β‐Catenin regulation of farnesoid X receptor signaling and bile acid metabolism during murine cholestasis
Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β‐catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver‐specific β‐catenin knockout...
Saved in:
Published in | Hepatology (Baltimore, Md.) Vol. 67; no. 3; pp. 955 - 971 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wolters Kluwer Health, Inc
01.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β‐catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver‐specific β‐catenin knockout mice and wild‐type littermates were subjected to cholestatic injury through bile duct ligation or short‐term exposure to 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine diet. Intriguingly, knockout mice exhibit a dramatic protection from liver injury, fibrosis, and atypical ductular proliferation, which coincides with significantly decreased total hepatic bile acids (BAs). This led to the discovery of a role for β‐catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that β‐catenin functions as both an inhibitor of nuclear translocation and a nuclear corepressor through formation of a physical complex with FXR. Loss of β‐catenin expedited FXR nuclear localization and FXR/retinoic X receptor alpha association, culminating in small heterodimer protein promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of β‐catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of β‐catenin expression during cholestatic injury reduces β‐catenin/FXR complex activation of FXR to decrease total BA and alleviate hepatic injury. Conclusion: We have identified an FXR/β‐catenin interaction whose modulation through β‐catenin suppression promotes FXR activation and decreases hepatic BAs, which may provide unique therapeutic opportunities in cholestatic liver diseases. (Hepatology 2018;67:955–971) |
---|---|
AbstractList | Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation (ADP), and fibrosis. The Wnt/β-catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver-specific β-catenin knockout (KO) mice and wild-type (WT) littermates were subjected to cholestatic injury via bile duct ligation or short-term exposure to 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet. Intriguingly, KO exhibit a dramatic protection from liver injury, fibrosis, and ADP, which coincided with significantly decreased total hepatic bile acids (BA). This led to the discovery of a novel role for β-catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that β-catenin functions as both an inhibitor of nuclear translocation and as a nuclear co-repressor through formation of a physical complex with FXR. Loss of β-catenin expedited FXR nuclear localization and FXR/RXRα association, culminating in small heterodimer protein (SHP) promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of β-catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of β-catenin expression during cholestatic injury reduces β-catenin/FXR complex, activates FXR to decrease total BA and alleviates hepatic injury. Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β‐catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver‐specific β‐catenin knockout mice and wild‐type littermates were subjected to cholestatic injury through bile duct ligation or short‐term exposure to 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine diet. Intriguingly, knockout mice exhibit a dramatic protection from liver injury, fibrosis, and atypical ductular proliferation, which coincides with significantly decreased total hepatic bile acids (BAs). This led to the discovery of a role for β‐catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that β‐catenin functions as both an inhibitor of nuclear translocation and a nuclear corepressor through formation of a physical complex with FXR. Loss of β‐catenin expedited FXR nuclear localization and FXR/retinoic X receptor alpha association, culminating in small heterodimer protein promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of β‐catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of β‐catenin expression during cholestatic injury reduces β‐catenin/FXR complex activation of FXR to decrease total BA and alleviate hepatic injury. Conclusion: We have identified an FXR/β‐catenin interaction whose modulation through β‐catenin suppression promotes FXR activation and decreases hepatic BAs, which may provide unique therapeutic opportunities in cholestatic liver diseases. (H epatology 2018;67:955–971) Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β‐catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver‐specific β‐catenin knockout mice and wild‐type littermates were subjected to cholestatic injury through bile duct ligation or short‐term exposure to 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine diet. Intriguingly, knockout mice exhibit a dramatic protection from liver injury, fibrosis, and atypical ductular proliferation, which coincides with significantly decreased total hepatic bile acids (BAs). This led to the discovery of a role for β‐catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that β‐catenin functions as both an inhibitor of nuclear translocation and a nuclear corepressor through formation of a physical complex with FXR. Loss of β‐catenin expedited FXR nuclear localization and FXR/retinoic X receptor alpha association, culminating in small heterodimer protein promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of β‐catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of β‐catenin expression during cholestatic injury reduces β‐catenin/FXR complex activation of FXR to decrease total BA and alleviate hepatic injury. Conclusion: We have identified an FXR/β‐catenin interaction whose modulation through β‐catenin suppression promotes FXR activation and decreases hepatic BAs, which may provide unique therapeutic opportunities in cholestatic liver diseases. (Hepatology 2018;67:955–971) Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β-catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver-specific β-catenin knockout mice and wild-type littermates were subjected to cholestatic injury through bile duct ligation or short-term exposure to 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet. Intriguingly, knockout mice exhibit a dramatic protection from liver injury, fibrosis, and atypical ductular proliferation, which coincides with significantly decreased total hepatic bile acids (BAs). This led to the discovery of a role for β-catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that β-catenin functions as both an inhibitor of nuclear translocation and a nuclear corepressor through formation of a physical complex with FXR. Loss of β-catenin expedited FXR nuclear localization and FXR/retinoic X receptor alpha association, culminating in small heterodimer protein promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of β-catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of β-catenin expression during cholestatic injury reduces β-catenin/FXR complex activation of FXR to decrease total BA and alleviate hepatic injury. We have identified an FXR/β-catenin interaction whose modulation through β-catenin suppression promotes FXR activation and decreases hepatic BAs, which may provide unique therapeutic opportunities in cholestatic liver diseases. (Hepatology 2018;67:955-971). Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β-catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver-specific β-catenin knockout mice and wild-type littermates were subjected to cholestatic injury through bile duct ligation or short-term exposure to 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet. Intriguingly, knockout mice exhibit a dramatic protection from liver injury, fibrosis, and atypical ductular proliferation, which coincides with significantly decreased total hepatic bile acids (BAs). This led to the discovery of a role for β-catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that β-catenin functions as both an inhibitor of nuclear translocation and a nuclear corepressor through formation of a physical complex with FXR. Loss of β-catenin expedited FXR nuclear localization and FXR/retinoic X receptor alpha association, culminating in small heterodimer protein promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of β-catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of β-catenin expression during cholestatic injury reduces β-catenin/FXR complex activation of FXR to decrease total BA and alleviate hepatic injury.Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β-catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver-specific β-catenin knockout mice and wild-type littermates were subjected to cholestatic injury through bile duct ligation or short-term exposure to 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet. Intriguingly, knockout mice exhibit a dramatic protection from liver injury, fibrosis, and atypical ductular proliferation, which coincides with significantly decreased total hepatic bile acids (BAs). This led to the discovery of a role for β-catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that β-catenin functions as both an inhibitor of nuclear translocation and a nuclear corepressor through formation of a physical complex with FXR. Loss of β-catenin expedited FXR nuclear localization and FXR/retinoic X receptor alpha association, culminating in small heterodimer protein promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of β-catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of β-catenin expression during cholestatic injury reduces β-catenin/FXR complex activation of FXR to decrease total BA and alleviate hepatic injury.We have identified an FXR/β-catenin interaction whose modulation through β-catenin suppression promotes FXR activation and decreases hepatic BAs, which may provide unique therapeutic opportunities in cholestatic liver diseases. (Hepatology 2018;67:955-971).CONCLUSIONWe have identified an FXR/β-catenin interaction whose modulation through β-catenin suppression promotes FXR activation and decreases hepatic BAs, which may provide unique therapeutic opportunities in cholestatic liver diseases. (Hepatology 2018;67:955-971). |
Author | Ma, Xiaochao Thompson, Michael D. Cornuet, Pamela Moghe, Akshata Locker, Joseph Monga, Satdarshan P. Nejak‐Bowen, Kari Marino, Rebecca Abrams, Marc Tian, Jianmin Wang, Pengcheng |
AuthorAffiliation | 2 Department of Medicine, University of Pittsburgh, Pittsburgh, PA 6 Dicerna Pharmaceuticals, Inc, Cambridge, MA 4 Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 5 School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 1 Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 3 Department of Pathology, University of Pittsburgh, Pittsburgh, PA |
AuthorAffiliation_xml | – name: 4 Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA – name: 5 School of Pharmacy, University of Pittsburgh, Pittsburgh, PA – name: 2 Department of Medicine, University of Pittsburgh, Pittsburgh, PA – name: 6 Dicerna Pharmaceuticals, Inc, Cambridge, MA – name: 1 Department of Pediatrics, Washington University School of Medicine, St. Louis, MO – name: 3 Department of Pathology, University of Pittsburgh, Pittsburgh, PA |
Author_xml | – sequence: 1 givenname: Michael D. surname: Thompson fullname: Thompson, Michael D. organization: Washington University School of Medicine – sequence: 2 givenname: Akshata surname: Moghe fullname: Moghe, Akshata organization: University of Pittsburgh – sequence: 3 givenname: Pamela surname: Cornuet fullname: Cornuet, Pamela organization: University of Pittsburgh – sequence: 4 givenname: Rebecca surname: Marino fullname: Marino, Rebecca organization: University of Pittsburgh – sequence: 5 givenname: Jianmin surname: Tian fullname: Tian, Jianmin organization: University of Pittsburgh – sequence: 6 givenname: Pengcheng surname: Wang fullname: Wang, Pengcheng organization: University of Pittsburgh – sequence: 7 givenname: Xiaochao surname: Ma fullname: Ma, Xiaochao organization: University of Pittsburgh – sequence: 8 givenname: Marc surname: Abrams fullname: Abrams, Marc organization: Dicerna Pharmaceuticals, Inc – sequence: 9 givenname: Joseph surname: Locker fullname: Locker, Joseph organization: University of Pittsburgh – sequence: 10 givenname: Satdarshan P. surname: Monga fullname: Monga, Satdarshan P. email: smonga@pitt.edu organization: University of Pittsburgh – sequence: 11 givenname: Kari surname: Nejak‐Bowen fullname: Nejak‐Bowen, Kari email: knnst5@pitt.edu organization: University of Pittsburgh |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28714273$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9u1DAUhy1URKeFBRdAltjAIq3_JHG8QUKjQitVggWV2FmO_TLjyrEHOwF1xxE4CwfhEJyknk5bQSVYvcX73k8_-ztAeyEGQOg5JUeUEHa8hs0Rk1zQR2hBGyYqzhuyhxaECVJJyuU-Osj5khAia9Y9QfusE7Rmgi-Q__Xz9_cfSz1BcAEnWM1eTy4GHAc86BQgR2fx57IxsJliwtmtgvYurLAOFvfOA9amICNMuo_e5RHbOW3343YANuvoIU86u_wUPR60z_Dsdh6ii3cnn5an1fmH92fLt-eV4U1HK1pDz6ElXDQDY1bovjTXQ00l1z2XlADpWka0rSVve9MIO7CWsba1LTW1sfwQvdnlbuZ-BGsgTEl7tUlu1OlKRe3U35vg1moVv6pGCCq7rgS8ug1I8ctc2qvRZQPe6wBxzopKRhgpBVlBXz5AL-OcyhdlVQghJaeUFurFn43uq9yJKMDrHWBSzDnBcI9QoraSVZGsbiQX9vgBa9x0Y608xvn_XXwrvq7-Ha1OTz7uLq4B2Xm6tg |
CitedBy_id | crossref_primary_10_1097_HC9_0000000000000485 crossref_primary_10_1016_j_ajpath_2021_09_007 crossref_primary_10_1016_j_intimp_2019_105833 crossref_primary_10_1021_acs_jmedchem_8b01408 crossref_primary_10_1371_journal_pone_0210077 crossref_primary_10_1016_j_cbd_2023_101181 crossref_primary_10_1016_j_intimp_2024_113035 crossref_primary_10_1097_HEP_0000000000000495 crossref_primary_10_1016_j_jcmgh_2023_08_009 crossref_primary_10_1093_jas_skae249 crossref_primary_10_1016_j_jff_2019_02_029 crossref_primary_10_1016_j_jcmgh_2023_08_004 crossref_primary_10_1172_jci_insight_187099 crossref_primary_10_1016_j_bcp_2023_115570 crossref_primary_10_1016_j_intimp_2021_107931 crossref_primary_10_1371_journal_pone_0284138 crossref_primary_10_1096_fj_201801976R crossref_primary_10_1016_j_phymed_2022_154529 crossref_primary_10_1093_intimm_dxaa002 crossref_primary_10_1002_hep_29584 crossref_primary_10_1016_j_ajpath_2023_02_007 crossref_primary_10_1038_s41598_021_04358_6 crossref_primary_10_1631_jzus_B1900158 crossref_primary_10_1038_s41598_021_82252_x crossref_primary_10_1016_j_cbi_2022_110051 crossref_primary_10_7554_eLife_71310 crossref_primary_10_1055_a_2128_5538 crossref_primary_10_1152_physrev_00049_2019 crossref_primary_10_1038_s41598_024_68526_0 crossref_primary_10_1002_ctm2_594 crossref_primary_10_3389_fphar_2023_1099935 crossref_primary_10_1111_liv_15025 crossref_primary_10_1016_j_jcmgh_2023_10_009 crossref_primary_10_1038_s41419_022_04745_5 crossref_primary_10_3892_ol_2020_11545 crossref_primary_10_1002_hep_30927 crossref_primary_10_1016_j_taap_2024_117038 crossref_primary_10_1371_journal_pone_0305170 crossref_primary_10_3390_ijms19072069 crossref_primary_10_1016_j_ajpath_2020_01_015 crossref_primary_10_3390_ijms25084321 crossref_primary_10_1002_hep4_1193 crossref_primary_10_1002_mco2_556 crossref_primary_10_1016_j_semcancer_2020_10_003 crossref_primary_10_1038_s41417_020_00239_8 crossref_primary_10_1002_hep4_2043 crossref_primary_10_1002_hep4_1430 |
Cites_doi | 10.1016/S1097-2765(00)00051-4 10.1056/NEJMoa1509840 10.1002/hep.28882 10.1002/hep.25740 10.1016/j.bpg.2011.10.009 10.1016/S1534-5807(02)00187-9 10.1002/hep.22196 10.1016/j.bbamcr.2006.04.014 10.1002/hep.23801 10.18632/oncotarget.13521 10.1002/path.2169 10.1021/jm0002127 10.1002/hep.21973 10.1002/j.2040-4603.2013.tb00517.x 10.1073/pnas.051014398 10.1073/pnas.0404875101 10.1016/0009-8981(96)06305-X 10.1016/S0016-5085(99)70242-8 10.1074/jbc.274.3.1189 10.1053/j.gastro.2007.08.036 10.1002/hep.28774 10.1002/hep.21131 10.1002/hep.26924 10.1016/j.mce.2013.03.002 10.1016/j.biocel.2009.09.001 10.1016/j.cmet.2013.01.003 10.1172/JCI117773 10.1371/journal.pone.0136215 10.1053/j.gastro.2006.08.042 10.1073/pnas.0604772103 10.2353/ajpath.2010.090667 10.1172/JCI68815 10.1021/ja505986a 10.1074/jbc.M112.443937 10.1038/srep41055 10.1002/cld.311 10.1074/jbc.M600116200 10.1074/jbc.M001215200 10.1002/hep.26042 10.1021/mp060010s |
ContentType | Journal Article |
Copyright | 2017 by the American Association for the Study of Liver Diseases. 2018 by the American Association for the Study of Liver Diseases. |
Copyright_xml | – notice: 2017 by the American Association for the Study of Liver Diseases. – notice: 2018 by the American Association for the Study of Liver Diseases. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TM 7TO 7U9 H94 K9. 7X8 5PM |
DOI | 10.1002/hep.29371 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef AIDS and Cancer Research Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1527-3350 |
EndPage | 971 |
ExternalDocumentID | PMC5771988 28714273 10_1002_hep_29371 HEP29371 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: 1R01DK62277 ; 1R01DK100287 ; 1R01DK103775 – fundername: National Institute of Diabetes and Digestive and Kidney Diseases – fundername: NIDDK NIH HHS grantid: R01 DK103775 – fundername: NIDDK NIH HHS grantid: R01 DK062277 – fundername: NIDDK NIH HHS grantid: R01 DK100287 |
GroupedDBID | --- --K .3N .55 .GA .GJ .Y3 05W 0R~ 10A 186 1B1 1CY 1L6 1OB 1OC 1ZS 1~5 24P 31~ 33P 3O- 3SF 3WU 4.4 4G. 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 7-5 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEDT AAESR AAEVG AAHHS AALRI AANHP AAONW AAQFI AAQQT AAQXK AASGY AAXRX AAXUO AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABMAC ABOCM ABPVW ABWVN ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACLDA ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMUD ADNMO ADOZA ADXAS ADZMN ADZOD AECAP AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFFNX AFGKR AFPWT AFUWQ AFZJQ AHMBA AIACR AIURR AIWBW AJAOE AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD F00 F01 F04 F5P FD8 FDB FEDTE FGOYB FUBAC G-S G.N GNP GODZA H.X HBH HF~ HHY HHZ HVGLF HZ~ IHE IX1 J0M J5H JPC KBYEO KQQ LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M41 M65 MJL MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ NNB NQ- O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K R2- RGB RIG RIWAO RJQFR ROL RPZ RWI RX1 RYL SEW SSZ SUPJJ TEORI UB1 V2E V9Y W2D W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI X7M XG1 XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX ABJNI ACZKN AEFGJ AFNMH AGQPQ AGXDD AHQVU AIDQK AIDYY CITATION MEWTI WXSBR CGR CUY CVF ECM EIF NPM 7T5 7TM 7TO 7U9 ADSXY H94 K9. 7X8 5PM |
ID | FETCH-LOGICAL-c3581-14eb3e60375f22d7ab000af4193ab3910e08620ad4936bc57df262266d61c4cd3 |
IEDL.DBID | DR2 |
ISSN | 0270-9139 1527-3350 |
IngestDate | Thu Aug 21 18:09:35 EDT 2025 Fri Jul 11 11:14:57 EDT 2025 Wed Aug 13 09:02:34 EDT 2025 Mon Jul 21 05:55:18 EDT 2025 Thu Apr 24 23:02:27 EDT 2025 Thu Jul 03 08:34:31 EDT 2025 Wed Jan 22 16:52:32 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | 2017 by the American Association for the Study of Liver Diseases. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3581-14eb3e60375f22d7ab000af4193ab3910e08620ad4936bc57df262266d61c4cd3 |
Notes | Supported by the National Institutes of Health (1R01DK62277 and 1R01DK100287 and Endowed Chair for Experimental Pathology, to S.P.S.M.; 1R01DK103775, to K.N.‐B.). See Editorial on Page 829 Potential conflict of interest: Dr. Monga consults and received grants from AbbVie and Dicerna. Dr. Abrams is employed by and owns stock in Dicerna. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.29371 |
PMID | 28714273 |
PQID | 2007993111 |
PQPubID | 996352 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5771988 proquest_miscellaneous_1920200372 proquest_journals_2007993111 pubmed_primary_28714273 crossref_primary_10_1002_hep_29371 crossref_citationtrail_10_1002_hep_29371 wiley_primary_10_1002_hep_29371_HEP29371 |
PublicationCentury | 2000 |
PublicationDate | March 2018 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Hepatology (Baltimore, Md.) |
PublicationTitleAlternate | Hepatology |
PublicationYear | 2018 |
Publisher | Wolters Kluwer Health, Inc |
Publisher_xml | – name: Wolters Kluwer Health, Inc |
References | 2004; 101 2017; 7 1995; 95 2013; 3 2000; 6 2000; 43 2017; 65 2015; 10 2013; 288 2002; 2 2006; 131 2006; 3 2000; 275 2012; 36 2012; 56 2013; 380 2014; 136 2016; 7 2007; 212 2013; 17 2014; 3 2007; 1773 2013; 57 2006; 43 2007; 133 2008; 47 2010; 176 1999; 274 2016; 64 2014; 59 2016; 375 2011; 43 2011; 25 1996; 251 2006; 281 1999; 116 2010; 52 2006; 103 2001; 98 2014; 124 (hep29371-bib-0014-20241017) 2006; 281 (hep29371-bib-0022-20241017) 2016; 64 (hep29371-bib-0001-20241017) 2011; 25 (hep29371-bib-0028-20241017) 2006; 103 (hep29371-bib-0006-20241017) 2007; 133 (hep29371-bib-0023-20241017) 2013; 57 (hep29371-bib-0017-20241017) 2000; 43 (hep29371-bib-0031-20241017) 2002; 2 (hep29371-bib-0039-20241017) 2012; 36 (hep29371-bib-0008-20241017) 2010; 52 (hep29371-bib-0011-20241017) 2006; 3 (hep29371-bib-0033-20241017) 2017; 7 (hep29371-bib-0040-20241017) 2016; 375 (hep29371-bib-0004-20241017) 2011; 43 (hep29371-bib-0019-20241017) 2007; 1773 (hep29371-bib-0020-20241017) 2014; 136 (hep29371-bib-0035-20241017) 2007; 212 (hep29371-bib-0013-20241017) 2013; 3 (hep29371-bib-0036-20241017) 2006; 43 (hep29371-bib-0027-20241017) 2013; 380 (hep29371-bib-0041-20241017) 2014; 3 (hep29371-bib-0026-20241017) 2015; 10 (hep29371-bib-0002-20241017) 1996; 251 (hep29371-bib-0024-20241017) 2014; 124 (hep29371-bib-0005-20241017) 2008; 47 (hep29371-bib-0021-20241017) 2013; 17 (hep29371-bib-0025-20241017) 2013; 288 (hep29371-bib-0034-20241017) 2016; 7 (hep29371-bib-0015-20241017) 2000; 275 (hep29371-bib-0009-20241017) 2006; 131 (hep29371-bib-0016-20241017) 1999; 274 (hep29371-bib-0012-20241017) 2000; 6 (hep29371-bib-0030-20241017) 2008; 47 (hep29371-bib-0018-20241017) 2004; 101 (hep29371-bib-0003-20241017) 1999; 116 (hep29371-bib-0010-20241017) 2001; 98 (hep29371-bib-0038-20241017) 2014; 59 (hep29371-bib-0037-20241017) 1995; 95 (hep29371-bib-0029-20241017) 2012; 56 (hep29371-bib-0032-20241017) 2017; 65 (hep29371-bib-0007-20241017) 2010; 176 29024022 - Hepatology. 2018 Mar;67(3):829-832 |
References_xml | – volume: 47 start-page: 1578 year: 2008 end-page: 1586 article-title: Loss of orphan receptor small heterodimer partner sensitizes mice to liver injury from obstructive cholestasis publication-title: Hepatology – volume: 380 start-page: 16 year: 2013 end-page: 24 article-title: Complex genomic interactions in the dynamic regulation of transcription by the glucocorticoid receptor publication-title: Mol Cell Endocrinol – volume: 56 start-page: 1034 year: 2012 end-page: 1043 article-title: Mechanism of tissue‐specific farnesoid X receptor in suppressing the expression of genes in bile‐acid synthesis in mice publication-title: Hepatology – volume: 103 start-page: 11323 year: 2006 end-page: 11328 article-title: Benefit of farnesoid X receptor inhibition in obstructive cholestasis publication-title: Proc Natl Acad Sci USA – volume: 375 start-page: 631 year: 2016 end-page: 643 article-title: A placebo‐controlled trial of obeticholic acid in primary biliary cholangitis publication-title: N Engl J Med – volume: 133 start-page: 1579 year: 2007 end-page: 1591 article-title: Wnt/beta‐catenin signaling in murine hepatic transit amplifying progenitor cells publication-title: Gastroenterology – volume: 65 start-page: 604 year: 2017 end-page: 615 article-title: Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay publication-title: Hepatology – volume: 251 start-page: 173 year: 1996 end-page: 186 article-title: Hepatic levels of bile acids in end‐stage chronic cholestatic liver disease publication-title: Clin Chim Acta – volume: 59 start-page: 2344 year: 2014 end-page: 2357 article-title: T‐cell factor 4 and beta‐catenin chromatin occupancies pattern zonal liver metabolism in mice publication-title: Hepatology – volume: 281 start-page: 19081 year: 2006 end-page: 19091 article-title: Pregnane X receptor is a target of farnesoid X receptor publication-title: J Biol Chem – volume: 17 start-page: 225 year: 2013 end-page: 235 article-title: Gut microbiota regulates bile acid metabolism by reducing the levels of tauro‐beta‐muricholic acid, a naturally occurring FXR antagonist publication-title: Cell Metab – volume: 57 start-page: 763 year: 2013 end-page: 774 article-title: Beta‐catenin‐NF‐kappaB interactions in murine hepatocytes: a complex to die for publication-title: Hepatology – volume: 6 start-page: 517 year: 2000 end-page: 526 article-title: A regulatory cascade of the nuclear receptors FXR, SHP‐1, and LRH‐1 represses bile acid biosynthesis publication-title: Mol Cell – volume: 212 start-page: 345 year: 2007 end-page: 352 article-title: Cholestasis is a marker for hepatocellular carcinomas displaying beta‐catenin mutations publication-title: J Pathol – volume: 95 start-page: 1235 year: 1995 end-page: 1243 article-title: Heterogeneous expression of cholesterol 7 alpha‐hydroxylase and sterol 27‐hydroxylase genes in the rat liver lobulus publication-title: J Clin Invest – volume: 274 start-page: 1189 year: 1999 end-page: 1192 article-title: Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates publication-title: J Biol Chem – volume: 7 start-page: 41055 year: 2017 article-title: Decoding the role of the nuclear receptor SHP in regulating hepatic stellate cells and liver fibrogenesis publication-title: Sci Rep – volume: 136 start-page: 16958 year: 2014 end-page: 16961 article-title: Multivalent ‐acetylgalactosamine‐conjugated siRNA localizes in hepatocytes and elicits robust RNAi‐mediated gene silencing publication-title: J Am Chem Soc – volume: 131 start-page: 1561 year: 2006 end-page: 1572 article-title: Conditional deletion of beta‐catenin reveals its role in liver growth and regeneration publication-title: Gastroenterology – volume: 3 start-page: 231 year: 2006 end-page: 251 article-title: Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations publication-title: Mol Pharm – volume: 2 start-page: 721 year: 2002 end-page: 731 article-title: Redundant pathways for negative feedback regulation of bile acid production publication-title: Dev Cell – volume: 7 start-page: 86985 year: 2016 end-page: 86998 article-title: Hepatocyte specific expression of an oncogenic variant of beta‐catenin results in cholestatic liver disease publication-title: Oncotarget – volume: 43 start-page: 2971 year: 2000 end-page: 2974 article-title: Identification of a chemical tool for the orphan nuclear receptor FXR publication-title: J Med Chem – volume: 36 start-page: S3 issue: Suppl. 1 year: 2012 end-page: S12 article-title: Ursodeoxycholic acid and bile‐acid mimetics as therapeutic agents for cholestatic liver diseases: an overview of their mechanisms of action publication-title: Clin Res Hepatol Gastroenterol – volume: 1773 start-page: 283 year: 2007 end-page: 308 article-title: Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration publication-title: Biochim Biophys Acta – volume: 52 start-page: 1410 year: 2010 end-page: 1419 article-title: Liver‐specific beta‐catenin knockout mice have bile canalicular abnormalities, bile secretory defect, and intrahepatic cholestasis publication-title: Hepatology – volume: 101 start-page: 12682 year: 2004 end-page: 12687 article-title: A small molecule inhibitor of beta‐catenin/CREB‐binding protein transcription [corrected] publication-title: Proc Natl Acad Sci USA – volume: 275 start-page: 15122 year: 2000 end-page: 15127 article-title: Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands publication-title: J Biol Chem – volume: 10 start-page: e0136215 year: 2015 article-title: Interleukin‐18 down‐regulates multidrug resistance‐associated protein 2 expression through farnesoid X receptor associated with nuclear factor kappa B and yin yang 1 in human hepatoma HepG2 cells publication-title: PLoS One – volume: 98 start-page: 3375 year: 2001 end-page: 3380 article-title: An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids publication-title: Proc Natl Acad Sci USA – volume: 43 start-page: 817 year: 2006 end-page: 825 article-title: Liver‐specific loss of beta‐catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice publication-title: Hepatology – volume: 3 start-page: 29 year: 2014 end-page: 33 article-title: Treatment of primary biliary cirrhosis: is there more to offer than ursodeoxycholic acid? publication-title: Clin Liver Dis – volume: 116 start-page: 179 year: 1999 end-page: 186 article-title: Bile acid feeding induces cholangiocyte proliferation and secretion: evidence for bile acid–regulated ductal secretion publication-title: Gastroenterology – volume: 288 start-page: 13850 year: 2013 end-page: 13862 article-title: SUMOylation of the farnesoid X receptor (FXR) regulates the expression of FXR target genes publication-title: J Biol Chem – volume: 47 start-page: 288 year: 2008 end-page: 295 article-title: Wnt/beta‐catenin signaling mediates oval cell response in rodents publication-title: Hepatology – volume: 3 start-page: 1191 year: 2013 end-page: 1212 article-title: Bile acid metabolism and signaling publication-title: Compr Physiol – volume: 25 start-page: 727 year: 2011 end-page: 739 article-title: Pathogenesis of primary sclerosing cholangitis publication-title: Best Pract Res Clin Gastroenterol – volume: 124 start-page: 1037 year: 2014 end-page: 1051 article-title: Metformin interferes with bile acid homeostasis through AMPK‐FXR crosstalk publication-title: J Clin Invest – volume: 43 start-page: 1021 year: 2011 end-page: 1029 article-title: Role of Wnt/beta‐catenin signaling in liver metabolism and cancer publication-title: Int J Biochem Cell Biol – volume: 64 start-page: 1652 year: 2016 end-page: 1666 article-title: Wnt signaling regulates hepatobiliary repair following cholestatic liver injury in mice publication-title: Hepatology – volume: 176 start-page: 744 year: 2010 end-page: 753 article-title: Liver‐specific beta‐catenin knockout mice exhibit defective bile acid and cholesterol homeostasis and increased susceptibility to diet‐induced steatohepatitis publication-title: Am J Pathol – volume: 6 start-page: 517 year: 2000 ident: hep29371-bib-0012-20241017 article-title: A regulatory cascade of the nuclear receptors FXR, SHP‐1, and LRH‐1 represses bile acid biosynthesis publication-title: Mol Cell doi: 10.1016/S1097-2765(00)00051-4 – volume: 375 start-page: 631 year: 2016 ident: hep29371-bib-0040-20241017 article-title: A placebo‐controlled trial of obeticholic acid in primary biliary cholangitis publication-title: N Engl J Med doi: 10.1056/NEJMoa1509840 – volume: 65 start-page: 604 year: 2017 ident: hep29371-bib-0032-20241017 article-title: Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay publication-title: Hepatology doi: 10.1002/hep.28882 – volume: 56 start-page: 1034 year: 2012 ident: hep29371-bib-0029-20241017 article-title: Mechanism of tissue‐specific farnesoid X receptor in suppressing the expression of genes in bile‐acid synthesis in mice publication-title: Hepatology doi: 10.1002/hep.25740 – volume: 25 start-page: 727 year: 2011 ident: hep29371-bib-0001-20241017 article-title: Pathogenesis of primary sclerosing cholangitis publication-title: Best Pract Res Clin Gastroenterol doi: 10.1016/j.bpg.2011.10.009 – volume: 2 start-page: 721 year: 2002 ident: hep29371-bib-0031-20241017 article-title: Redundant pathways for negative feedback regulation of bile acid production publication-title: Dev Cell doi: 10.1016/S1534-5807(02)00187-9 – volume: 47 start-page: 1578 year: 2008 ident: hep29371-bib-0030-20241017 article-title: Loss of orphan receptor small heterodimer partner sensitizes mice to liver injury from obstructive cholestasis publication-title: Hepatology doi: 10.1002/hep.22196 – volume: 1773 start-page: 283 year: 2007 ident: hep29371-bib-0019-20241017 article-title: Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2006.04.014 – volume: 52 start-page: 1410 year: 2010 ident: hep29371-bib-0008-20241017 article-title: Liver‐specific beta‐catenin knockout mice have bile canalicular abnormalities, bile secretory defect, and intrahepatic cholestasis publication-title: Hepatology doi: 10.1002/hep.23801 – volume: 7 start-page: 86985 year: 2016 ident: hep29371-bib-0034-20241017 article-title: Hepatocyte specific expression of an oncogenic variant of beta‐catenin results in cholestatic liver disease publication-title: Oncotarget doi: 10.18632/oncotarget.13521 – volume: 212 start-page: 345 year: 2007 ident: hep29371-bib-0035-20241017 article-title: Cholestasis is a marker for hepatocellular carcinomas displaying beta‐catenin mutations publication-title: J Pathol doi: 10.1002/path.2169 – volume: 43 start-page: 2971 year: 2000 ident: hep29371-bib-0017-20241017 article-title: Identification of a chemical tool for the orphan nuclear receptor FXR publication-title: J Med Chem doi: 10.1021/jm0002127 – volume: 47 start-page: 288 year: 2008 ident: hep29371-bib-0005-20241017 article-title: Wnt/beta‐catenin signaling mediates oval cell response in rodents publication-title: Hepatology doi: 10.1002/hep.21973 – volume: 3 start-page: 1191 year: 2013 ident: hep29371-bib-0013-20241017 article-title: Bile acid metabolism and signaling publication-title: Compr Physiol doi: 10.1002/j.2040-4603.2013.tb00517.x – volume: 98 start-page: 3375 year: 2001 ident: hep29371-bib-0010-20241017 article-title: An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.051014398 – volume: 101 start-page: 12682 year: 2004 ident: hep29371-bib-0018-20241017 article-title: A small molecule inhibitor of beta‐catenin/CREB‐binding protein transcription [corrected] publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0404875101 – volume: 251 start-page: 173 year: 1996 ident: hep29371-bib-0002-20241017 article-title: Hepatic levels of bile acids in end‐stage chronic cholestatic liver disease publication-title: Clin Chim Acta doi: 10.1016/0009-8981(96)06305-X – volume: 116 start-page: 179 year: 1999 ident: hep29371-bib-0003-20241017 article-title: Bile acid feeding induces cholangiocyte proliferation and secretion: evidence for bile acid–regulated ductal secretion publication-title: Gastroenterology doi: 10.1016/S0016-5085(99)70242-8 – volume: 274 start-page: 1189 year: 1999 ident: hep29371-bib-0016-20241017 article-title: Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates publication-title: J Biol Chem doi: 10.1074/jbc.274.3.1189 – volume: 133 start-page: 1579 year: 2007 ident: hep29371-bib-0006-20241017 article-title: Wnt/beta‐catenin signaling in murine hepatic transit amplifying progenitor cells publication-title: Gastroenterology doi: 10.1053/j.gastro.2007.08.036 – volume: 64 start-page: 1652 year: 2016 ident: hep29371-bib-0022-20241017 article-title: Wnt signaling regulates hepatobiliary repair following cholestatic liver injury in mice publication-title: Hepatology doi: 10.1002/hep.28774 – volume: 43 start-page: 817 year: 2006 ident: hep29371-bib-0036-20241017 article-title: Liver‐specific loss of beta‐catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice publication-title: Hepatology doi: 10.1002/hep.21131 – volume: 59 start-page: 2344 year: 2014 ident: hep29371-bib-0038-20241017 article-title: T‐cell factor 4 and beta‐catenin chromatin occupancies pattern zonal liver metabolism in mice publication-title: Hepatology doi: 10.1002/hep.26924 – volume: 380 start-page: 16 year: 2013 ident: hep29371-bib-0027-20241017 article-title: Complex genomic interactions in the dynamic regulation of transcription by the glucocorticoid receptor publication-title: Mol Cell Endocrinol doi: 10.1016/j.mce.2013.03.002 – volume: 43 start-page: 1021 year: 2011 ident: hep29371-bib-0004-20241017 article-title: Role of Wnt/beta‐catenin signaling in liver metabolism and cancer publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2009.09.001 – volume: 17 start-page: 225 year: 2013 ident: hep29371-bib-0021-20241017 article-title: Gut microbiota regulates bile acid metabolism by reducing the levels of tauro‐beta‐muricholic acid, a naturally occurring FXR antagonist publication-title: Cell Metab doi: 10.1016/j.cmet.2013.01.003 – volume: 95 start-page: 1235 year: 1995 ident: hep29371-bib-0037-20241017 article-title: Heterogeneous expression of cholesterol 7 alpha‐hydroxylase and sterol 27‐hydroxylase genes in the rat liver lobulus publication-title: J Clin Invest doi: 10.1172/JCI117773 – volume: 10 start-page: e0136215 year: 2015 ident: hep29371-bib-0026-20241017 article-title: Interleukin‐18 down‐regulates multidrug resistance‐associated protein 2 expression through farnesoid X receptor associated with nuclear factor kappa B and yin yang 1 in human hepatoma HepG2 cells publication-title: PLoS One doi: 10.1371/journal.pone.0136215 – volume: 131 start-page: 1561 year: 2006 ident: hep29371-bib-0009-20241017 article-title: Conditional deletion of beta‐catenin reveals its role in liver growth and regeneration publication-title: Gastroenterology doi: 10.1053/j.gastro.2006.08.042 – volume: 103 start-page: 11323 year: 2006 ident: hep29371-bib-0028-20241017 article-title: Benefit of farnesoid X receptor inhibition in obstructive cholestasis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0604772103 – volume: 176 start-page: 744 year: 2010 ident: hep29371-bib-0007-20241017 article-title: Liver‐specific beta‐catenin knockout mice exhibit defective bile acid and cholesterol homeostasis and increased susceptibility to diet‐induced steatohepatitis publication-title: Am J Pathol doi: 10.2353/ajpath.2010.090667 – volume: 124 start-page: 1037 year: 2014 ident: hep29371-bib-0024-20241017 article-title: Metformin interferes with bile acid homeostasis through AMPK‐FXR crosstalk publication-title: J Clin Invest doi: 10.1172/JCI68815 – volume: 136 start-page: 16958 year: 2014 ident: hep29371-bib-0020-20241017 article-title: Multivalent N‐acetylgalactosamine‐conjugated siRNA localizes in hepatocytes and elicits robust RNAi‐mediated gene silencing publication-title: J Am Chem Soc doi: 10.1021/ja505986a – volume: 288 start-page: 13850 year: 2013 ident: hep29371-bib-0025-20241017 article-title: SUMOylation of the farnesoid X receptor (FXR) regulates the expression of FXR target genes publication-title: J Biol Chem doi: 10.1074/jbc.M112.443937 – volume: 7 start-page: 41055 year: 2017 ident: hep29371-bib-0033-20241017 article-title: Decoding the role of the nuclear receptor SHP in regulating hepatic stellate cells and liver fibrogenesis publication-title: Sci Rep doi: 10.1038/srep41055 – volume: 3 start-page: 29 year: 2014 ident: hep29371-bib-0041-20241017 article-title: Treatment of primary biliary cirrhosis: is there more to offer than ursodeoxycholic acid? publication-title: Clin Liver Dis doi: 10.1002/cld.311 – volume: 281 start-page: 19081 year: 2006 ident: hep29371-bib-0014-20241017 article-title: Pregnane X receptor is a target of farnesoid X receptor publication-title: J Biol Chem doi: 10.1074/jbc.M600116200 – volume: 36 start-page: S3 issue: Suppl. 1 year: 2012 ident: hep29371-bib-0039-20241017 article-title: Ursodeoxycholic acid and bile‐acid mimetics as therapeutic agents for cholestatic liver diseases: an overview of their mechanisms of action publication-title: Clin Res Hepatol Gastroenterol – volume: 275 start-page: 15122 year: 2000 ident: hep29371-bib-0015-20241017 article-title: Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands publication-title: J Biol Chem doi: 10.1074/jbc.M001215200 – volume: 57 start-page: 763 year: 2013 ident: hep29371-bib-0023-20241017 article-title: Beta‐catenin‐NF‐kappaB interactions in murine hepatocytes: a complex to die for publication-title: Hepatology doi: 10.1002/hep.26042 – volume: 3 start-page: 231 year: 2006 ident: hep29371-bib-0011-20241017 article-title: Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations publication-title: Mol Pharm doi: 10.1021/mp060010s – reference: 29024022 - Hepatology. 2018 Mar;67(3):829-832 |
SSID | ssj0009428 |
Score | 2.4751215 |
Snippet | Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The... Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation (ADP), and fibrosis. The... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 955 |
SubjectTerms | Animals beta Catenin - metabolism Bile Bile acids Bile Acids and Salts - metabolism Bile ducts Catenin Cholestasis Cholestasis - metabolism Fibrosis Hepatology Liver - metabolism Liver - pathology Liver diseases Localization Mice Mice, Knockout Nuclear transport Receptors, Cytoplasmic and Nuclear - metabolism Rodents Signal Transduction Wnt protein |
Title | β‐Catenin regulation of farnesoid X receptor signaling and bile acid metabolism during murine cholestasis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhep.29371 https://www.ncbi.nlm.nih.gov/pubmed/28714273 https://www.proquest.com/docview/2007993111 https://www.proquest.com/docview/1920200372 https://pubmed.ncbi.nlm.nih.gov/PMC5771988 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NitRAEC6WPYgX_3-iq7TiwUtmk07nD0-y7DIIiogLcxBC_4UNO5Msk5mLJx_BZ_FBfAifxKruJOu4CuIpga6QTndV9Vfp6q8AXhihy9TyNIykUaGQXIVK5jLkBoMRaeu0kI7t8102PxVvFuliD16NZ2E8P8T0w40sw_lrMnCp-sNL0tAzezHjxOaG_pdytQgQfbikjiqFq6uKUVdEu8vlyCoU8cPpyd216ArAvJon-St-dQvQyU34NHbd552cz7YbNdOff2N1_M9vuwU3BmDKXntNug17tr0D194OW-93Yfn9248vX48QmrZNy9a-hD1OKutqVss1esyuMWyBLZQo060ZZYZIOuzOZGuYwn4wqVFkZTeoeMumXzF_RpKt6GIZOWIcGNk3_T04PTn-eDQPh1INoSYCtTAWGJTbjArq1pybXBK4kLVAeChVgpDEUuiE-iDKJFM6zU3NM0R-mcliLbRJ7sN-27X2IbA4saLgNpIFEa7LuNQJkeSo2mJ0GJcmgJfjpFV64DGnchrLyjMw8wpHr3KjF8DzSfTCk3f8SehgnPlqsN-einPmiNxwIQjg2dSMlkfbKbK13bavEBtHlNqX8wAeeEWZ3kJxqEBkGEC-o0KTALF677a0zZlj907zPC6LAj_TacjfO17Nj9-7m0f_LvoYriPiK3wS3QHsb9Zb-wRR1UY9debzEz04IYY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIgGX8k8DBQziwCXbxHH-JC6oarVAWyHUSntBkRM7asRuUm12L5x4BJ6lD9KH6JN0xk5SloKEOCWSJ4p_Zuxv7PE3AG-UKNJQ89D1pMpdIXnu5jKWLlfojEhdhok0bJ-H0fhYfJyEkzV419-FsfwQw4YbWYaZr8nAaUN6-4o19ESfjjjRud2Am5TR2zhUX67Io1JhMqui3-XR-XLa8wp5fHv4dHU1ugYxr0dK_opgzRK0dxe-9pW3kSffRstFPiq-_8br-L-tuwcbHTZl760y3Yc1XT-AWwfd6ftDmJ6fXfz4uYPotK5qNrdZ7HFcWVOyUs5x0mwqxSZYQrEyzZxRcIik--5M1orlWBEmCxSZ6QXq3rRqZ8xek2QzemhGczH2jGyr9hEc7-0e7YzdLluDWxCHmusL9Mt1RDl1S85VLAlfyFIgQpR5gKhEk_eEKiHSIMqLMFYljxD8RSryC1Go4DGs102tN4H5gRYJ155MiHNd-mkREE9OXmp0EP1UOfC2H7Ws6KjMKaPGNLMkzDzD3stM7znwehA9tfwdfxLa6oc-60y4pfycMYI3XAsceDUUo_HRiYqsdbNsM4THHkX3xdyBJ1ZThr-QKyoQHDoQr-jQIEDE3qsldXViCL7DOPbTJMFmGhX5e8Wz8e5n8_L030Vfwu3x0cF-tv_h8NMzuIMAMLExdVuwvpgv9XMEWYv8hbGlSy15JaE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIlVcKP-kFDCIA5dsE8f5EyfUdrX8VRWi0h6QIid21IjdZLXZvXDiEXgWHoSH4EmYsZOUpSAhTonkieKfGfsbe_wNwDMlijTUPHQ9qXJXSJ67uYylyxU6I1KXYSIN2-dJNDkTr6fhdAte9HdhLD_EsOFGlmHmazLwhSoPLkhDz_VixInN7QpcFZGXkEofvb_gjkqFSayKbpdHx8tpTyvk8YPh083F6BLCvBwo-SuANSvQeBc-9nW3gSefRutVPio-_0br-J-NuwHXO2TKXlpVuglbur4FO--6s_fbMPv-7ceXr4eITeuqZkubwx5HlTUlK-USp8ymUmyKJRQp0ywZhYZIuu3OZK1YjvVgskCRuV6h5s2qds7sJUk2p4dmNBNjx8i2au_A2fj4w-HE7XI1uAUxqLm-QK9cR5RRt-RcxZLQhSwF4kOZB4hJNPlOqBAiDaK8CGNV8gihX6QivxCFCu7Cdt3U-j4wP9Ai4dqTCTGuSz8tAmLJyUuN7qGfKgee94OWFR2ROeXTmGWWgpln2HuZ6T0Hng6iC8ve8Seh_X7ks86AW8rOGSN0w5XAgSdDMZoenafIWjfrNkNw7FFsX8wduGcVZfgLOaICoaED8YYKDQJE671ZUlfnht47jGM_TRJsptGQv1c8mxyfmpe9fxd9DDunR-Ps7auTNw_gGqK_xAbU7cP2arnWDxFhrfJHxpJ-AsunJFk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CE%B2%E2%80%90Catenin+regulation+of+farnesoid+X+receptor+signaling+and+bile+acid+metabolism+during+murine+cholestasis&rft.jtitle=Hepatology+%28Baltimore%2C+Md.%29&rft.au=Thompson%2C+Michael+D.&rft.au=Moghe%2C+Akshata&rft.au=Cornuet%2C+Pamela&rft.au=Marino%2C+Rebecca&rft.date=2018-03-01&rft.issn=0270-9139&rft.eissn=1527-3350&rft.volume=67&rft.issue=3&rft.spage=955&rft.epage=971&rft_id=info:doi/10.1002%2Fhep.29371&rft.externalDBID=10.1002%252Fhep.29371&rft.externalDocID=HEP29371 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-9139&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-9139&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-9139&client=summon |