4
  givenname: Rebecca
  surname: Marino
  fullname: Marino, Rebecca
  organization: University of Pittsburgh
– sequence: 5
  givenname: Jianmin
  surname: Tian
  fullname: Tian, Jianmin
  organization: University of Pittsburgh
– sequence: 6
  givenname: Pengcheng
  surname: Wang
  fullname: Wang, Pengcheng
  organization: University of Pittsburgh
– sequence: 7
  givenname: Xiaochao
  surname: Ma
  fullname: Ma, Xiaochao
  organization: University of Pittsburgh
– sequence: 8
  givenname: Marc
  surname: Abrams
  fullname: Abrams, Marc
  organization: Dicerna Pharmaceuticals, Inc
– sequence: 9
  givenname: Joseph
  surname: Locker
  fullname: Locker, Joseph
  organization: University of Pittsburgh
– sequence: 10
  givenname: Satdarshan P.
  surname: Monga
  fullname: Monga, Satdarshan P.
  email: smonga@pitt.edu
  organization: University of Pittsburgh
– sequence: 11
  givenname: Kari
  surname: Nejak‐Bowen
  fullname: Nejak‐Bowen, Kari
  email: knnst5@pitt.edu
  organization: University of Pittsburgh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28714273$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9u1DAUhy1URKeFBRdAltjAIq3_JHG8QUKjQitVggWV2FmO_TLjyrEHOwF1xxE4CwfhEJyknk5bQSVYvcX73k8_-ztAeyEGQOg5JUeUEHa8hs0Rk1zQR2hBGyYqzhuyhxaECVJJyuU-Osj5khAia9Y9QfusE7Rmgi-Q__Xz9_cfSz1BcAEnWM1eTy4GHAc86BQgR2fx57IxsJliwtmtgvYurLAOFvfOA9amICNMuo_e5RHbOW3343YANuvoIU86u_wUPR60z_Dsdh6ii3cnn5an1fmH92fLt-eV4U1HK1pDz6ElXDQDY1bovjTXQ00l1z2XlADpWka0rSVve9MIO7CWsba1LTW1sfwQvdnlbuZ-BGsgTEl7tUlu1OlKRe3U35vg1moVv6pGCCq7rgS8ug1I8ctc2qvRZQPe6wBxzopKRhgpBVlBXz5AL-OcyhdlVQghJaeUFurFn43uq9yJKMDrHWBSzDnBcI9QoraSVZGsbiQX9vgBa9x0Y608xvn_XXwrvq7-Ha1OTz7uLq4B2Xm6tg
CitedBy_id crossref_primary_10_1097_HC9_0000000000000485
crossref_primary_10_1016_j_ajpath_2021_09_007
crossref_primary_10_1016_j_intimp_2019_105833
crossref_primary_10_1021_acs_jmedchem_8b01408
crossref_primary_10_1371_journal_pone_0210077
crossref_primary_10_1016_j_cbd_2023_101181
crossref_primary_10_1016_j_intimp_2024_113035
crossref_primary_10_1097_HEP_0000000000000495
crossref_primary_10_1016_j_jcmgh_2023_08_009
crossref_primary_10_1093_jas_skae249
crossref_primary_10_1016_j_jff_2019_02_029
crossref_primary_10_1016_j_jcmgh_2023_08_004
crossref_primary_10_1172_jci_insight_187099
crossref_primary_10_1016_j_bcp_2023_115570
crossref_primary_10_1016_j_intimp_2021_107931
crossref_primary_10_1371_journal_pone_0284138
crossref_primary_10_1096_fj_201801976R
crossref_primary_10_1016_j_phymed_2022_154529
crossref_primary_10_1093_intimm_dxaa002
crossref_primary_10_1002_hep_29584
crossref_primary_10_1016_j_ajpath_2023_02_007
crossref_primary_10_1038_s41598_021_04358_6
crossref_primary_10_1631_jzus_B1900158
crossref_primary_10_1038_s41598_021_82252_x
crossref_primary_10_1016_j_cbi_2022_110051
crossref_primary_10_7554_eLife_71310
crossref_primary_10_1055_a_2128_5538
crossref_primary_10_1152_physrev_00049_2019
crossref_primary_10_1038_s41598_024_68526_0
crossref_primary_10_1002_ctm2_594
crossref_primary_10_3389_fphar_2023_1099935
crossref_primary_10_1111_liv_15025
crossref_primary_10_1016_j_jcmgh_2023_10_009
crossref_primary_10_1038_s41419_022_04745_5
crossref_primary_10_3892_ol_2020_11545
crossref_primary_10_1002_hep_30927
crossref_primary_10_1016_j_taap_2024_117038
crossref_primary_10_1371_journal_pone_0305170
crossref_primary_10_3390_ijms19072069
crossref_primary_10_1016_j_ajpath_2020_01_015
crossref_primary_10_3390_ijms25084321
crossref_primary_10_1002_hep4_1193
crossref_primary_10_1002_mco2_556
crossref_primary_10_1016_j_semcancer_2020_10_003
crossref_primary_10_1038_s41417_020_00239_8
crossref_primary_10_1002_hep4_2043
crossref_primary_10_1002_hep4_1430
Cites_doi 10.1016/S1097-2765(00)00051-4
10.1056/NEJMoa1509840
10.1002/hep.28882
10.1002/hep.25740
10.1016/j.bpg.2011.10.009
10.1016/S1534-5807(02)00187-9
10.1002/hep.22196
10.1016/j.bbamcr.2006.04.014
10.1002/hep.23801
10.18632/oncotarget.13521
10.1002/path.2169
10.1021/jm0002127
10.1002/hep.21973
10.1002/j.2040-4603.2013.tb00517.x
10.1073/pnas.051014398
10.1073/pnas.0404875101
10.1016/0009-8981(96)06305-X
10.1016/S0016-5085(99)70242-8
10.1074/jbc.274.3.1189
10.1053/j.gastro.2007.08.036
10.1002/hep.28774
10.1002/hep.21131
10.1002/hep.26924
10.1016/j.mce.2013.03.002
10.1016/j.biocel.2009.09.001
10.1016/j.cmet.2013.01.003
10.1172/JCI117773
10.1371/journal.pone.0136215
10.1053/j.gastro.2006.08.042
10.1073/pnas.0604772103
10.2353/ajpath.2010.090667
10.1172/JCI68815
10.1021/ja505986a
10.1074/jbc.M112.443937
10.1038/srep41055
10.1002/cld.311
10.1074/jbc.M600116200
10.1074/jbc.M001215200
10.1002/hep.26042
10.1021/mp060010s
ContentType Journal Article
Copyright 2017 by the American Association for the Study of Liver Diseases.
2018 by the American Association for the Study of Liver Diseases.
Copyright_xml – notice: 2017 by the American Association for the Study of Liver Diseases.
– notice: 2018 by the American Association for the Study of Liver Diseases.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
H94
K9.
7X8
5PM
DOI 10.1002/hep.29371
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
AIDS and Cancer Research Abstracts

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-3350
EndPage 971
ExternalDocumentID PMC5771988
28714273
10_1002_hep_29371
HEP29371
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: 1R01DK62277 ; 1R01DK100287 ; 1R01DK103775
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases
– fundername: NIDDK NIH HHS
  grantid: R01 DK103775
– fundername: NIDDK NIH HHS
  grantid: R01 DK062277
– fundername: NIDDK NIH HHS
  grantid: R01 DK100287
GroupedDBID ---
--K
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
186
1B1
1CY
1L6
1OB
1OC
1ZS
1~5
24P
31~
33P
3O-
3SF
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AALRI
AANHP
AAONW
AAQFI
AAQQT
AAQXK
AASGY
AAXRX
AAXUO
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABMAC
ABOCM
ABPVW
ABWVN
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACLDA
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AECAP
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFFNX
AFGKR
AFPWT
AFUWQ
AFZJQ
AHMBA
AIACR
AIURR
AIWBW
AJAOE
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
F00
F01
F04
F5P
FD8
FDB
FEDTE
FGOYB
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IHE
IX1
J0M
J5H
JPC
KBYEO
KQQ
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
M65
MJL
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
NQ-
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
R2-
RGB
RIG
RIWAO
RJQFR
ROL
RPZ
RWI
RX1
RYL
SEW
SSZ
SUPJJ
TEORI
UB1
V2E
V9Y
W2D
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
ABJNI
ACZKN
AEFGJ
AFNMH
AGQPQ
AGXDD
AHQVU
AIDQK
AIDYY
CITATION
MEWTI
WXSBR
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
ADSXY
H94
K9.
7X8
5PM
ID FETCH-LOGICAL-c3581-14eb3e60375f22d7ab000af4193ab3910e08620ad4936bc57df262266d61c4cd3
IEDL.DBID DR2
ISSN 0270-9139
1527-3350
IngestDate Thu Aug 21 18:09:35 EDT 2025
Fri Jul 11 11:14:57 EDT 2025
Wed Aug 13 09:02:34 EDT 2025
Mon Jul 21 05:55:18 EDT 2025
Thu Apr 24 23:02:27 EDT 2025
Thu Jul 03 08:34:31 EDT 2025
Wed Jan 22 16:52:32 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2017 by the American Association for the Study of Liver Diseases.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3581-14eb3e60375f22d7ab000af4193ab3910e08620ad4936bc57df262266d61c4cd3
Notes Supported by the National Institutes of Health (1R01DK62277 and 1R01DK100287 and Endowed Chair for Experimental Pathology, to S.P.S.M.; 1R01DK103775, to K.N.‐B.).
See Editorial on Page 829
Potential conflict of interest: Dr. Monga consults and received grants from AbbVie and Dicerna. Dr. Abrams is employed by and owns stock in Dicerna.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.29371
PMID 28714273
PQID 2007993111
PQPubID 996352
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5771988
proquest_miscellaneous_1920200372
proquest_journals_2007993111
pubmed_primary_28714273
crossref_primary_10_1002_hep_29371
crossref_citationtrail_10_1002_hep_29371
wiley_primary_10_1002_hep_29371_HEP29371
PublicationCentury 2000
PublicationDate March 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Hepatology (Baltimore, Md.)
PublicationTitleAlternate Hepatology
PublicationYear 2018
Publisher Wolters Kluwer Health, Inc
Publisher_xml – name: Wolters Kluwer Health, Inc
References 2004; 101
2017; 7
1995; 95
2013; 3
2000; 6
2000; 43
2017; 65
2015; 10
2013; 288
2002; 2
2006; 131
2006; 3
2000; 275
2012; 36
2012; 56
2013; 380
2014; 136
2016; 7
2007; 212
2013; 17
2014; 3
2007; 1773
2013; 57
2006; 43
2007; 133
2008; 47
2010; 176
1999; 274
2016; 64
2014; 59
2016; 375
2011; 43
2011; 25
1996; 251
2006; 281
1999; 116
2010; 52
2006; 103
2001; 98
2014; 124
(hep29371-bib-0014-20241017) 2006; 281
(hep29371-bib-0022-20241017) 2016; 64
(hep29371-bib-0001-20241017) 2011; 25
(hep29371-bib-0028-20241017) 2006; 103
(hep29371-bib-0006-20241017) 2007; 133
(hep29371-bib-0023-20241017) 2013; 57
(hep29371-bib-0017-20241017) 2000; 43
(hep29371-bib-0031-20241017) 2002; 2
(hep29371-bib-0039-20241017) 2012; 36
(hep29371-bib-0008-20241017) 2010; 52
(hep29371-bib-0011-20241017) 2006; 3
(hep29371-bib-0033-20241017) 2017; 7
(hep29371-bib-0040-20241017) 2016; 375
(hep29371-bib-0004-20241017) 2011; 43
(hep29371-bib-0019-20241017) 2007; 1773
(hep29371-bib-0020-20241017) 2014; 136
(hep29371-bib-0035-20241017) 2007; 212
(hep29371-bib-0013-20241017) 2013; 3
(hep29371-bib-0036-20241017) 2006; 43
(hep29371-bib-0027-20241017) 2013; 380
(hep29371-bib-0041-20241017) 2014; 3
(hep29371-bib-0026-20241017) 2015; 10
(hep29371-bib-0002-20241017) 1996; 251
(hep29371-bib-0024-20241017) 2014; 124
(hep29371-bib-0005-20241017) 2008; 47
(hep29371-bib-0021-20241017) 2013; 17
(hep29371-bib-0025-20241017) 2013; 288
(hep29371-bib-0034-20241017) 2016; 7
(hep29371-bib-0015-20241017) 2000; 275
(hep29371-bib-0009-20241017) 2006; 131
(hep29371-bib-0016-20241017) 1999; 274
(hep29371-bib-0012-20241017) 2000; 6
(hep29371-bib-0030-20241017) 2008; 47
(hep29371-bib-0018-20241017) 2004; 101
(hep29371-bib-0003-20241017) 1999; 116
(hep29371-bib-0010-20241017) 2001; 98
(hep29371-bib-0038-20241017) 2014; 59
(hep29371-bib-0037-20241017) 1995; 95
(hep29371-bib-0029-20241017) 2012; 56
(hep29371-bib-0032-20241017) 2017; 65
(hep29371-bib-0007-20241017) 2010; 176
29024022 - Hepatology. 2018 Mar;67(3):829-832
References_xml – volume: 47
  start-page: 1578
  year: 2008
  end-page: 1586
  article-title: Loss of orphan receptor small heterodimer partner sensitizes mice to liver injury from obstructive cholestasis
  publication-title: Hepatology
– volume: 380
  start-page: 16
  year: 2013
  end-page: 24
  article-title: Complex genomic interactions in the dynamic regulation of transcription by the glucocorticoid receptor
  publication-title: Mol Cell Endocrinol
– volume: 56
  start-page: 1034
  year: 2012
  end-page: 1043
  article-title: Mechanism of tissue‐specific farnesoid X receptor in suppressing the expression of genes in bile‐acid synthesis in mice
  publication-title: Hepatology
– volume: 103
  start-page: 11323
  year: 2006
  end-page: 11328
  article-title: Benefit of farnesoid X receptor inhibition in obstructive cholestasis
  publication-title: Proc Natl Acad Sci USA
– volume: 375
  start-page: 631
  year: 2016
  end-page: 643
  article-title: A placebo‐controlled trial of obeticholic acid in primary biliary cholangitis
  publication-title: N Engl J Med
– volume: 133
  start-page: 1579
  year: 2007
  end-page: 1591
  article-title: Wnt/beta‐catenin signaling in murine hepatic transit amplifying progenitor cells
  publication-title: Gastroenterology
– volume: 65
  start-page: 604
  year: 2017
  end-page: 615
  article-title: Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay
  publication-title: Hepatology
– volume: 251
  start-page: 173
  year: 1996
  end-page: 186
  article-title: Hepatic levels of bile acids in end‐stage chronic cholestatic liver disease
  publication-title: Clin Chim Acta
– volume: 59
  start-page: 2344
  year: 2014
  end-page: 2357
  article-title: T‐cell factor 4 and beta‐catenin chromatin occupancies pattern zonal liver metabolism in mice
  publication-title: Hepatology
– volume: 281
  start-page: 19081
  year: 2006
  end-page: 19091
  article-title: Pregnane X receptor is a target of farnesoid X receptor
  publication-title: J Biol Chem
– volume: 17
  start-page: 225
  year: 2013
  end-page: 235
  article-title: Gut microbiota regulates bile acid metabolism by reducing the levels of tauro‐beta‐muricholic acid, a naturally occurring FXR antagonist
  publication-title: Cell Metab
– volume: 57
  start-page: 763
  year: 2013
  end-page: 774
  article-title: Beta‐catenin‐NF‐kappaB interactions in murine hepatocytes: a complex to die for
  publication-title: Hepatology
– volume: 6
  start-page: 517
  year: 2000
  end-page: 526
  article-title: A regulatory cascade of the nuclear receptors FXR, SHP‐1, and LRH‐1 represses bile acid biosynthesis
  publication-title: Mol Cell
– volume: 212
  start-page: 345
  year: 2007
  end-page: 352
  article-title: Cholestasis is a marker for hepatocellular carcinomas displaying beta‐catenin mutations
  publication-title: J Pathol
– volume: 95
  start-page: 1235
  year: 1995
  end-page: 1243
  article-title: Heterogeneous expression of cholesterol 7 alpha‐hydroxylase and sterol 27‐hydroxylase genes in the rat liver lobulus
  publication-title: J Clin Invest
– volume: 274
  start-page: 1189
  year: 1999
  end-page: 1192
  article-title: Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates
  publication-title: J Biol Chem
– volume: 7
  start-page: 41055
  year: 2017
  article-title: Decoding the role of the nuclear receptor SHP in regulating hepatic stellate cells and liver fibrogenesis
  publication-title: Sci Rep
– volume: 136
  start-page: 16958
  year: 2014
  end-page: 16961
  article-title: Multivalent ‐acetylgalactosamine‐conjugated siRNA localizes in hepatocytes and elicits robust RNAi‐mediated gene silencing
  publication-title: J Am Chem Soc
– volume: 131
  start-page: 1561
  year: 2006
  end-page: 1572
  article-title: Conditional deletion of beta‐catenin reveals its role in liver growth and regeneration
  publication-title: Gastroenterology
– volume: 3
  start-page: 231
  year: 2006
  end-page: 251
  article-title: Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations
  publication-title: Mol Pharm
– volume: 2
  start-page: 721
  year: 2002
  end-page: 731
  article-title: Redundant pathways for negative feedback regulation of bile acid production
  publication-title: Dev Cell
– volume: 7
  start-page: 86985
  year: 2016
  end-page: 86998
  article-title: Hepatocyte specific expression of an oncogenic variant of beta‐catenin results in cholestatic liver disease
  publication-title: Oncotarget
– volume: 43
  start-page: 2971
  year: 2000
  end-page: 2974
  article-title: Identification of a chemical tool for the orphan nuclear receptor FXR
  publication-title: J Med Chem
– volume: 36
  start-page: S3
  issue: Suppl. 1
  year: 2012
  end-page: S12
  article-title: Ursodeoxycholic acid and bile‐acid mimetics as therapeutic agents for cholestatic liver diseases: an overview of their mechanisms of action
  publication-title: Clin Res Hepatol Gastroenterol
– volume: 1773
  start-page: 283
  year: 2007
  end-page: 308
  article-title: Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration
  publication-title: Biochim Biophys Acta
– volume: 52
  start-page: 1410
  year: 2010
  end-page: 1419
  article-title: Liver‐specific beta‐catenin knockout mice have bile canalicular abnormalities, bile secretory defect, and intrahepatic cholestasis
  publication-title: Hepatology
– volume: 101
  start-page: 12682
  year: 2004
  end-page: 12687
  article-title: A small molecule inhibitor of beta‐catenin/CREB‐binding protein transcription [corrected]
  publication-title: Proc Natl Acad Sci USA
– volume: 275
  start-page: 15122
  year: 2000
  end-page: 15127
  article-title: Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands
  publication-title: J Biol Chem
– volume: 10
  start-page: e0136215
  year: 2015
  article-title: Interleukin‐18 down‐regulates multidrug resistance‐associated protein 2 expression through farnesoid X receptor associated with nuclear factor kappa B and yin yang 1 in human hepatoma HepG2 cells
  publication-title: PLoS One
– volume: 98
  start-page: 3375
  year: 2001
  end-page: 3380
  article-title: An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids
  publication-title: Proc Natl Acad Sci USA
– volume: 43
  start-page: 817
  year: 2006
  end-page: 825
  article-title: Liver‐specific loss of beta‐catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice
  publication-title: Hepatology
– volume: 3
  start-page: 29
  year: 2014
  end-page: 33
  article-title: Treatment of primary biliary cirrhosis: is there more to offer than ursodeoxycholic acid?
  publication-title: Clin Liver Dis
– volume: 116
  start-page: 179
  year: 1999
  end-page: 186
  article-title: Bile acid feeding induces cholangiocyte proliferation and secretion: evidence for bile acid–regulated ductal secretion
  publication-title: Gastroenterology
– volume: 288
  start-page: 13850
  year: 2013
  end-page: 13862
  article-title: SUMOylation of the farnesoid X receptor (FXR) regulates the expression of FXR target genes
  publication-title: J Biol Chem
– volume: 47
  start-page: 288
  year: 2008
  end-page: 295
  article-title: Wnt/beta‐catenin signaling mediates oval cell response in rodents
  publication-title: Hepatology
– volume: 3
  start-page: 1191
  year: 2013
  end-page: 1212
  article-title: Bile acid metabolism and signaling
  publication-title: Compr Physiol
– volume: 25
  start-page: 727
  year: 2011
  end-page: 739
  article-title: Pathogenesis of primary sclerosing cholangitis
  publication-title: Best Pract Res Clin Gastroenterol
– volume: 124
  start-page: 1037
  year: 2014
  end-page: 1051
  article-title: Metformin interferes with bile acid homeostasis through AMPK‐FXR crosstalk
  publication-title: J Clin Invest
– volume: 43
  start-page: 1021
  year: 2011
  end-page: 1029
  article-title: Role of Wnt/beta‐catenin signaling in liver metabolism and cancer
  publication-title: Int J Biochem Cell Biol
– volume: 64
  start-page: 1652
  year: 2016
  end-page: 1666
  article-title: Wnt signaling regulates hepatobiliary repair following cholestatic liver injury in mice
  publication-title: Hepatology
– volume: 176
  start-page: 744
  year: 2010
  end-page: 753
  article-title: Liver‐specific beta‐catenin knockout mice exhibit defective bile acid and cholesterol homeostasis and increased susceptibility to diet‐induced steatohepatitis
  publication-title: Am J Pathol
– volume: 6
  start-page: 517
  year: 2000
  ident: hep29371-bib-0012-20241017
  article-title: A regulatory cascade of the nuclear receptors FXR, SHP‐1, and LRH‐1 represses bile acid biosynthesis
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)00051-4
– volume: 375
  start-page: 631
  year: 2016
  ident: hep29371-bib-0040-20241017
  article-title: A placebo‐controlled trial of obeticholic acid in primary biliary cholangitis
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1509840
– volume: 65
  start-page: 604
  year: 2017
  ident: hep29371-bib-0032-20241017
  article-title: Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay
  publication-title: Hepatology
  doi: 10.1002/hep.28882
– volume: 56
  start-page: 1034
  year: 2012
  ident: hep29371-bib-0029-20241017
  article-title: Mechanism of tissue‐specific farnesoid X receptor in suppressing the expression of genes in bile‐acid synthesis in mice
  publication-title: Hepatology
  doi: 10.1002/hep.25740
– volume: 25
  start-page: 727
  year: 2011
  ident: hep29371-bib-0001-20241017
  article-title: Pathogenesis of primary sclerosing cholangitis
  publication-title: Best Pract Res Clin Gastroenterol
  doi: 10.1016/j.bpg.2011.10.009
– volume: 2
  start-page: 721
  year: 2002
  ident: hep29371-bib-0031-20241017
  article-title: Redundant pathways for negative feedback regulation of bile acid production
  publication-title: Dev Cell
  doi: 10.1016/S1534-5807(02)00187-9
– volume: 47
  start-page: 1578
  year: 2008
  ident: hep29371-bib-0030-20241017
  article-title: Loss of orphan receptor small heterodimer partner sensitizes mice to liver injury from obstructive cholestasis
  publication-title: Hepatology
  doi: 10.1002/hep.22196
– volume: 1773
  start-page: 283
  year: 2007
  ident: hep29371-bib-0019-20241017
  article-title: Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2006.04.014
– volume: 52
  start-page: 1410
  year: 2010
  ident: hep29371-bib-0008-20241017
  article-title: Liver‐specific beta‐catenin knockout mice have bile canalicular abnormalities, bile secretory defect, and intrahepatic cholestasis
  publication-title: Hepatology
  doi: 10.1002/hep.23801
– volume: 7
  start-page: 86985
  year: 2016
  ident: hep29371-bib-0034-20241017
  article-title: Hepatocyte specific expression of an oncogenic variant of beta‐catenin results in cholestatic liver disease
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.13521
– volume: 212
  start-page: 345
  year: 2007
  ident: hep29371-bib-0035-20241017
  article-title: Cholestasis is a marker for hepatocellular carcinomas displaying beta‐catenin mutations
  publication-title: J Pathol
  doi: 10.1002/path.2169
– volume: 43
  start-page: 2971
  year: 2000
  ident: hep29371-bib-0017-20241017
  article-title: Identification of a chemical tool for the orphan nuclear receptor FXR
  publication-title: J Med Chem
  doi: 10.1021/jm0002127
– volume: 47
  start-page: 288
  year: 2008
  ident: hep29371-bib-0005-20241017
  article-title: Wnt/beta‐catenin signaling mediates oval cell response in rodents
  publication-title: Hepatology
  doi: 10.1002/hep.21973
– volume: 3
  start-page: 1191
  year: 2013
  ident: hep29371-bib-0013-20241017
  article-title: Bile acid metabolism and signaling
  publication-title: Compr Physiol
  doi: 10.1002/j.2040-4603.2013.tb00517.x
– volume: 98
  start-page: 3375
  year: 2001
  ident: hep29371-bib-0010-20241017
  article-title: An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.051014398
– volume: 101
  start-page: 12682
  year: 2004
  ident: hep29371-bib-0018-20241017
  article-title: A small molecule inhibitor of beta‐catenin/CREB‐binding protein transcription [corrected]
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0404875101
– volume: 251
  start-page: 173
  year: 1996
  ident: hep29371-bib-0002-20241017
  article-title: Hepatic levels of bile acids in end‐stage chronic cholestatic liver disease
  publication-title: Clin Chim Acta
  doi: 10.1016/0009-8981(96)06305-X
– volume: 116
  start-page: 179
  year: 1999
  ident: hep29371-bib-0003-20241017
  article-title: Bile acid feeding induces cholangiocyte proliferation and secretion: evidence for bile acid–regulated ductal secretion
  publication-title: Gastroenterology
  doi: 10.1016/S0016-5085(99)70242-8
– volume: 274
  start-page: 1189
  year: 1999
  ident: hep29371-bib-0016-20241017
  article-title: Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.3.1189
– volume: 133
  start-page: 1579
  year: 2007
  ident: hep29371-bib-0006-20241017
  article-title: Wnt/beta‐catenin signaling in murine hepatic transit amplifying progenitor cells
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2007.08.036
– volume: 64
  start-page: 1652
  year: 2016
  ident: hep29371-bib-0022-20241017
  article-title: Wnt signaling regulates hepatobiliary repair following cholestatic liver injury in mice
  publication-title: Hepatology
  doi: 10.1002/hep.28774
– volume: 43
  start-page: 817
  year: 2006
  ident: hep29371-bib-0036-20241017
  article-title: Liver‐specific loss of beta‐catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice
  publication-title: Hepatology
  doi: 10.1002/hep.21131
– volume: 59
  start-page: 2344
  year: 2014
  ident: hep29371-bib-0038-20241017
  article-title: T‐cell factor 4 and beta‐catenin chromatin occupancies pattern zonal liver metabolism in mice
  publication-title: Hepatology
  doi: 10.1002/hep.26924
– volume: 380
  start-page: 16
  year: 2013
  ident: hep29371-bib-0027-20241017
  article-title: Complex genomic interactions in the dynamic regulation of transcription by the glucocorticoid receptor
  publication-title: Mol Cell Endocrinol
  doi: 10.1016/j.mce.2013.03.002
– volume: 43
  start-page: 1021
  year: 2011
  ident: hep29371-bib-0004-20241017
  article-title: Role of Wnt/beta‐catenin signaling in liver metabolism and cancer
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2009.09.001
– volume: 17
  start-page: 225
  year: 2013
  ident: hep29371-bib-0021-20241017
  article-title: Gut microbiota regulates bile acid metabolism by reducing the levels of tauro‐beta‐muricholic acid, a naturally occurring FXR antagonist
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2013.01.003
– volume: 95
  start-page: 1235
  year: 1995
  ident: hep29371-bib-0037-20241017
  article-title: Heterogeneous expression of cholesterol 7 alpha‐hydroxylase and sterol 27‐hydroxylase genes in the rat liver lobulus
  publication-title: J Clin Invest
  doi: 10.1172/JCI117773
– volume: 10
  start-page: e0136215
  year: 2015
  ident: hep29371-bib-0026-20241017
  article-title: Interleukin‐18 down‐regulates multidrug resistance‐associated protein 2 expression through farnesoid X receptor associated with nuclear factor kappa B and yin yang 1 in human hepatoma HepG2 cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0136215
– volume: 131
  start-page: 1561
  year: 2006
  ident: hep29371-bib-0009-20241017
  article-title: Conditional deletion of beta‐catenin reveals its role in liver growth and regeneration
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2006.08.042
– volume: 103
  start-page: 11323
  year: 2006
  ident: hep29371-bib-0028-20241017
  article-title: Benefit of farnesoid X receptor inhibition in obstructive cholestasis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0604772103
– volume: 176
  start-page: 744
  year: 2010
  ident: hep29371-bib-0007-20241017
  article-title: Liver‐specific beta‐catenin knockout mice exhibit defective bile acid and cholesterol homeostasis and increased susceptibility to diet‐induced steatohepatitis
  publication-title: Am J Pathol
  doi: 10.2353/ajpath.2010.090667
– volume: 124
  start-page: 1037
  year: 2014
  ident: hep29371-bib-0024-20241017
  article-title: Metformin interferes with bile acid homeostasis through AMPK‐FXR crosstalk
  publication-title: J Clin Invest
  doi: 10.1172/JCI68815
– volume: 136
  start-page: 16958
  year: 2014
  ident: hep29371-bib-0020-20241017
  article-title: Multivalent N‐acetylgalactosamine‐conjugated siRNA localizes in hepatocytes and elicits robust RNAi‐mediated gene silencing
  publication-title: J Am Chem Soc
  doi: 10.1021/ja505986a
– volume: 288
  start-page: 13850
  year: 2013
  ident: hep29371-bib-0025-20241017
  article-title: SUMOylation of the farnesoid X receptor (FXR) regulates the expression of FXR target genes
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.443937
– volume: 7
  start-page: 41055
  year: 2017
  ident: hep29371-bib-0033-20241017
  article-title: Decoding the role of the nuclear receptor SHP in regulating hepatic stellate cells and liver fibrogenesis
  publication-title: Sci Rep
  doi: 10.1038/srep41055
– volume: 3
  start-page: 29
  year: 2014
  ident: hep29371-bib-0041-20241017
  article-title: Treatment of primary biliary cirrhosis: is there more to offer than ursodeoxycholic acid?
  publication-title: Clin Liver Dis
  doi: 10.1002/cld.311
– volume: 281
  start-page: 19081
  year: 2006
  ident: hep29371-bib-0014-20241017
  article-title: Pregnane X receptor is a target of farnesoid X receptor
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M600116200
– volume: 36
  start-page: S3
  issue: Suppl. 1
  year: 2012
  ident: hep29371-bib-0039-20241017
  article-title: Ursodeoxycholic acid and bile‐acid mimetics as therapeutic agents for cholestatic liver diseases: an overview of their mechanisms of action
  publication-title: Clin Res Hepatol Gastroenterol
– volume: 275
  start-page: 15122
  year: 2000
  ident: hep29371-bib-0015-20241017
  article-title: Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M001215200
– volume: 57
  start-page: 763
  year: 2013
  ident: hep29371-bib-0023-20241017
  article-title: Beta‐catenin‐NF‐kappaB interactions in murine hepatocytes: a complex to die for
  publication-title: Hepatology
  doi: 10.1002/hep.26042
– volume: 3
  start-page: 231
  year: 2006
  ident: hep29371-bib-0011-20241017
  article-title: Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations
  publication-title: Mol Pharm
  doi: 10.1021/mp060010s
– reference: 29024022 - Hepatology. 2018 Mar;67(3):829-832
SSID ssj0009428
Score 2.4751215
Snippet Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The...
Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation (ADP), and fibrosis. The...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 955
SubjectTerms Animals
beta Catenin - metabolism
Bile
Bile acids
Bile Acids and Salts - metabolism
Bile ducts
Catenin
Cholestasis
Cholestasis - metabolism
Fibrosis
Hepatology
Liver - metabolism
Liver - pathology
Liver diseases
Localization
Mice
Mice, Knockout
Nuclear transport
Receptors, Cytoplasmic and Nuclear - metabolism
Rodents
Signal Transduction
Wnt protein
Title β‐Catenin regulation of farnesoid X receptor signaling and bile acid metabolism during murine cholestasis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhep.29371
https://www.ncbi.nlm.nih.gov/pubmed/28714273
https://www.proquest.com/docview/2007993111
https://www.proquest.com/docview/1920200372
https://pubmed.ncbi.nlm.nih.gov/PMC5771988
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NitRAEC6WPYgX_3-iq7TiwUtmk07nD0-y7DIIiogLcxBC_4UNO5Msk5mLJx_BZ_FBfAifxKruJOu4CuIpga6QTndV9Vfp6q8AXhihy9TyNIykUaGQXIVK5jLkBoMRaeu0kI7t8102PxVvFuliD16NZ2E8P8T0w40sw_lrMnCp-sNL0tAzezHjxOaG_pdytQgQfbikjiqFq6uKUVdEu8vlyCoU8cPpyd216ArAvJon-St-dQvQyU34NHbd552cz7YbNdOff2N1_M9vuwU3BmDKXntNug17tr0D194OW-93Yfn9248vX48QmrZNy9a-hD1OKutqVss1esyuMWyBLZQo060ZZYZIOuzOZGuYwn4wqVFkZTeoeMumXzF_RpKt6GIZOWIcGNk3_T04PTn-eDQPh1INoSYCtTAWGJTbjArq1pybXBK4kLVAeChVgpDEUuiE-iDKJFM6zU3NM0R-mcliLbRJ7sN-27X2IbA4saLgNpIFEa7LuNQJkeSo2mJ0GJcmgJfjpFV64DGnchrLyjMw8wpHr3KjF8DzSfTCk3f8SehgnPlqsN-einPmiNxwIQjg2dSMlkfbKbK13bavEBtHlNqX8wAeeEWZ3kJxqEBkGEC-o0KTALF677a0zZlj907zPC6LAj_TacjfO17Nj9-7m0f_LvoYriPiK3wS3QHsb9Zb-wRR1UY9debzEz04IYY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIgGX8k8DBQziwCXbxHH-JC6oarVAWyHUSntBkRM7asRuUm12L5x4BJ6lD9KH6JN0xk5SloKEOCWSJ4p_Zuxv7PE3AG-UKNJQ89D1pMpdIXnu5jKWLlfojEhdhok0bJ-H0fhYfJyEkzV419-FsfwQw4YbWYaZr8nAaUN6-4o19ESfjjjRud2Am5TR2zhUX67Io1JhMqui3-XR-XLa8wp5fHv4dHU1ugYxr0dK_opgzRK0dxe-9pW3kSffRstFPiq-_8br-L-tuwcbHTZl760y3Yc1XT-AWwfd6ftDmJ6fXfz4uYPotK5qNrdZ7HFcWVOyUs5x0mwqxSZYQrEyzZxRcIik--5M1orlWBEmCxSZ6QXq3rRqZ8xek2QzemhGczH2jGyr9hEc7-0e7YzdLluDWxCHmusL9Mt1RDl1S85VLAlfyFIgQpR5gKhEk_eEKiHSIMqLMFYljxD8RSryC1Go4DGs102tN4H5gRYJ155MiHNd-mkREE9OXmp0EP1UOfC2H7Ws6KjMKaPGNLMkzDzD3stM7znwehA9tfwdfxLa6oc-60y4pfycMYI3XAsceDUUo_HRiYqsdbNsM4THHkX3xdyBJ1ZThr-QKyoQHDoQr-jQIEDE3qsldXViCL7DOPbTJMFmGhX5e8Wz8e5n8_L030Vfwu3x0cF-tv_h8NMzuIMAMLExdVuwvpgv9XMEWYv8hbGlSy15JaE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIlVcKP-kFDCIA5dsE8f5EyfUdrX8VRWi0h6QIid21IjdZLXZvXDiEXgWHoSH4EmYsZOUpSAhTonkieKfGfsbe_wNwDMlijTUPHQ9qXJXSJ67uYylyxU6I1KXYSIN2-dJNDkTr6fhdAte9HdhLD_EsOFGlmHmazLwhSoPLkhDz_VixInN7QpcFZGXkEofvb_gjkqFSayKbpdHx8tpTyvk8YPh083F6BLCvBwo-SuANSvQeBc-9nW3gSefRutVPio-_0br-J-NuwHXO2TKXlpVuglbur4FO--6s_fbMPv-7ceXr4eITeuqZkubwx5HlTUlK-USp8ymUmyKJRQp0ywZhYZIuu3OZK1YjvVgskCRuV6h5s2qds7sJUk2p4dmNBNjx8i2au_A2fj4w-HE7XI1uAUxqLm-QK9cR5RRt-RcxZLQhSwF4kOZB4hJNPlOqBAiDaK8CGNV8gihX6QivxCFCu7Cdt3U-j4wP9Ai4dqTCTGuSz8tAmLJyUuN7qGfKgee94OWFR2ROeXTmGWWgpln2HuZ6T0Hng6iC8ve8Seh_X7ks86AW8rOGSN0w5XAgSdDMZoenafIWjfrNkNw7FFsX8wduGcVZfgLOaICoaED8YYKDQJE671ZUlfnht47jGM_TRJsptGQv1c8mxyfmpe9fxd9DDunR-Ps7auTNw_gGqK_xAbU7cP2arnWDxFhrfJHxpJ-AsunJFk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CE%B2%E2%80%90Catenin+regulation+of+farnesoid+X+receptor+signaling+and+bile+acid+metabolism+during+murine+cholestasis&rft.jtitle=Hepatology+%28Baltimore%2C+Md.%29&rft.au=Thompson%2C+Michael+D.&rft.au=Moghe%2C+Akshata&rft.au=Cornuet%2C+Pamela&rft.au=Marino%2C+Rebecca&rft.date=2018-03-01&rft.issn=0270-9139&rft.eissn=1527-3350&rft.volume=67&rft.issue=3&rft.spage=955&rft.epage=971&rft_id=info:doi/10.1002%2Fhep.29371&rft.externalDBID=10.1002%252Fhep.29371&rft.externalDocID=HEP29371
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-9139&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-9139&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-9139&client=summon