Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process
The silica aerogel was synthesized by simple and cost-effective sol-gel process under ambient pressure drying. The wet gel was modified by using trimethylchlorosilane (TMCS) as silylating agent. The prepared aerogel was characterized by X-ray diffractometer (XRD), thermogravimetric and differential...
Saved in:
Published in | Journal of non-crystalline solids Vol. 511; pp. 140 - 146 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The silica aerogel was synthesized by simple and cost-effective sol-gel process under ambient pressure drying. The wet gel was modified by using trimethylchlorosilane (TMCS) as silylating agent. The prepared aerogel was characterized by X-ray diffractometer (XRD), thermogravimetric and differential thermal analyzer (TG-DTA), Fourier transform infrared spectrometer (FT-IR), Brunauer-Emmett-Teller (BET) analyzer, field emission scanning electron microscope (FE-SEM) and Ultraviolet-Visible (UV–Vis) spectrophotometer for structural, thermal, functional, surface, morphological and optical properties. The presence of hump in X-ray diffraction pattern revealed the amorphous nature of prepared silica aerogel. Thermal stability of silica aerogel investigated by TG-DTA show a hydrophobic nature up to 478 °C. FE-SEM images confirmed the porous nature of silica aerogel. The surface area and pore radius measured by BET analyzer disclosed as 792.308 m2/g and 5.779 nm respectively while the total pore volume is 2.289 cc/g. Superhydrophobic nature of silica aerogel sample was affirmed by contact angle measurements. The energy band gap calculated from UV–Vis spectra was found to be 4.25 eV confirming the insulating nature of prepared silica aerogel. The resulting silica aerogel possesses high thermal stability, Superhydrophobicity and large specific surface area which can be useful in various applications such as catalysis, coating materials, oil spill cleanup processes and insulating materials.
[Display omitted]
•Synthesis of silica aerogel by simple and economic ambient pressure drying method.•Trimethylchlorosilane (TMCS) used as a silylating agent for surface modifications.•Prepared aerogels shown high thermal stability with respect to hydrophobicity.•Brunauer-Emmett-Teller analysis disclosed large surface area of prepared aerogel.•High contact angle value affirmed the superhydrophobic nature of the aerogel. |
---|---|
AbstractList | The silica aerogel was synthesized by simple and cost-effective sol-gel process under ambient pressure drying. The wet gel was modified by using trimethylchlorosilane (TMCS) as silylating agent. The prepared aerogel was characterized by X-ray diffractometer (XRD), thermogravimetric and differential thermal analyzer (TG-DTA), Fourier transform infrared spectrometer (FT-IR), Brunauer-Emmett-Teller (BET) analyzer, field emission scanning electron microscope (FE-SEM) and Ultraviolet-Visible (UV–Vis) spectrophotometer for structural, thermal, functional, surface, morphological and optical properties. The presence of hump in X-ray diffraction pattern revealed the amorphous nature of prepared silica aerogel. Thermal stability of silica aerogel investigated by TG-DTA show a hydrophobic nature up to 478 °C. FE-SEM images confirmed the porous nature of silica aerogel. The surface area and pore radius measured by BET analyzer disclosed as 792.308 m2/g and 5.779 nm respectively while the total pore volume is 2.289 cc/g. Superhydrophobic nature of silica aerogel sample was affirmed by contact angle measurements. The energy band gap calculated from UV–Vis spectra was found to be 4.25 eV confirming the insulating nature of prepared silica aerogel. The resulting silica aerogel possesses high thermal stability, Superhydrophobicity and large specific surface area which can be useful in various applications such as catalysis, coating materials, oil spill cleanup processes and insulating materials.
[Display omitted]
•Synthesis of silica aerogel by simple and economic ambient pressure drying method.•Trimethylchlorosilane (TMCS) used as a silylating agent for surface modifications.•Prepared aerogels shown high thermal stability with respect to hydrophobicity.•Brunauer-Emmett-Teller analysis disclosed large surface area of prepared aerogel.•High contact angle value affirmed the superhydrophobic nature of the aerogel. |
Author | Humbe, Ashok V. Jadhav, K.M. Khedkar, Mangesh V. Somvanshi, Sandeep B. |
Author_xml | – sequence: 1 givenname: Mangesh V. surname: Khedkar fullname: Khedkar, Mangesh V. – sequence: 2 givenname: Sandeep B. surname: Somvanshi fullname: Somvanshi, Sandeep B. – sequence: 3 givenname: Ashok V. surname: Humbe fullname: Humbe, Ashok V. – sequence: 4 givenname: K.M. surname: Jadhav fullname: Jadhav, K.M. email: drjadhavkm@gmail.com, kmjadhav.physics@bamu.ac.in |
BookMark | eNqNkMtKAzEUhoNUsFXfYV5gxpPJ3LIRtHiDggt1HdKTM23KdDIk00Lf3pQWBDd6Njn5kv9ffDM26V1PjCUcMg68uttkm0jQH4Lrshy4zCDPAIoLNuVNLdKi4fmETQHyPBUgxRWbhbCBOLVopmz82PlWIyVbZ2xrySQhLrttEmxnUY-ULHU40t1Afn0w3g1rt7R4fk80ebeiLiSDp0H7-HNvI90uLfXjEYaw85QYf7D9Kt4dRnLDLlvdBbo9n9fs6_npc_6aLt5f3uYPixRFWY9pK8uai8IA6aotGtnyBpBLKSos6sqUFVRGS9EamWvEUsscsS5JGg41h2Utrtn9qRe9C8FTq9COerSuH722neKgjg7VRv04VEeHCnIVHcaC5lfB4O1W-8N_oo-naJRDe0teBYxOkIz1hKMyzv5d8g1_35kj |
CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2022_127722 crossref_primary_10_1016_j_seppur_2021_119950 crossref_primary_10_1007_s10971_024_06600_9 crossref_primary_10_1016_j_conbuildmat_2024_135902 crossref_primary_10_1016_j_ceramint_2020_02_091 crossref_primary_10_1080_01496395_2022_2027446 crossref_primary_10_1007_s00339_019_2768_5 crossref_primary_10_1016_j_cej_2020_125937 crossref_primary_10_1016_j_jallcom_2023_169574 crossref_primary_10_1002_adfm_202416108 crossref_primary_10_1088_1742_6596_1644_1_012042 crossref_primary_10_1007_s10934_022_01258_6 crossref_primary_10_1007_s43979_023_00046_8 crossref_primary_10_1016_j_ceramint_2023_04_019 crossref_primary_10_1016_j_powtec_2023_118314 crossref_primary_10_1016_j_solidstatesciences_2022_107031 crossref_primary_10_4028_p_3y31y4 crossref_primary_10_1007_s11581_024_06035_w crossref_primary_10_1016_j_enbuild_2022_111866 crossref_primary_10_1016_j_jclepro_2023_138231 crossref_primary_10_1016_j_jclepro_2024_141401 crossref_primary_10_1021_acsaenm_3c00691 crossref_primary_10_1039_D2RA03325A crossref_primary_10_1680_jnaen_19_00006 crossref_primary_10_1016_j_jwpe_2021_102481 crossref_primary_10_1016_j_est_2024_110665 crossref_primary_10_1515_ntrev_2022_0476 crossref_primary_10_1016_j_physb_2019_411944 crossref_primary_10_3390_polym15092043 crossref_primary_10_1016_j_aej_2024_02_039 crossref_primary_10_1002_smll_202303044 crossref_primary_10_1016_j_jhazmat_2019_121396 crossref_primary_10_1016_j_colsurfa_2021_127370 crossref_primary_10_1016_j_jobe_2023_105845 crossref_primary_10_1016_j_wasman_2021_06_026 crossref_primary_10_1039_C9TA04811A crossref_primary_10_3390_gels8120778 crossref_primary_10_1590_1980_5373_mr_2020_0574 crossref_primary_10_1016_j_ijleo_2020_164462 crossref_primary_10_1007_s42452_020_2463_3 crossref_primary_10_1002_pat_5041 crossref_primary_10_1016_j_rineng_2024_103615 crossref_primary_10_1002_app_51888 crossref_primary_10_1007_s10934_023_01486_4 crossref_primary_10_1016_j_mtcomm_2022_105200 crossref_primary_10_1007_s11270_024_07619_y crossref_primary_10_1016_j_jece_2023_109828 crossref_primary_10_1007_s11051_020_04822_w crossref_primary_10_1016_j_jece_2023_111077 crossref_primary_10_1016_j_ceramint_2025_03_167 crossref_primary_10_1007_s11356_023_28359_2 crossref_primary_10_1016_j_ultsonch_2023_106689 crossref_primary_10_3390_solids4010001 crossref_primary_10_1016_j_jnoncrysol_2024_122889 crossref_primary_10_1039_D3MA00085K crossref_primary_10_1016_j_ijbiomac_2021_03_163 crossref_primary_10_1016_j_ceramint_2019_12_097 crossref_primary_10_3390_pr10112440 crossref_primary_10_1007_s11664_019_07329_w crossref_primary_10_1021_acs_jpcc_1c09817 crossref_primary_10_1016_j_jcis_2020_03_118 crossref_primary_10_1007_s11595_023_2763_8 crossref_primary_10_1007_s11814_020_0574_6 crossref_primary_10_1080_15421406_2020_1830351 crossref_primary_10_1016_j_jnoncrysol_2021_120778 crossref_primary_10_1007_s12633_020_00741_6 crossref_primary_10_1007_s00339_025_08383_4 crossref_primary_10_1039_D2RA01511K crossref_primary_10_1016_j_memsci_2020_118737 crossref_primary_10_1016_j_micromeso_2022_111682 crossref_primary_10_1016_j_jnoncrysol_2023_122312 crossref_primary_10_1016_j_molstruc_2022_133021 crossref_primary_10_1016_j_ceramint_2024_09_310 crossref_primary_10_3389_fmats_2022_966692 crossref_primary_10_1016_j_cossms_2021_100936 crossref_primary_10_3390_polym14050849 crossref_primary_10_1016_j_jnoncrysol_2021_120783 crossref_primary_10_3390_w15040669 crossref_primary_10_1007_s00339_021_04329_8 crossref_primary_10_1007_s11356_022_18780_4 crossref_primary_10_1016_j_jallcom_2020_155422 crossref_primary_10_1088_2053_1591_ab590a crossref_primary_10_1080_00405000_2021_1975905 crossref_primary_10_1016_j_diamond_2021_108474 crossref_primary_10_1016_j_jddst_2023_104189 crossref_primary_10_1021_acsanm_3c01490 crossref_primary_10_3740_MRSK_2024_34_7_341 crossref_primary_10_1021_acsapm_1c00365 crossref_primary_10_3389_fmats_2023_1225481 crossref_primary_10_1007_s10971_024_06543_1 crossref_primary_10_3390_polym12081759 crossref_primary_10_1007_s10854_020_03684_1 crossref_primary_10_1016_j_physb_2019_04_031 crossref_primary_10_1007_s10653_024_02213_x crossref_primary_10_1021_acs_langmuir_2c02732 crossref_primary_10_1007_s10971_020_05241_y crossref_primary_10_1016_j_jnoncrysol_2022_121561 crossref_primary_10_1080_07373937_2023_2225100 crossref_primary_10_3390_polym16142017 crossref_primary_10_1039_D1RA01803E crossref_primary_10_1016_j_jallcom_2019_153501 crossref_primary_10_1016_j_ceramint_2020_03_081 crossref_primary_10_1016_j_ceramint_2019_11_265 crossref_primary_10_3390_polym15173526 crossref_primary_10_1007_s10971_024_06654_9 crossref_primary_10_1016_j_jssc_2019_120971 crossref_primary_10_1016_j_apsadv_2021_100157 crossref_primary_10_3390_ma14030530 crossref_primary_10_1088_2053_1591_ab6c9c crossref_primary_10_1016_j_mineng_2025_109211 crossref_primary_10_1016_j_conbuildmat_2021_122815 crossref_primary_10_1016_j_jiec_2020_05_019 crossref_primary_10_1016_j_jnoncrysol_2020_120547 crossref_primary_10_1007_s10934_023_01455_x crossref_primary_10_1016_j_ijhydene_2024_08_163 |
Cites_doi | 10.1016/j.jcis.2013.09.045 10.1016/j.micromeso.2006.10.026 10.1016/j.colsurfa.2015.11.055 10.1016/j.apsusc.2008.04.109 10.1007/s10934-007-9104-8 10.3762/bjnano.6.34 10.1016/S0022-3093(05)80427-2 10.1039/C3RA46911E 10.1116/1.576250 10.1088/1468-6996/9/3/035006 10.1016/j.apsusc.2006.12.117 10.1039/C4RA14002H 10.1016/j.jnoncrysol.2017.03.030 10.1016/j.jnoncrysol.2011.02.022 10.1039/C5RA08714G 10.1007/s10971-014-3315-7 10.1007/s10934-016-0215-y 10.1016/j.enbuild.2017.07.003 10.1016/j.apt.2015.01.002 10.1016/j.matchemphys.2014.03.005 10.1016/j.jcis.2006.09.025 10.1016/j.solidstatesciences.2017.10.016 10.1007/s10971-012-2710-1 10.1039/C6RA26831E 10.1016/j.matchemphys.2015.05.077 10.1016/j.jcis.2006.03.044 10.1016/j.jallcom.2008.09.029 10.1016/j.solidstatesciences.2010.01.032 10.1007/s10971-010-2164-2 10.1016/j.matchemphys.2013.05.064 10.1002/smll.201202965 10.1155/2010/409310 10.1007/s10853-006-1409-5 10.1016/j.solidstatesciences.2012.12.016 10.1016/j.micromeso.2007.10.030 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jnoncrysol.2019.02.004 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4812 |
EndPage | 146 |
ExternalDocumentID | 10_1016_j_jnoncrysol_2019_02_004 S002230931930105X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~02 ~G- 29L 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SMS SSH VH1 WUQ |
ID | FETCH-LOGICAL-c357t-f957134d0ea6f489f180c19936c476d5606da93fd92acc5a92cc75e9d10710b73 |
IEDL.DBID | .~1 |
ISSN | 0022-3093 |
IngestDate | Thu Apr 24 23:11:25 EDT 2025 Tue Jul 01 02:24:27 EDT 2025 Fri Feb 23 02:32:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | BET FE-SEM Silica aerogel Surface modification Superhydrophobicity TGA-DTA |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-f957134d0ea6f489f180c19936c476d5606da93fd92acc5a92cc75e9d10710b73 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jnoncrysol_2019_02_004 crossref_primary_10_1016_j_jnoncrysol_2019_02_004 elsevier_sciencedirect_doi_10_1016_j_jnoncrysol_2019_02_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of non-crystalline solids |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sarawade, Kim, Hilonga, Quang, Jeon, Kim (bb0145) 2011; 357 Sarawade, Kim, Hilonga, Kim (bb0160) 2010; 12 Rao, Hegde, Hirashima (bb0065) 2007; 305 Bhagat, Kim, Suh, Ahn, Yeo, Han (bb0150) 2008; 112 He, Li, Shi, Yang, Gong, Cheng (bb0095) 2015; 26 Rao, Rao, Pajonk (bb0010) 2007; 253 Shao, Luo, Cheng, Zhang (bb0090) 2013; 141 Zong, Wei, Jiang, Yan, Zhu, Xie (bb0135) 2015; 5 Bhagat, Oh, Kim, Ahn, Yeo (bb0050) 2007; 100 Gurav, Jung, Park, Kang, Nadargi (bb0005) 2010; 2010 Yun, Luo, Gao (bb0015) 2014; 4 Shi, Tang, Yang, Zhou, Jia, Han (bb0165) 2017; 7 Huang, Chen, Zhang, Lu, Zhan (bb0055) 2013; 9 Hegde, Rao (bb0125) 2007; 42 Rao, Rao, Gurav (bb0070) 2008; 15 Gutzov, Danchova, Karakashev, Khristov, Ivanova, Ulbikas (bb0180) 2014; 70 Pisal, Rao (bb0020) 2016; 23 De Angelis, Venditti, Fratoddi, De Matteis, Prosposito, Cacciotti (bb0100) 2014; 414 Shewale, Rao, Rao (bb0175) 2008; 254 Haq, Zaidi, Zubair, Karim, Padmanabhan, Licciulli (bb0060) 2017; 151 Yu, Lee, Hsu, Tsai, Chen-Yang (bb0045) 2015; 5 Dervin, Lang, Perova, Hinder, Pillai (bb0075) 2017; 465 Rao (bb0040) 2018 Bangi, Rao, Rao (bb0085) 2008; 9 De Nicola, Castrucci, Scarselli, Nanni, Cacciotti, De Crescenzi (bb0105) 2015; 6 Aravind, Shajesh, Soraru, Warrier (bb0030) 2010; 54 Bangi, Jung, Park, Baek, Park (bb0130) 2013; 18 Cheng, Xia, Luo, Li, Guo, Wei (bb0155) 2016; 490 Tillotson, Hrubesh (bb0110) 1992; 145 Cacciotti, Nanni, Campaniello, Lamastra (bb0140) 2014; 146 Kim, Kim, Payne, Upadhye (bb0120) 1989; 7 Bangi, Kavale, Baek, Park (bb0170) 2012; 62 Shao, He, Niu, Huang, Cheng, Zhang (bb0025) 2015; 162 Gurav, Rao, Rao, Nadargi, Bhagat (bb0080) 2009; 476 Parale, Han, Lee, Park (bb0035) 2018; 75 Rao, Bhagat, Hirashima, Pajonk (bb0115) 2006; 300 Sarawade (10.1016/j.jnoncrysol.2019.02.004_bb0160) 2010; 12 Cacciotti (10.1016/j.jnoncrysol.2019.02.004_bb0140) 2014; 146 Shao (10.1016/j.jnoncrysol.2019.02.004_bb0090) 2013; 141 Pisal (10.1016/j.jnoncrysol.2019.02.004_bb0020) 2016; 23 Gutzov (10.1016/j.jnoncrysol.2019.02.004_bb0180) 2014; 70 Rao (10.1016/j.jnoncrysol.2019.02.004_bb0010) 2007; 253 Aravind (10.1016/j.jnoncrysol.2019.02.004_bb0030) 2010; 54 Tillotson (10.1016/j.jnoncrysol.2019.02.004_bb0110) 1992; 145 Kim (10.1016/j.jnoncrysol.2019.02.004_bb0120) 1989; 7 Shewale (10.1016/j.jnoncrysol.2019.02.004_bb0175) 2008; 254 Gurav (10.1016/j.jnoncrysol.2019.02.004_bb0005) 2010; 2010 Zong (10.1016/j.jnoncrysol.2019.02.004_bb0135) 2015; 5 Bangi (10.1016/j.jnoncrysol.2019.02.004_bb0170) 2012; 62 Bhagat (10.1016/j.jnoncrysol.2019.02.004_bb0150) 2008; 112 Haq (10.1016/j.jnoncrysol.2019.02.004_bb0060) 2017; 151 Yu (10.1016/j.jnoncrysol.2019.02.004_bb0045) 2015; 5 Bhagat (10.1016/j.jnoncrysol.2019.02.004_bb0050) 2007; 100 Cheng (10.1016/j.jnoncrysol.2019.02.004_bb0155) 2016; 490 Dervin (10.1016/j.jnoncrysol.2019.02.004_bb0075) 2017; 465 He (10.1016/j.jnoncrysol.2019.02.004_bb0095) 2015; 26 De Angelis (10.1016/j.jnoncrysol.2019.02.004_bb0100) 2014; 414 Rao (10.1016/j.jnoncrysol.2019.02.004_bb0065) 2007; 305 Sarawade (10.1016/j.jnoncrysol.2019.02.004_bb0145) 2011; 357 Bangi (10.1016/j.jnoncrysol.2019.02.004_bb0130) 2013; 18 Rao (10.1016/j.jnoncrysol.2019.02.004_bb0115) 2006; 300 Hegde (10.1016/j.jnoncrysol.2019.02.004_bb0125) 2007; 42 Bangi (10.1016/j.jnoncrysol.2019.02.004_bb0085) 2008; 9 Gurav (10.1016/j.jnoncrysol.2019.02.004_bb0080) 2009; 476 De Nicola (10.1016/j.jnoncrysol.2019.02.004_bb0105) 2015; 6 Yun (10.1016/j.jnoncrysol.2019.02.004_bb0015) 2014; 4 Huang (10.1016/j.jnoncrysol.2019.02.004_bb0055) 2013; 9 Rao (10.1016/j.jnoncrysol.2019.02.004_bb0070) 2008; 15 Shao (10.1016/j.jnoncrysol.2019.02.004_bb0025) 2015; 162 Parale (10.1016/j.jnoncrysol.2019.02.004_bb0035) 2018; 75 Rao (10.1016/j.jnoncrysol.2019.02.004_bb0040) 2018 Shi (10.1016/j.jnoncrysol.2019.02.004_bb0165) 2017; 7 |
References_xml | – volume: 7 start-page: 1181 year: 1989 end-page: 1184 ident: bb0120 article-title: Fabrication of hollow silica aerogel spheres by a droplet generation method and sol–gel processing publication-title: J. Vac. Sci. Technol. A – volume: 23 start-page: 1547 year: 2016 end-page: 1556 ident: bb0020 article-title: Comparative studies on the physical properties of TEOS, TMOS and Na2SiO3 based silica aerogels by ambient pressure drying method publication-title: J. Porous. Mater. – volume: 15 start-page: 507 year: 2008 end-page: 512 ident: bb0070 article-title: Effect of protic solvents on the physical properties of the ambient pressure dried hydrophobic silica aerogels using sodium silicate precursor publication-title: J. Porous. Mater. – volume: 18 start-page: 50 year: 2013 end-page: 57 ident: bb0130 article-title: Optically transparent silica aerogels based on sodium silicate by a two step sol–gel process and ambient pressure drying publication-title: Solid State Sci. – volume: 75 start-page: 63 year: 2018 end-page: 70 ident: bb0035 article-title: Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area publication-title: Solid State Sci. – volume: 305 start-page: 124 year: 2007 end-page: 132 ident: bb0065 article-title: Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels publication-title: J. Colloid Interface Sci. – volume: 9 year: 2008 ident: bb0085 article-title: A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient-pressure drying publication-title: Sci. Technol. Adv. Mater. – volume: 145 start-page: 44 year: 1992 end-page: 50 ident: bb0110 article-title: Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process publication-title: J. Non-Cryst. Solids – volume: 5 start-page: 55579 year: 2015 end-page: 55587 ident: bb0135 article-title: Characterization and comparison of uniform hydrophilic/hydrophobic transparent silica aerogel beads: skeleton strength and surface modification publication-title: RSC Adv. – volume: 12 start-page: 911 year: 2010 end-page: 918 ident: bb0160 article-title: Production of low-density sodium silicate-based hydrophobic silica aerogel beads by a novel fast gelation process and ambient pressure drying process publication-title: Solid State Sci. – volume: 141 start-page: 570 year: 2013 end-page: 575 ident: bb0090 article-title: Superhydrophobic sodium silicate based silica aerogel prepared by ambient pressure drying publication-title: Mater. Chem. Phys. – volume: 490 start-page: 200 year: 2016 end-page: 206 ident: bb0155 article-title: Effect of surface modification on physical properties of silica aerogels derived from fly ash acid sludge publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 254 start-page: 6902 year: 2008 end-page: 6907 ident: bb0175 article-title: Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels publication-title: Appl. Surf. Sci. – volume: 357 start-page: 2156 year: 2011 end-page: 2162 ident: bb0145 article-title: Synthesis of sodium silicate-based hydrophilic silica aerogel beads with superior properties: effect of heat-treatment publication-title: J. Non-Cryst. Solids – volume: 100 start-page: 350 year: 2007 end-page: 355 ident: bb0050 article-title: Methyltrimethoxysilane based monolithic silica aerogels via ambient pressure drying publication-title: Microporous Mesoporous Mater. – volume: 62 start-page: 201 year: 2012 end-page: 207 ident: bb0170 article-title: Synthesis of MWCNTs doped sodium silicate based aerogels by ambient pressure drying publication-title: J. Sol-Gel Sci. Technol. – volume: 465 start-page: 31 year: 2017 end-page: 38 ident: bb0075 article-title: Graphene oxide reinforced high surface area silica aerogels publication-title: J. Non-Cryst. Solids – volume: 476 start-page: 397 year: 2009 end-page: 402 ident: bb0080 article-title: Physical properties of sodium silicate based silica aerogels prepared by single step sol–gel process dried at ambient pressure publication-title: J. Alloys Compd. – volume: 42 start-page: 6965 year: 2007 end-page: 6971 ident: bb0125 article-title: Physical properties of methyltrimethoxysilane based elastic silica aerogels prepared by the two-stage sol–gel process publication-title: J. Mater. Sci. – volume: 414 start-page: 24 year: 2014 end-page: 32 ident: bb0100 article-title: From nanospheres to microribbons: self-assembled eosin Y doped PMMA nanoparticles as photonic crystals publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 4039 year: 2017 end-page: 4045 ident: bb0165 article-title: Superhydrophobic silica aerogels reinforced with polyacrylonitrile fibers for adsorbing oil from water and oil mixtures publication-title: RSC Adv. – volume: 6 start-page: 353 year: 2015 ident: bb0105 article-title: Exploiting the hierarchical morphology of single-walled and multi-walled carbon nanotube films for highly hydrophobic coatings publication-title: Beilstein J. Nanotechnol. – volume: 112 start-page: 504 year: 2008 end-page: 509 ident: bb0150 article-title: Superhydrophobic silica aerogel powders with simultaneous surface modification, solvent exchange and sodium ion removal from hydrogels publication-title: Microporous Mesoporous Mater. – volume: 146 start-page: 240 year: 2014 end-page: 252 ident: bb0140 article-title: Development of a transparent hydrorepellent modified SiO2 coatings for glazed sanitarywares publication-title: Mater. Chem. Phys. – volume: 300 start-page: 279 year: 2006 end-page: 285 ident: bb0115 article-title: Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor publication-title: J. Colloid Interface Sci. – volume: 4 start-page: 4535 year: 2014 end-page: 4542 ident: bb0015 article-title: Superhydrophobic silica aerogel microspheres from methyltrimethoxysilane: rapid synthesis via ambient pressure drying and excellent absorption properties publication-title: RSC Adv. – volume: 151 start-page: 494 year: 2017 end-page: 500 ident: bb0060 article-title: Hydrophobic silica aerogel glass-fibre composite with higher strength and thermal insulation based on methyltrimethoxysilane (MTMS) precursor publication-title: Energ. Build. – volume: 253 start-page: 6032 year: 2007 end-page: 6040 ident: bb0010 article-title: Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents publication-title: Appl. Surf. Sci. – start-page: 1 year: 2018 end-page: 27 ident: bb0040 article-title: Elastic superhydrophobic and water glass-based silica aerogels and applications publication-title: J. Sol-Gel Sci. Technol. – volume: 26 start-page: 537 year: 2015 end-page: 541 ident: bb0095 article-title: Rapid synthesis of sodium silicate based hydrophobic silica aerogel granules with large surface area publication-title: Adv. Powder Technol. – volume: 162 start-page: 346 year: 2015 end-page: 353 ident: bb0025 article-title: Ambient pressure dried shape-controllable sodium silicate based composite silica aerogel monoliths publication-title: Mater. Chem. Phys. – volume: 54 start-page: 105 year: 2010 end-page: 117 ident: bb0030 article-title: Ambient pressure drying: a successful approach for the preparation of silica and silica based mixed oxide aerogels publication-title: J. Sol-Gel Sci. Technol. – volume: 2010 start-page: 23 year: 2010 ident: bb0005 article-title: Silica aerogel: synthesis and applications publication-title: J. Nanomater. – volume: 70 start-page: 511 year: 2014 end-page: 516 ident: bb0180 article-title: Preparation and thermal properties of chemically prepared nanoporous silica aerogels publication-title: J. Sol-Gel Sci. Technol. – volume: 9 start-page: 1397 year: 2013 end-page: 1404 ident: bb0055 article-title: Edge-to-edge assembled graphene oxide aerogels with outstanding mechanical performance and superhigh chemical activity publication-title: Small – volume: 5 start-page: 13985 year: 2015 end-page: 13992 ident: bb0045 article-title: Silica aerogel-supported cobalt nanocomposites as efficient catalysts toward hydrogen generation from aqueous ammonia borane publication-title: RSC Adv. – volume: 414 start-page: 24 year: 2014 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0100 article-title: From nanospheres to microribbons: self-assembled eosin Y doped PMMA nanoparticles as photonic crystals publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2013.09.045 – volume: 100 start-page: 350 year: 2007 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0050 article-title: Methyltrimethoxysilane based monolithic silica aerogels via ambient pressure drying publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2006.10.026 – volume: 490 start-page: 200 year: 2016 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0155 article-title: Effect of surface modification on physical properties of silica aerogels derived from fly ash acid sludge publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2015.11.055 – volume: 254 start-page: 6902 year: 2008 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0175 article-title: Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2008.04.109 – volume: 15 start-page: 507 year: 2008 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0070 article-title: Effect of protic solvents on the physical properties of the ambient pressure dried hydrophobic silica aerogels using sodium silicate precursor publication-title: J. Porous. Mater. doi: 10.1007/s10934-007-9104-8 – volume: 6 start-page: 353 year: 2015 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0105 article-title: Exploiting the hierarchical morphology of single-walled and multi-walled carbon nanotube films for highly hydrophobic coatings publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.6.34 – volume: 145 start-page: 44 year: 1992 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0110 article-title: Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(05)80427-2 – volume: 4 start-page: 4535 year: 2014 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0015 article-title: Superhydrophobic silica aerogel microspheres from methyltrimethoxysilane: rapid synthesis via ambient pressure drying and excellent absorption properties publication-title: RSC Adv. doi: 10.1039/C3RA46911E – volume: 7 start-page: 1181 year: 1989 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0120 article-title: Fabrication of hollow silica aerogel spheres by a droplet generation method and sol–gel processing publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.576250 – volume: 9 year: 2008 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0085 article-title: A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient-pressure drying publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/9/3/035006 – volume: 253 start-page: 6032 year: 2007 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0010 article-title: Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2006.12.117 – volume: 5 start-page: 13985 year: 2015 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0045 article-title: Silica aerogel-supported cobalt nanocomposites as efficient catalysts toward hydrogen generation from aqueous ammonia borane publication-title: RSC Adv. doi: 10.1039/C4RA14002H – volume: 465 start-page: 31 year: 2017 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0075 article-title: Graphene oxide reinforced high surface area silica aerogels publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2017.03.030 – volume: 357 start-page: 2156 year: 2011 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0145 article-title: Synthesis of sodium silicate-based hydrophilic silica aerogel beads with superior properties: effect of heat-treatment publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2011.02.022 – volume: 5 start-page: 55579 year: 2015 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0135 article-title: Characterization and comparison of uniform hydrophilic/hydrophobic transparent silica aerogel beads: skeleton strength and surface modification publication-title: RSC Adv. doi: 10.1039/C5RA08714G – volume: 70 start-page: 511 year: 2014 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0180 article-title: Preparation and thermal properties of chemically prepared nanoporous silica aerogels publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-014-3315-7 – volume: 23 start-page: 1547 year: 2016 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0020 article-title: Comparative studies on the physical properties of TEOS, TMOS and Na2SiO3 based silica aerogels by ambient pressure drying method publication-title: J. Porous. Mater. doi: 10.1007/s10934-016-0215-y – start-page: 1 year: 2018 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0040 article-title: Elastic superhydrophobic and water glass-based silica aerogels and applications publication-title: J. Sol-Gel Sci. Technol. – volume: 151 start-page: 494 year: 2017 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0060 article-title: Hydrophobic silica aerogel glass-fibre composite with higher strength and thermal insulation based on methyltrimethoxysilane (MTMS) precursor publication-title: Energ. Build. doi: 10.1016/j.enbuild.2017.07.003 – volume: 26 start-page: 537 year: 2015 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0095 article-title: Rapid synthesis of sodium silicate based hydrophobic silica aerogel granules with large surface area publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2015.01.002 – volume: 146 start-page: 240 year: 2014 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0140 article-title: Development of a transparent hydrorepellent modified SiO2 coatings for glazed sanitarywares publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2014.03.005 – volume: 305 start-page: 124 year: 2007 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0065 article-title: Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.09.025 – volume: 75 start-page: 63 year: 2018 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0035 article-title: Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2017.10.016 – volume: 62 start-page: 201 year: 2012 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0170 article-title: Synthesis of MWCNTs doped sodium silicate based aerogels by ambient pressure drying publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-012-2710-1 – volume: 7 start-page: 4039 year: 2017 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0165 article-title: Superhydrophobic silica aerogels reinforced with polyacrylonitrile fibers for adsorbing oil from water and oil mixtures publication-title: RSC Adv. doi: 10.1039/C6RA26831E – volume: 162 start-page: 346 year: 2015 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0025 article-title: Ambient pressure dried shape-controllable sodium silicate based composite silica aerogel monoliths publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2015.05.077 – volume: 300 start-page: 279 year: 2006 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0115 article-title: Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.03.044 – volume: 476 start-page: 397 year: 2009 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0080 article-title: Physical properties of sodium silicate based silica aerogels prepared by single step sol–gel process dried at ambient pressure publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2008.09.029 – volume: 12 start-page: 911 year: 2010 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0160 article-title: Production of low-density sodium silicate-based hydrophobic silica aerogel beads by a novel fast gelation process and ambient pressure drying process publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2010.01.032 – volume: 54 start-page: 105 year: 2010 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0030 article-title: Ambient pressure drying: a successful approach for the preparation of silica and silica based mixed oxide aerogels publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-010-2164-2 – volume: 141 start-page: 570 year: 2013 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0090 article-title: Superhydrophobic sodium silicate based silica aerogel prepared by ambient pressure drying publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2013.05.064 – volume: 9 start-page: 1397 year: 2013 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0055 article-title: Edge-to-edge assembled graphene oxide aerogels with outstanding mechanical performance and superhigh chemical activity publication-title: Small doi: 10.1002/smll.201202965 – volume: 2010 start-page: 23 year: 2010 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0005 article-title: Silica aerogel: synthesis and applications publication-title: J. Nanomater. doi: 10.1155/2010/409310 – volume: 42 start-page: 6965 year: 2007 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0125 article-title: Physical properties of methyltrimethoxysilane based elastic silica aerogels prepared by the two-stage sol–gel process publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-1409-5 – volume: 18 start-page: 50 year: 2013 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0130 article-title: Optically transparent silica aerogels based on sodium silicate by a two step sol–gel process and ambient pressure drying publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2012.12.016 – volume: 112 start-page: 504 year: 2008 ident: 10.1016/j.jnoncrysol.2019.02.004_bb0150 article-title: Superhydrophobic silica aerogel powders with simultaneous surface modification, solvent exchange and sodium ion removal from hydrogels publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2007.10.030 |
SSID | ssj0000738 |
Score | 2.582633 |
Snippet | The silica aerogel was synthesized by simple and cost-effective sol-gel process under ambient pressure drying. The wet gel was modified by using... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 140 |
SubjectTerms | BET FE-SEM Silica aerogel Superhydrophobicity Surface modification TGA-DTA |
Title | Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process |
URI | https://dx.doi.org/10.1016/j.jnoncrysol.2019.02.004 |
Volume | 511 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kIupBtCrWF3vwGm0em-3iSYpSFb2o0FtIdjc2Ym3YNkIv_nZn8vABgoKXkGyysMwMO9-G75sBOPK4Fyvj47EkEMIJtDROLAPuSO1iOuCJK2L6NXBzGw4egqshHy5Av9HCEK2y3vurPb3creuRk9qaJ3mWkcYXUxseyBGCUJvHISnYA0FRfvz2SfPAEO59VAzHr2s2T8XxesIjtrJz9DKRvGRVvTP4OUV9STsX67BW40V2Vi1pAxbMSxuW-02btjasfqko2IalktGpppswuytsigZi44nOUgSabIo3xZhNs0r3xiiB4WiRGzuaazvJR5MkU_V7Fhs7ecRVsdyakqXOXjMcHSckoGQlfbawhmlLOimWV3qDLXi4OL_vD5y6xYKjfC5mTio5iUl118RhGvRk6va6ijh9oUJTaoRDoY6ln2qJLlU8lp5Sghv0JEGTRPjb0EIbmh1gyvNTTyuDeMcLRMJjzvHSCxHwuQTUOiAaq0aqrj9ObTCeo4Zo9hR9-iMif0RdL0J_dMD9mJlXNTj-MOe0cVz0LZ4iTBW_zt791-w9WKGniha5D62ZLcwBQpdZcljG5iEsnl1eD27fAbWH8cQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90IuqD6FT8Ng--FtePNAs-jaHMr72osLfQJql2OFeyVfC_97KmU0FQ8KWUhINyF-5-Kb_fHcBpQINE6hCvJRFjXqS49hIeUY8rH8sBTX2W2F8Dd_249xhdD-hgAbq1FsbSKl3ur3L6LFu7lTPnzbMiz63GF0sbXsgRgtgxj4NFWLLdqWgDljpXN73-Z0JmYXveNBwNHKGnonkN8ZYtzTsG2vK8eNXAM_q5Sn2pPJcbsO4gI-lUX7UJC_q1CSvdelJbE9a-NBVswvKM1CknWzC9L02GPiKjscozxJpkgi_liEzySvpGbA3D1bLQ5vldmXHxPE5z6fZJos34Cb-KFEbPiOrkLcfVUWo1lGTGoC2NJspYqRQpKsnBNjxeXjx0e56bsuDJkLKpl3Fq9aSqpZM4i9o889staWl9sYxYrBARxSrhYaY4RlXShAdSMqoxmBadpCzcgQb6UO8CkUGYBUpqhDxBxFKaUIqPdoyYz7dYbQ9Y7VUhXQtyOwnjRdRcs6H4jIew8RCtQGA89sCfWxZVG44_2JzXgRPfjpTAavGr9f6_rE9gpfdwdytur_o3B7BqdyqW5CE0pqbUR4hkpumxO6kf9Sf0dQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+modified+sodium+silicate+based+superhydrophobic+silica+aerogels+prepared+via+ambient+pressure+drying+process&rft.jtitle=Journal+of+non-crystalline+solids&rft.au=Khedkar%2C+Mangesh+V.&rft.au=Somvanshi%2C+Sandeep+B.&rft.au=Humbe%2C+Ashok+V.&rft.au=Jadhav%2C+K.M.&rft.date=2019-05-01&rft.pub=Elsevier+B.V&rft.issn=0022-3093&rft.eissn=1873-4812&rft.volume=511&rft.spage=140&rft.epage=146&rft_id=info:doi/10.1016%2Fj.jnoncrysol.2019.02.004&rft.externalDocID=S002230931930105X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3093&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3093&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3093&client=summon |