The search method for key transmission sections based on an improved spectral clustering algorithm

With the increased complexity of power systems stemming from the connection of high-proportion renewable energy sources, coupled with the escalating volatility and uncertainty, the key transmission sections that serve as indicators of the power grid’s security status are also subject to frequent cha...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in energy research Vol. 12
Main Authors Lin, Jiliang, Liu, Min
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 25.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the increased complexity of power systems stemming from the connection of high-proportion renewable energy sources, coupled with the escalating volatility and uncertainty, the key transmission sections that serve as indicators of the power grid’s security status are also subject to frequent changes, posing challenges to grid monitoring. The search method for key transmission sections based on an improved spectral clustering algorithm is proposed in this paper. A branch weight model, considering the impact of node voltage and power flow factors, is initially established to comprehensively reflect the electrical connectivity between nodes. Subsequently, a weighted graph model is constructed based on spectral graph theory, and an improved spectral clustering algorithm is employed to partition the power grid. Finally, a safety risk indicator is utilized to identify whether the partitioned sections are key transmission sections. Results from case studies on the IEEE39-node system and actual power grid examples demonstrate that the proposed method accurately and effectively searches for all key transmission sections of the system and identifies their security risks. The application in real power grid scenarios validates its ability to screen out some previously unrecognized key transmission sections.
AbstractList With the increased complexity of power systems stemming from the connection of high-proportion renewable energy sources, coupled with the escalating volatility and uncertainty, the key transmission sections that serve as indicators of the power grid’s security status are also subject to frequent changes, posing challenges to grid monitoring. The search method for key transmission sections based on an improved spectral clustering algorithm is proposed in this paper. A branch weight model, considering the impact of node voltage and power flow factors, is initially established to comprehensively reflect the electrical connectivity between nodes. Subsequently, a weighted graph model is constructed based on spectral graph theory, and an improved spectral clustering algorithm is employed to partition the power grid. Finally, a safety risk indicator is utilized to identify whether the partitioned sections are key transmission sections. Results from case studies on the IEEE39-node system and actual power grid examples demonstrate that the proposed method accurately and effectively searches for all key transmission sections of the system and identifies their security risks. The application in real power grid scenarios validates its ability to screen out some previously unrecognized key transmission sections.
Author Liu, Min
Lin, Jiliang
Author_xml – sequence: 1
  givenname: Jiliang
  surname: Lin
  fullname: Lin, Jiliang
– sequence: 2
  givenname: Min
  surname: Liu
  fullname: Liu, Min
BookMark eNp9kMtKAzEUhoNUsNa-gKu8QGsmycwkSyleCgU3FdyFJHPSps5MSjIKfXvTWkFcuDrX_-ec7xqN-tADQrcFmTMm5J2DPm7mlFA-L5ioBRUXaEyprGalFG-jX_kVmqa0I4QUjJa8IGNk1lvACXS0W9zBsA0NdiHidzjgIeo-dT4lH_q8YoccEzY6QYNzR_fYd_sYPnOZ9nkcdYtt-5EGiL7fYN1uQvTDtrtBl063CabnOEGvjw_rxfNs9fK0XNyvZpaV9TBzxgkOTAtemdIRaKihhYWKcMaaRoJ1pZZGgMuHi5rZWoiam1JYBrxxxrAJWn77NkHv1D76TseDCtqrUyPEjdJx8LYFxStHJACY2gJ3RalLyYx0lDXUOlm57CW-vWwMKUVwyvpBHwnkN32rCqKO6NUJvTqiV2f0WUr_SH9O-Uf0BTyxjjY
CitedBy_id crossref_primary_10_1109_OAJPE_2025_3535709
Cites_doi 10.1049/iet-gtd.2013.0466
10.13334/j.0258-8013.pcsee.210749
10.11930/j.issn.1004-9649.201708088
10.1016/j.neucom.2017.06.053
10.13335/j.1000-3673.pst.2021.0415
10.1049/joe.2018.8490
10.13335/j.1000-3673.pst.2016.1168
10.1016/j.engappai.2023.106497
10.3389/fnins.2013.12345
10.1049/cp.2012.0440
10.1016/j.ijepes.2023.109387
10.1109/TSG.2017.2648779
10.1007/s00521-013-1439-2
10.3778/j.issn.1002-8331.2103-0547
10.1016/j.ress.2023.109604
10.1007/s11222-007-9033-z
10.1109/tsg.2020.2999921
10.13335/j.1000-3673.pst.2022.0676
10.3389/fenrg.2022.843536
10.13335/j.1000-3673.pst.2022.1915
10.1109/34.868688
10.7667/PSPC160502
10.1016/j.ress.2011.11.008
10.1109/InfoSEEE.2014.6946257
10.1155/2023/8643537
10.13648/j.cnki.issn1674-0629.2021.11.005
10.1109/powercon.2018.8601566
10.1016/j.apenergy.2023.121521
10.19725/j.cnki.1007-2322.2019.0313
10.3321/j.issn:1000-1026.2008.17.001
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fenrg.2024.1387828
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-598X
ExternalDocumentID oai_doaj_org_article_46f09eeeb7ce4f15a593b9f23d2cf96f
10_3389_fenrg_2024_1387828
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c357t-fbf84e3a846b5f0ed2b21ce60433dd9ecf5a9b8ef541873c78874b58c3e4dfbb3
IEDL.DBID DOA
ISSN 2296-598X
IngestDate Wed Aug 27 01:15:07 EDT 2025
Tue Jul 01 01:51:04 EDT 2025
Thu Apr 24 22:58:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-fbf84e3a846b5f0ed2b21ce60433dd9ecf5a9b8ef541873c78874b58c3e4dfbb3
OpenAccessLink https://doaj.org/article/46f09eeeb7ce4f15a593b9f23d2cf96f
ParticipantIDs doaj_primary_oai_doaj_org_article_46f09eeeb7ce4f15a593b9f23d2cf96f
crossref_citationtrail_10_3389_fenrg_2024_1387828
crossref_primary_10_3389_fenrg_2024_1387828
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-25
PublicationDateYYYYMMDD 2024-04-25
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-25
  day: 25
PublicationDecade 2020
PublicationTitle Frontiers in energy research
PublicationYear 2024
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Cheng (B4) 2022; 10
Zhao (B28) 2017; 9
Von Luxburg (B20) 2007; 17
Lv (B16) 2018
Liang (B13) 2022; 46
Xue (B26) 2019; 2019
Wang (B21) 2020; 37
Wang (B22) 2022; 55
Wu (B25) 2023; 153
Liu (B14) 2017; 41
Bao (B2) 2021; 15
Yu (B27) 2023; 2023
Zhao (B29) 2008; 32
Luo (B15) 2014; 8
Fabjawska (B6) 2012
Bo (B3) 2024; 242
Hou (B8) 2014; 3
Samudrala (B17) 2020; 11
Wang (B23) 2021; 41
Hu (B9) 2023; 47
Shi (B19) 2000; 22
Wang (B24) 2019; 52
Hui (B10) 2023; 349
Diao (B5) 2023; 47
He (B7) 2017; 45
Saxena (B18) 2017; 267
Zio (B30) 2012; 99
Bai (B1) 2021; 57
Jia (B11) 2014; 24
Li (B12) 2023; 123
References_xml – volume: 8
  start-page: 1203
  year: 2014
  ident: B15
  article-title: Automatic identification of transmission sections based on complex network theory
  publication-title: IET Generation, Transm. Distribution
  doi: 10.1049/iet-gtd.2013.0466
– volume: 41
  start-page: 4033
  year: 2021
  ident: B23
  article-title: Enlightenment of 2021 Texas blackout to the renewable energy development in China
  publication-title: Proc. CSEE
  doi: 10.13334/j.0258-8013.pcsee.210749
– volume: 52
  year: 2019
  ident: B24
  article-title: Ahp-based comprehensive monitoring method of transmission section
  publication-title: Electr. Power
  doi: 10.11930/j.issn.1004-9649.201708088
– volume: 267
  start-page: 664
  year: 2017
  ident: B18
  article-title: A review of clustering techniques and developments
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.06.053
– volume: 46
  year: 2022
  ident: B13
  article-title: Identification of key transmission sections for power system static security based on maximum flow and minimum cut
  publication-title: Power Syst. Technol.
  doi: 10.13335/j.1000-3673.pst.2021.0415
– volume: 2019
  start-page: 3051
  year: 2019
  ident: B26
  article-title: Typical transmission section searching method considering geographical attributes for large power grids
  publication-title: J. Eng.
  doi: 10.1049/joe.2018.8490
– volume: 41
  start-page: 566
  year: 2017
  ident: B14
  article-title: A method of searching multi-type transmission sections based on hierarchical split
  publication-title: Power Syst. Technol.
  doi: 10.13335/j.1000-3673.pst.2016.1168
– volume: 123
  start-page: 106497
  year: 2023
  ident: B12
  article-title: An optimal allocation method for power distribution network partitions based on improved spectral clustering algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106497
– volume: 55
  year: 2022
  ident: B22
  article-title: Key transmission section search strategy based on improved clustering algorithm
  publication-title: Electr. Power
  doi: 10.3389/fnins.2013.12345
– volume-title: Normalized cuts and watersheds for image segmentation
  year: 2012
  ident: B6
  doi: 10.1049/cp.2012.0440
– volume: 153
  start-page: 109387
  year: 2023
  ident: B25
  article-title: Determination of key transmission section and strong correlation section based on matrix aggregation algorithm
  publication-title: Int. J. Electr. Power & Energy Syst.
  doi: 10.1016/j.ijepes.2023.109387
– volume: 9
  start-page: 4087
  year: 2017
  ident: B28
  article-title: Network partition-based zonal voltage control for distribution networks with distributed pv systems
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2648779
– volume: 24
  start-page: 1477
  year: 2014
  ident: B11
  article-title: The latest research progress on spectral clustering
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1439-2
– volume: 57
  start-page: 15
  year: 2021
  ident: B1
  article-title: Survey of spectral clustering algorithms
  publication-title: Comput. Eng. Appl.
  doi: 10.3778/j.issn.1002-8331.2103-0547
– volume: 242
  start-page: 109604
  year: 2024
  ident: B3
  article-title: A dnn-based reliability evaluation method for multi-state series-parallel systems considering semi-markov process
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109604
– volume: 17
  start-page: 395
  year: 2007
  ident: B20
  article-title: A tutorial on spectral clustering
  publication-title: Statistics Comput.
  doi: 10.1007/s11222-007-9033-z
– volume: 11
  start-page: 5124
  year: 2020
  ident: B17
  article-title: Distributed outage detection in power distribution networks
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/tsg.2020.2999921
– volume: 47
  year: 2023
  ident: B9
  article-title: Transient safety assessment and its interpretability based on feature selection
  publication-title: Power Syst. Technol.
  doi: 10.13335/j.1000-3673.pst.2022.0676
– volume: 10
  start-page: 843536
  year: 2022
  ident: B4
  article-title: Power balance partition control based on topology characteristics of multi-source energy storage nodes
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2022.843536
– volume: 47
  year: 2023
  ident: B5
  article-title: Data-driven searching for power system key transmission sets
  publication-title: Power Syst. Technol.
  doi: 10.13335/j.1000-3673.pst.2022.1915
– volume: 22
  start-page: 888
  year: 2000
  ident: B19
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. pattern analysis Mach. Intell.
  doi: 10.1109/34.868688
– volume: 45
  start-page: 97
  year: 2017
  ident: B7
  article-title: Fast search of the key transmission sections based on clustering algorithms
  publication-title: Power Syst. Prot. Control
  doi: 10.7667/PSPC160502
– volume: 99
  start-page: 172
  year: 2012
  ident: B30
  article-title: Identifying groups of critical edges in a realistic electrical network by multi-objective genetic algorithms
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2011.11.008
– volume: 3
  start-page: 1918
  year: 2014
  ident: B8
  article-title: Weak transmission sections fast searching and identification method in online stability assessment
  publication-title: 2014 Int. Conf. Inf. Sci. Electron. Electr. Eng. IEEE
  doi: 10.1109/InfoSEEE.2014.6946257
– volume: 2023
  start-page: 1
  year: 2023
  ident: B27
  article-title: Key transmission section search based on graph theory and pmu data for vulnerable line identification in power system
  publication-title: J. Electr. Comput. Eng.
  doi: 10.1155/2023/8643537
– volume: 15
  start-page: 42
  year: 2021
  ident: B2
  article-title: Online transient stability risk assessment method considering the uncertainty of wind power output
  publication-title: South. Power Syst. Technol.
  doi: 10.13648/j.cnki.issn1674-0629.2021.11.005
– start-page: 4161
  year: 2018
  ident: B16
  article-title: Key transmission section identification method for large scale power grid with multiple faults
  publication-title: IEEE
  doi: 10.1109/powercon.2018.8601566
– volume: 349
  start-page: 121521
  year: 2023
  ident: B10
  article-title: Probabilistic integrated flexible regions of multi-energy industrial parks: Conceptualization and characterization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.121521
– volume: 37
  start-page: 294
  year: 2020
  ident: B21
  article-title: Key transmission section determination method based on improved vulnerable line identification
  publication-title: Mod. Electr. Power
  doi: 10.19725/j.cnki.1007-2322.2019.0313
– volume: 32
  start-page: 1
  year: 2008
  ident: B29
  article-title: Determination of power system voltage stability regions and critical sections
  publication-title: Autom. Electr. Power Syst.
  doi: 10.3321/j.issn:1000-1026.2008.17.001
SSID ssj0001325410
Score 2.2613962
Snippet With the increased complexity of power systems stemming from the connection of high-proportion renewable energy sources, coupled with the escalating volatility...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms key transmission section
normalized cut
power grid partitioning
renewable energy
security risk index
spectral clustering
Title The search method for key transmission sections based on an improved spectral clustering algorithm
URI https://doaj.org/article/46f09eeeb7ce4f15a593b9f23d2cf96f
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWBDoYkfiT0CoqqQYKJStyh-lUolRSX9_9w5oQoLLIyxHMf67pJ7xPcdIdepqkwhJUQn4K0nwrIqUSbHMw2Ku0KzVHqsd35-yccT8TSV016rLzwT1tIDt8ANRR5S7b03hfUiZLKSmhsdGHfMBp0H_PqCzesFUzG7wiHwydK2SgaiMD0MII4ZxINM3GZcgV1UPyxRj7A_WpbRPtnrXEJ6127lgGz5-pDs9ogCj4gBadJWKWnb85mCs0nhBaQNGhsQFma9YEosU_ikaJwchZGqpvOYN4DLWFW5gkfZxRr5EWBpWi1my9W8eXs_JpPR4-vDOOm6IySWy6JJgglKeF6BA2FkSL1jhmXW58hI5pz2NshKG-UDAKEKbvHYoDBSWe6FC8bwE7JdL2t_SqgVOveVt2CbYDXBTACUHZbN5oXJ8mJAsm-kSttRh2MHi0UJIQSiW0Z0S0S37NAdkJvNPR8tccavs-9RAJuZSHodB0AVyk4Vyr9U4ew_FjknO7gx_GHE5AXZblZrfwl-R2Ouoop9AV5H2Ps
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+search+method+for+key+transmission+sections+based+on+an+improved+spectral+clustering+algorithm&rft.jtitle=Frontiers+in+energy+research&rft.au=Jiliang+Lin&rft.au=Min+Liu&rft.date=2024-04-25&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-598X&rft.volume=12&rft_id=info:doi/10.3389%2Ffenrg.2024.1387828&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_46f09eeeb7ce4f15a593b9f23d2cf96f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon