The search method for key transmission sections based on an improved spectral clustering algorithm
With the increased complexity of power systems stemming from the connection of high-proportion renewable energy sources, coupled with the escalating volatility and uncertainty, the key transmission sections that serve as indicators of the power grid’s security status are also subject to frequent cha...
Saved in:
Published in | Frontiers in energy research Vol. 12 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
25.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the increased complexity of power systems stemming from the connection of high-proportion renewable energy sources, coupled with the escalating volatility and uncertainty, the key transmission sections that serve as indicators of the power grid’s security status are also subject to frequent changes, posing challenges to grid monitoring. The search method for key transmission sections based on an improved spectral clustering algorithm is proposed in this paper. A branch weight model, considering the impact of node voltage and power flow factors, is initially established to comprehensively reflect the electrical connectivity between nodes. Subsequently, a weighted graph model is constructed based on spectral graph theory, and an improved spectral clustering algorithm is employed to partition the power grid. Finally, a safety risk indicator is utilized to identify whether the partitioned sections are key transmission sections. Results from case studies on the IEEE39-node system and actual power grid examples demonstrate that the proposed method accurately and effectively searches for all key transmission sections of the system and identifies their security risks. The application in real power grid scenarios validates its ability to screen out some previously unrecognized key transmission sections. |
---|---|
AbstractList | With the increased complexity of power systems stemming from the connection of high-proportion renewable energy sources, coupled with the escalating volatility and uncertainty, the key transmission sections that serve as indicators of the power grid’s security status are also subject to frequent changes, posing challenges to grid monitoring. The search method for key transmission sections based on an improved spectral clustering algorithm is proposed in this paper. A branch weight model, considering the impact of node voltage and power flow factors, is initially established to comprehensively reflect the electrical connectivity between nodes. Subsequently, a weighted graph model is constructed based on spectral graph theory, and an improved spectral clustering algorithm is employed to partition the power grid. Finally, a safety risk indicator is utilized to identify whether the partitioned sections are key transmission sections. Results from case studies on the IEEE39-node system and actual power grid examples demonstrate that the proposed method accurately and effectively searches for all key transmission sections of the system and identifies their security risks. The application in real power grid scenarios validates its ability to screen out some previously unrecognized key transmission sections. |
Author | Liu, Min Lin, Jiliang |
Author_xml | – sequence: 1 givenname: Jiliang surname: Lin fullname: Lin, Jiliang – sequence: 2 givenname: Min surname: Liu fullname: Liu, Min |
BookMark | eNp9kMtKAzEUhoNUsNa-gKu8QGsmycwkSyleCgU3FdyFJHPSps5MSjIKfXvTWkFcuDrX_-ec7xqN-tADQrcFmTMm5J2DPm7mlFA-L5ioBRUXaEyprGalFG-jX_kVmqa0I4QUjJa8IGNk1lvACXS0W9zBsA0NdiHidzjgIeo-dT4lH_q8YoccEzY6QYNzR_fYd_sYPnOZ9nkcdYtt-5EGiL7fYN1uQvTDtrtBl063CabnOEGvjw_rxfNs9fK0XNyvZpaV9TBzxgkOTAtemdIRaKihhYWKcMaaRoJ1pZZGgMuHi5rZWoiam1JYBrxxxrAJWn77NkHv1D76TseDCtqrUyPEjdJx8LYFxStHJACY2gJ3RalLyYx0lDXUOlm57CW-vWwMKUVwyvpBHwnkN32rCqKO6NUJvTqiV2f0WUr_SH9O-Uf0BTyxjjY |
CitedBy_id | crossref_primary_10_1109_OAJPE_2025_3535709 |
Cites_doi | 10.1049/iet-gtd.2013.0466 10.13334/j.0258-8013.pcsee.210749 10.11930/j.issn.1004-9649.201708088 10.1016/j.neucom.2017.06.053 10.13335/j.1000-3673.pst.2021.0415 10.1049/joe.2018.8490 10.13335/j.1000-3673.pst.2016.1168 10.1016/j.engappai.2023.106497 10.3389/fnins.2013.12345 10.1049/cp.2012.0440 10.1016/j.ijepes.2023.109387 10.1109/TSG.2017.2648779 10.1007/s00521-013-1439-2 10.3778/j.issn.1002-8331.2103-0547 10.1016/j.ress.2023.109604 10.1007/s11222-007-9033-z 10.1109/tsg.2020.2999921 10.13335/j.1000-3673.pst.2022.0676 10.3389/fenrg.2022.843536 10.13335/j.1000-3673.pst.2022.1915 10.1109/34.868688 10.7667/PSPC160502 10.1016/j.ress.2011.11.008 10.1109/InfoSEEE.2014.6946257 10.1155/2023/8643537 10.13648/j.cnki.issn1674-0629.2021.11.005 10.1109/powercon.2018.8601566 10.1016/j.apenergy.2023.121521 10.19725/j.cnki.1007-2322.2019.0313 10.3321/j.issn:1000-1026.2008.17.001 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fenrg.2024.1387828 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2296-598X |
ExternalDocumentID | oai_doaj_org_article_46f09eeeb7ce4f15a593b9f23d2cf96f 10_3389_fenrg_2024_1387828 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c357t-fbf84e3a846b5f0ed2b21ce60433dd9ecf5a9b8ef541873c78874b58c3e4dfbb3 |
IEDL.DBID | DOA |
ISSN | 2296-598X |
IngestDate | Wed Aug 27 01:15:07 EDT 2025 Tue Jul 01 01:51:04 EDT 2025 Thu Apr 24 22:58:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-fbf84e3a846b5f0ed2b21ce60433dd9ecf5a9b8ef541873c78874b58c3e4dfbb3 |
OpenAccessLink | https://doaj.org/article/46f09eeeb7ce4f15a593b9f23d2cf96f |
ParticipantIDs | doaj_primary_oai_doaj_org_article_46f09eeeb7ce4f15a593b9f23d2cf96f crossref_citationtrail_10_3389_fenrg_2024_1387828 crossref_primary_10_3389_fenrg_2024_1387828 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-25 |
PublicationDateYYYYMMDD | 2024-04-25 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in energy research |
PublicationYear | 2024 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Cheng (B4) 2022; 10 Zhao (B28) 2017; 9 Von Luxburg (B20) 2007; 17 Lv (B16) 2018 Liang (B13) 2022; 46 Xue (B26) 2019; 2019 Wang (B21) 2020; 37 Wang (B22) 2022; 55 Wu (B25) 2023; 153 Liu (B14) 2017; 41 Bao (B2) 2021; 15 Yu (B27) 2023; 2023 Zhao (B29) 2008; 32 Luo (B15) 2014; 8 Fabjawska (B6) 2012 Bo (B3) 2024; 242 Hou (B8) 2014; 3 Samudrala (B17) 2020; 11 Wang (B23) 2021; 41 Hu (B9) 2023; 47 Shi (B19) 2000; 22 Wang (B24) 2019; 52 Hui (B10) 2023; 349 Diao (B5) 2023; 47 He (B7) 2017; 45 Saxena (B18) 2017; 267 Zio (B30) 2012; 99 Bai (B1) 2021; 57 Jia (B11) 2014; 24 Li (B12) 2023; 123 |
References_xml | – volume: 8 start-page: 1203 year: 2014 ident: B15 article-title: Automatic identification of transmission sections based on complex network theory publication-title: IET Generation, Transm. Distribution doi: 10.1049/iet-gtd.2013.0466 – volume: 41 start-page: 4033 year: 2021 ident: B23 article-title: Enlightenment of 2021 Texas blackout to the renewable energy development in China publication-title: Proc. CSEE doi: 10.13334/j.0258-8013.pcsee.210749 – volume: 52 year: 2019 ident: B24 article-title: Ahp-based comprehensive monitoring method of transmission section publication-title: Electr. Power doi: 10.11930/j.issn.1004-9649.201708088 – volume: 267 start-page: 664 year: 2017 ident: B18 article-title: A review of clustering techniques and developments publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.06.053 – volume: 46 year: 2022 ident: B13 article-title: Identification of key transmission sections for power system static security based on maximum flow and minimum cut publication-title: Power Syst. Technol. doi: 10.13335/j.1000-3673.pst.2021.0415 – volume: 2019 start-page: 3051 year: 2019 ident: B26 article-title: Typical transmission section searching method considering geographical attributes for large power grids publication-title: J. Eng. doi: 10.1049/joe.2018.8490 – volume: 41 start-page: 566 year: 2017 ident: B14 article-title: A method of searching multi-type transmission sections based on hierarchical split publication-title: Power Syst. Technol. doi: 10.13335/j.1000-3673.pst.2016.1168 – volume: 123 start-page: 106497 year: 2023 ident: B12 article-title: An optimal allocation method for power distribution network partitions based on improved spectral clustering algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106497 – volume: 55 year: 2022 ident: B22 article-title: Key transmission section search strategy based on improved clustering algorithm publication-title: Electr. Power doi: 10.3389/fnins.2013.12345 – volume-title: Normalized cuts and watersheds for image segmentation year: 2012 ident: B6 doi: 10.1049/cp.2012.0440 – volume: 153 start-page: 109387 year: 2023 ident: B25 article-title: Determination of key transmission section and strong correlation section based on matrix aggregation algorithm publication-title: Int. J. Electr. Power & Energy Syst. doi: 10.1016/j.ijepes.2023.109387 – volume: 9 start-page: 4087 year: 2017 ident: B28 article-title: Network partition-based zonal voltage control for distribution networks with distributed pv systems publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2648779 – volume: 24 start-page: 1477 year: 2014 ident: B11 article-title: The latest research progress on spectral clustering publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1439-2 – volume: 57 start-page: 15 year: 2021 ident: B1 article-title: Survey of spectral clustering algorithms publication-title: Comput. Eng. Appl. doi: 10.3778/j.issn.1002-8331.2103-0547 – volume: 242 start-page: 109604 year: 2024 ident: B3 article-title: A dnn-based reliability evaluation method for multi-state series-parallel systems considering semi-markov process publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2023.109604 – volume: 17 start-page: 395 year: 2007 ident: B20 article-title: A tutorial on spectral clustering publication-title: Statistics Comput. doi: 10.1007/s11222-007-9033-z – volume: 11 start-page: 5124 year: 2020 ident: B17 article-title: Distributed outage detection in power distribution networks publication-title: IEEE Trans. Smart Grid doi: 10.1109/tsg.2020.2999921 – volume: 47 year: 2023 ident: B9 article-title: Transient safety assessment and its interpretability based on feature selection publication-title: Power Syst. Technol. doi: 10.13335/j.1000-3673.pst.2022.0676 – volume: 10 start-page: 843536 year: 2022 ident: B4 article-title: Power balance partition control based on topology characteristics of multi-source energy storage nodes publication-title: Front. Energy Res. doi: 10.3389/fenrg.2022.843536 – volume: 47 year: 2023 ident: B5 article-title: Data-driven searching for power system key transmission sets publication-title: Power Syst. Technol. doi: 10.13335/j.1000-3673.pst.2022.1915 – volume: 22 start-page: 888 year: 2000 ident: B19 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans. pattern analysis Mach. Intell. doi: 10.1109/34.868688 – volume: 45 start-page: 97 year: 2017 ident: B7 article-title: Fast search of the key transmission sections based on clustering algorithms publication-title: Power Syst. Prot. Control doi: 10.7667/PSPC160502 – volume: 99 start-page: 172 year: 2012 ident: B30 article-title: Identifying groups of critical edges in a realistic electrical network by multi-objective genetic algorithms publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2011.11.008 – volume: 3 start-page: 1918 year: 2014 ident: B8 article-title: Weak transmission sections fast searching and identification method in online stability assessment publication-title: 2014 Int. Conf. Inf. Sci. Electron. Electr. Eng. IEEE doi: 10.1109/InfoSEEE.2014.6946257 – volume: 2023 start-page: 1 year: 2023 ident: B27 article-title: Key transmission section search based on graph theory and pmu data for vulnerable line identification in power system publication-title: J. Electr. Comput. Eng. doi: 10.1155/2023/8643537 – volume: 15 start-page: 42 year: 2021 ident: B2 article-title: Online transient stability risk assessment method considering the uncertainty of wind power output publication-title: South. Power Syst. Technol. doi: 10.13648/j.cnki.issn1674-0629.2021.11.005 – start-page: 4161 year: 2018 ident: B16 article-title: Key transmission section identification method for large scale power grid with multiple faults publication-title: IEEE doi: 10.1109/powercon.2018.8601566 – volume: 349 start-page: 121521 year: 2023 ident: B10 article-title: Probabilistic integrated flexible regions of multi-energy industrial parks: Conceptualization and characterization publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.121521 – volume: 37 start-page: 294 year: 2020 ident: B21 article-title: Key transmission section determination method based on improved vulnerable line identification publication-title: Mod. Electr. Power doi: 10.19725/j.cnki.1007-2322.2019.0313 – volume: 32 start-page: 1 year: 2008 ident: B29 article-title: Determination of power system voltage stability regions and critical sections publication-title: Autom. Electr. Power Syst. doi: 10.3321/j.issn:1000-1026.2008.17.001 |
SSID | ssj0001325410 |
Score | 2.2613962 |
Snippet | With the increased complexity of power systems stemming from the connection of high-proportion renewable energy sources, coupled with the escalating volatility... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | key transmission section normalized cut power grid partitioning renewable energy security risk index spectral clustering |
Title | The search method for key transmission sections based on an improved spectral clustering algorithm |
URI | https://doaj.org/article/46f09eeeb7ce4f15a593b9f23d2cf96f |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWBDoYkfiT0CoqqQYKJStyh-lUolRSX9_9w5oQoLLIyxHMf67pJ7xPcdIdepqkwhJUQn4K0nwrIqUSbHMw2Ku0KzVHqsd35-yccT8TSV016rLzwT1tIDt8ANRR5S7b03hfUiZLKSmhsdGHfMBp0H_PqCzesFUzG7wiHwydK2SgaiMD0MII4ZxINM3GZcgV1UPyxRj7A_WpbRPtnrXEJ6127lgGz5-pDs9ogCj4gBadJWKWnb85mCs0nhBaQNGhsQFma9YEosU_ikaJwchZGqpvOYN4DLWFW5gkfZxRr5EWBpWi1my9W8eXs_JpPR4-vDOOm6IySWy6JJgglKeF6BA2FkSL1jhmXW58hI5pz2NshKG-UDAKEKbvHYoDBSWe6FC8bwE7JdL2t_SqgVOveVt2CbYDXBTACUHZbN5oXJ8mJAsm-kSttRh2MHi0UJIQSiW0Z0S0S37NAdkJvNPR8tccavs-9RAJuZSHodB0AVyk4Vyr9U4ew_FjknO7gx_GHE5AXZblZrfwl-R2Ouoop9AV5H2Ps |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+search+method+for+key+transmission+sections+based+on+an+improved+spectral+clustering+algorithm&rft.jtitle=Frontiers+in+energy+research&rft.au=Jiliang+Lin&rft.au=Min+Liu&rft.date=2024-04-25&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-598X&rft.volume=12&rft_id=info:doi/10.3389%2Ffenrg.2024.1387828&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_46f09eeeb7ce4f15a593b9f23d2cf96f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon |