Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process

The silica aerogel was synthesized by simple and cost-effective sol-gel process under ambient pressure drying. The wet gel was modified by using trimethylchlorosilane (TMCS) as silylating agent. The prepared aerogel was characterized by X-ray diffractometer (XRD), thermogravimetric and differential...

Full description

Saved in:
Bibliographic Details
Published inJournal of non-crystalline solids Vol. 511; pp. 140 - 146
Main Authors Khedkar, Mangesh V., Somvanshi, Sandeep B., Humbe, Ashok V., Jadhav, K.M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The silica aerogel was synthesized by simple and cost-effective sol-gel process under ambient pressure drying. The wet gel was modified by using trimethylchlorosilane (TMCS) as silylating agent. The prepared aerogel was characterized by X-ray diffractometer (XRD), thermogravimetric and differential thermal analyzer (TG-DTA), Fourier transform infrared spectrometer (FT-IR), Brunauer-Emmett-Teller (BET) analyzer, field emission scanning electron microscope (FE-SEM) and Ultraviolet-Visible (UV–Vis) spectrophotometer for structural, thermal, functional, surface, morphological and optical properties. The presence of hump in X-ray diffraction pattern revealed the amorphous nature of prepared silica aerogel. Thermal stability of silica aerogel investigated by TG-DTA show a hydrophobic nature up to 478 °C. FE-SEM images confirmed the porous nature of silica aerogel. The surface area and pore radius measured by BET analyzer disclosed as 792.308 m2/g and 5.779 nm respectively while the total pore volume is 2.289 cc/g. Superhydrophobic nature of silica aerogel sample was affirmed by contact angle measurements. The energy band gap calculated from UV–Vis spectra was found to be 4.25 eV confirming the insulating nature of prepared silica aerogel. The resulting silica aerogel possesses high thermal stability, Superhydrophobicity and large specific surface area which can be useful in various applications such as catalysis, coating materials, oil spill cleanup processes and insulating materials. [Display omitted] •Synthesis of silica aerogel by simple and economic ambient pressure drying method.•Trimethylchlorosilane (TMCS) used as a silylating agent for surface modifications.•Prepared aerogels shown high thermal stability with respect to hydrophobicity.•Brunauer-Emmett-Teller analysis disclosed large surface area of prepared aerogel.•High contact angle value affirmed the superhydrophobic nature of the aerogel.
AbstractList The silica aerogel was synthesized by simple and cost-effective sol-gel process under ambient pressure drying. The wet gel was modified by using trimethylchlorosilane (TMCS) as silylating agent. The prepared aerogel was characterized by X-ray diffractometer (XRD), thermogravimetric and differential thermal analyzer (TG-DTA), Fourier transform infrared spectrometer (FT-IR), Brunauer-Emmett-Teller (BET) analyzer, field emission scanning electron microscope (FE-SEM) and Ultraviolet-Visible (UV–Vis) spectrophotometer for structural, thermal, functional, surface, morphological and optical properties. The presence of hump in X-ray diffraction pattern revealed the amorphous nature of prepared silica aerogel. Thermal stability of silica aerogel investigated by TG-DTA show a hydrophobic nature up to 478 °C. FE-SEM images confirmed the porous nature of silica aerogel. The surface area and pore radius measured by BET analyzer disclosed as 792.308 m2/g and 5.779 nm respectively while the total pore volume is 2.289 cc/g. Superhydrophobic nature of silica aerogel sample was affirmed by contact angle measurements. The energy band gap calculated from UV–Vis spectra was found to be 4.25 eV confirming the insulating nature of prepared silica aerogel. The resulting silica aerogel possesses high thermal stability, Superhydrophobicity and large specific surface area which can be useful in various applications such as catalysis, coating materials, oil spill cleanup processes and insulating materials. [Display omitted] •Synthesis of silica aerogel by simple and economic ambient pressure drying method.•Trimethylchlorosilane (TMCS) used as a silylating agent for surface modifications.•Prepared aerogels shown high thermal stability with respect to hydrophobicity.•Brunauer-Emmett-Teller analysis disclosed large surface area of prepared aerogel.•High contact angle value affirmed the superhydrophobic nature of the aerogel.
Author Humbe, Ashok V.
Jadhav, K.M.
Khedkar, Mangesh V.
Somvanshi, Sandeep B.
Author_xml – sequence: 1
  givenname: Mangesh V.
  surname: Khedkar
  fullname: Khedkar, Mangesh V.
– sequence: 2
  givenname: Sandeep B.
  surname: Somvanshi
  fullname: Somvanshi, Sandeep B.
– sequence: 3
  givenname: Ashok V.
  surname: Humbe
  fullname: Humbe, Ashok V.
– sequence: 4
  givenname: K.M.
  surname: Jadhav
  fullname: Jadhav, K.M.
  email: drjadhavkm@gmail.com, kmjadhav.physics@bamu.ac.in
BookMark eNqNkMtKAzEUhoNUsFXfYV5gxpPJ3LIRtHiDggt1HdKTM23KdDIk00Lf3pQWBDd6Njn5kv9ffDM26V1PjCUcMg68uttkm0jQH4Lrshy4zCDPAIoLNuVNLdKi4fmETQHyPBUgxRWbhbCBOLVopmz82PlWIyVbZ2xrySQhLrttEmxnUY-ULHU40t1Afn0w3g1rt7R4fk80ebeiLiSDp0H7-HNvI90uLfXjEYaw85QYf7D9Kt4dRnLDLlvdBbo9n9fs6_npc_6aLt5f3uYPixRFWY9pK8uai8IA6aotGtnyBpBLKSos6sqUFVRGS9EamWvEUsscsS5JGg41h2Utrtn9qRe9C8FTq9COerSuH722neKgjg7VRv04VEeHCnIVHcaC5lfB4O1W-8N_oo-naJRDe0teBYxOkIz1hKMyzv5d8g1_35kj
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2022_127722
crossref_primary_10_1016_j_seppur_2021_119950
crossref_primary_10_1007_s10971_024_06600_9
crossref_primary_10_1016_j_conbuildmat_2024_135902
crossref_primary_10_1016_j_ceramint_2020_02_091
crossref_primary_10_1080_01496395_2022_2027446
crossref_primary_10_1007_s00339_019_2768_5
crossref_primary_10_1016_j_cej_2020_125937
crossref_primary_10_1016_j_jallcom_2023_169574
crossref_primary_10_1002_adfm_202416108
crossref_primary_10_1088_1742_6596_1644_1_012042
crossref_primary_10_1007_s10934_022_01258_6
crossref_primary_10_1007_s43979_023_00046_8
crossref_primary_10_1016_j_ceramint_2023_04_019
crossref_primary_10_1016_j_powtec_2023_118314
crossref_primary_10_1016_j_solidstatesciences_2022_107031
crossref_primary_10_4028_p_3y31y4
crossref_primary_10_1007_s11581_024_06035_w
crossref_primary_10_1016_j_enbuild_2022_111866
crossref_primary_10_1016_j_jclepro_2023_138231
crossref_primary_10_1016_j_jclepro_2024_141401
crossref_primary_10_1021_acsaenm_3c00691
crossref_primary_10_1039_D2RA03325A
crossref_primary_10_1680_jnaen_19_00006
crossref_primary_10_1016_j_jwpe_2021_102481
crossref_primary_10_1016_j_est_2024_110665
crossref_primary_10_1515_ntrev_2022_0476
crossref_primary_10_1016_j_physb_2019_411944
crossref_primary_10_3390_polym15092043
crossref_primary_10_1016_j_aej_2024_02_039
crossref_primary_10_1002_smll_202303044
crossref_primary_10_1016_j_jhazmat_2019_121396
crossref_primary_10_1016_j_colsurfa_2021_127370
crossref_primary_10_1016_j_jobe_2023_105845
crossref_primary_10_1016_j_wasman_2021_06_026
crossref_primary_10_1039_C9TA04811A
crossref_primary_10_3390_gels8120778
crossref_primary_10_1590_1980_5373_mr_2020_0574
crossref_primary_10_1016_j_ijleo_2020_164462
crossref_primary_10_1007_s42452_020_2463_3
crossref_primary_10_1002_pat_5041
crossref_primary_10_1016_j_rineng_2024_103615
crossref_primary_10_1002_app_51888
crossref_primary_10_1007_s10934_023_01486_4
crossref_primary_10_1016_j_mtcomm_2022_105200
crossref_primary_10_1007_s11270_024_07619_y
crossref_primary_10_1016_j_jece_2023_109828
crossref_primary_10_1007_s11051_020_04822_w
crossref_primary_10_1016_j_jece_2023_111077
crossref_primary_10_1016_j_ceramint_2025_03_167
crossref_primary_10_1007_s11356_023_28359_2
crossref_primary_10_1016_j_ultsonch_2023_106689
crossref_primary_10_3390_solids4010001
crossref_primary_10_1016_j_jnoncrysol_2024_122889
crossref_primary_10_1039_D3MA00085K
crossref_primary_10_1016_j_ijbiomac_2021_03_163
crossref_primary_10_1016_j_ceramint_2019_12_097
crossref_primary_10_3390_pr10112440
crossref_primary_10_1007_s11664_019_07329_w
crossref_primary_10_1021_acs_jpcc_1c09817
crossref_primary_10_1016_j_jcis_2020_03_118
crossref_primary_10_1007_s11595_023_2763_8
crossref_primary_10_1007_s11814_020_0574_6
crossref_primary_10_1080_15421406_2020_1830351
crossref_primary_10_1016_j_jnoncrysol_2021_120778
crossref_primary_10_1007_s12633_020_00741_6
crossref_primary_10_1007_s00339_025_08383_4
crossref_primary_10_1039_D2RA01511K
crossref_primary_10_1016_j_memsci_2020_118737
crossref_primary_10_1016_j_micromeso_2022_111682
crossref_primary_10_1016_j_jnoncrysol_2023_122312
crossref_primary_10_1016_j_molstruc_2022_133021
crossref_primary_10_1016_j_ceramint_2024_09_310
crossref_primary_10_3389_fmats_2022_966692
crossref_primary_10_1016_j_cossms_2021_100936
crossref_primary_10_3390_polym14050849
crossref_primary_10_1016_j_jnoncrysol_2021_120783
crossref_primary_10_3390_w15040669
crossref_primary_10_1007_s00339_021_04329_8
crossref_primary_10_1007_s11356_022_18780_4
crossref_primary_10_1016_j_jallcom_2020_155422
crossref_primary_10_1088_2053_1591_ab590a
crossref_primary_10_1080_00405000_2021_1975905
crossref_primary_10_1016_j_diamond_2021_108474
crossref_primary_10_1016_j_jddst_2023_104189
crossref_primary_10_1021_acsanm_3c01490
crossref_primary_10_3740_MRSK_2024_34_7_341
crossref_primary_10_1021_acsapm_1c00365
crossref_primary_10_3389_fmats_2023_1225481
crossref_primary_10_1007_s10971_024_06543_1
crossref_primary_10_3390_polym12081759
crossref_primary_10_1007_s10854_020_03684_1
crossref_primary_10_1016_j_physb_2019_04_031
crossref_primary_10_1007_s10653_024_02213_x
crossref_primary_10_1021_acs_langmuir_2c02732
crossref_primary_10_1007_s10971_020_05241_y
crossref_primary_10_1016_j_jnoncrysol_2022_121561
crossref_primary_10_1080_07373937_2023_2225100
crossref_primary_10_3390_polym16142017
crossref_primary_10_1039_D1RA01803E
crossref_primary_10_1016_j_jallcom_2019_153501
crossref_primary_10_1016_j_ceramint_2020_03_081
crossref_primary_10_1016_j_ceramint_2019_11_265
crossref_primary_10_3390_polym15173526
crossref_primary_10_1007_s10971_024_06654_9
crossref_primary_10_1016_j_jssc_2019_120971
crossref_primary_10_1016_j_apsadv_2021_100157
crossref_primary_10_3390_ma14030530
crossref_primary_10_1088_2053_1591_ab6c9c
crossref_primary_10_1016_j_mineng_2025_109211
crossref_primary_10_1016_j_conbuildmat_2021_122815
crossref_primary_10_1016_j_jiec_2020_05_019
crossref_primary_10_1016_j_jnoncrysol_2020_120547
crossref_primary_10_1007_s10934_023_01455_x
crossref_primary_10_1016_j_ijhydene_2024_08_163
Cites_doi 10.1016/j.jcis.2013.09.045
10.1016/j.micromeso.2006.10.026
10.1016/j.colsurfa.2015.11.055
10.1016/j.apsusc.2008.04.109
10.1007/s10934-007-9104-8
10.3762/bjnano.6.34
10.1016/S0022-3093(05)80427-2
10.1039/C3RA46911E
10.1116/1.576250
10.1088/1468-6996/9/3/035006
10.1016/j.apsusc.2006.12.117
10.1039/C4RA14002H
10.1016/j.jnoncrysol.2017.03.030
10.1016/j.jnoncrysol.2011.02.022
10.1039/C5RA08714G
10.1007/s10971-014-3315-7
10.1007/s10934-016-0215-y
10.1016/j.enbuild.2017.07.003
10.1016/j.apt.2015.01.002
10.1016/j.matchemphys.2014.03.005
10.1016/j.jcis.2006.09.025
10.1016/j.solidstatesciences.2017.10.016
10.1007/s10971-012-2710-1
10.1039/C6RA26831E
10.1016/j.matchemphys.2015.05.077
10.1016/j.jcis.2006.03.044
10.1016/j.jallcom.2008.09.029
10.1016/j.solidstatesciences.2010.01.032
10.1007/s10971-010-2164-2
10.1016/j.matchemphys.2013.05.064
10.1002/smll.201202965
10.1155/2010/409310
10.1007/s10853-006-1409-5
10.1016/j.solidstatesciences.2012.12.016
10.1016/j.micromeso.2007.10.030
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jnoncrysol.2019.02.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4812
EndPage 146
ExternalDocumentID 10_1016_j_jnoncrysol_2019_02_004
S002230931930105X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~02
~G-
29L
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SMS
SSH
VH1
WUQ
ID FETCH-LOGICAL-c357t-f957134d0ea6f489f180c19936c476d5606da93fd92acc5a92cc75e9d10710b73
IEDL.DBID .~1
ISSN 0022-3093
IngestDate Thu Apr 24 23:11:25 EDT 2025
Tue Jul 01 02:24:27 EDT 2025
Fri Feb 23 02:32:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords BET
FE-SEM
Silica aerogel
Surface modification
Superhydrophobicity
TGA-DTA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-f957134d0ea6f489f180c19936c476d5606da93fd92acc5a92cc75e9d10710b73
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_jnoncrysol_2019_02_004
crossref_primary_10_1016_j_jnoncrysol_2019_02_004
elsevier_sciencedirect_doi_10_1016_j_jnoncrysol_2019_02_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of non-crystalline solids
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sarawade, Kim, Hilonga, Quang, Jeon, Kim (bb0145) 2011; 357
Sarawade, Kim, Hilonga, Kim (bb0160) 2010; 12
Rao, Hegde, Hirashima (bb0065) 2007; 305
Bhagat, Kim, Suh, Ahn, Yeo, Han (bb0150) 2008; 112
He, Li, Shi, Yang, Gong, Cheng (bb0095) 2015; 26
Rao, Rao, Pajonk (bb0010) 2007; 253
Shao, Luo, Cheng, Zhang (bb0090) 2013; 141
Zong, Wei, Jiang, Yan, Zhu, Xie (bb0135) 2015; 5
Bhagat, Oh, Kim, Ahn, Yeo (bb0050) 2007; 100
Gurav, Jung, Park, Kang, Nadargi (bb0005) 2010; 2010
Yun, Luo, Gao (bb0015) 2014; 4
Shi, Tang, Yang, Zhou, Jia, Han (bb0165) 2017; 7
Huang, Chen, Zhang, Lu, Zhan (bb0055) 2013; 9
Hegde, Rao (bb0125) 2007; 42
Rao, Rao, Gurav (bb0070) 2008; 15
Gutzov, Danchova, Karakashev, Khristov, Ivanova, Ulbikas (bb0180) 2014; 70
Pisal, Rao (bb0020) 2016; 23
De Angelis, Venditti, Fratoddi, De Matteis, Prosposito, Cacciotti (bb0100) 2014; 414
Shewale, Rao, Rao (bb0175) 2008; 254
Haq, Zaidi, Zubair, Karim, Padmanabhan, Licciulli (bb0060) 2017; 151
Yu, Lee, Hsu, Tsai, Chen-Yang (bb0045) 2015; 5
Dervin, Lang, Perova, Hinder, Pillai (bb0075) 2017; 465
Rao (bb0040) 2018
Bangi, Rao, Rao (bb0085) 2008; 9
De Nicola, Castrucci, Scarselli, Nanni, Cacciotti, De Crescenzi (bb0105) 2015; 6
Aravind, Shajesh, Soraru, Warrier (bb0030) 2010; 54
Bangi, Jung, Park, Baek, Park (bb0130) 2013; 18
Cheng, Xia, Luo, Li, Guo, Wei (bb0155) 2016; 490
Tillotson, Hrubesh (bb0110) 1992; 145
Cacciotti, Nanni, Campaniello, Lamastra (bb0140) 2014; 146
Kim, Kim, Payne, Upadhye (bb0120) 1989; 7
Bangi, Kavale, Baek, Park (bb0170) 2012; 62
Shao, He, Niu, Huang, Cheng, Zhang (bb0025) 2015; 162
Gurav, Rao, Rao, Nadargi, Bhagat (bb0080) 2009; 476
Parale, Han, Lee, Park (bb0035) 2018; 75
Rao, Bhagat, Hirashima, Pajonk (bb0115) 2006; 300
Sarawade (10.1016/j.jnoncrysol.2019.02.004_bb0160) 2010; 12
Cacciotti (10.1016/j.jnoncrysol.2019.02.004_bb0140) 2014; 146
Shao (10.1016/j.jnoncrysol.2019.02.004_bb0090) 2013; 141
Pisal (10.1016/j.jnoncrysol.2019.02.004_bb0020) 2016; 23
Gutzov (10.1016/j.jnoncrysol.2019.02.004_bb0180) 2014; 70
Rao (10.1016/j.jnoncrysol.2019.02.004_bb0010) 2007; 253
Aravind (10.1016/j.jnoncrysol.2019.02.004_bb0030) 2010; 54
Tillotson (10.1016/j.jnoncrysol.2019.02.004_bb0110) 1992; 145
Kim (10.1016/j.jnoncrysol.2019.02.004_bb0120) 1989; 7
Shewale (10.1016/j.jnoncrysol.2019.02.004_bb0175) 2008; 254
Gurav (10.1016/j.jnoncrysol.2019.02.004_bb0005) 2010; 2010
Zong (10.1016/j.jnoncrysol.2019.02.004_bb0135) 2015; 5
Bangi (10.1016/j.jnoncrysol.2019.02.004_bb0170) 2012; 62
Bhagat (10.1016/j.jnoncrysol.2019.02.004_bb0150) 2008; 112
Haq (10.1016/j.jnoncrysol.2019.02.004_bb0060) 2017; 151
Yu (10.1016/j.jnoncrysol.2019.02.004_bb0045) 2015; 5
Bhagat (10.1016/j.jnoncrysol.2019.02.004_bb0050) 2007; 100
Cheng (10.1016/j.jnoncrysol.2019.02.004_bb0155) 2016; 490
Dervin (10.1016/j.jnoncrysol.2019.02.004_bb0075) 2017; 465
He (10.1016/j.jnoncrysol.2019.02.004_bb0095) 2015; 26
De Angelis (10.1016/j.jnoncrysol.2019.02.004_bb0100) 2014; 414
Rao (10.1016/j.jnoncrysol.2019.02.004_bb0065) 2007; 305
Sarawade (10.1016/j.jnoncrysol.2019.02.004_bb0145) 2011; 357
Bangi (10.1016/j.jnoncrysol.2019.02.004_bb0130) 2013; 18
Rao (10.1016/j.jnoncrysol.2019.02.004_bb0115) 2006; 300
Hegde (10.1016/j.jnoncrysol.2019.02.004_bb0125) 2007; 42
Bangi (10.1016/j.jnoncrysol.2019.02.004_bb0085) 2008; 9
Gurav (10.1016/j.jnoncrysol.2019.02.004_bb0080) 2009; 476
De Nicola (10.1016/j.jnoncrysol.2019.02.004_bb0105) 2015; 6
Yun (10.1016/j.jnoncrysol.2019.02.004_bb0015) 2014; 4
Huang (10.1016/j.jnoncrysol.2019.02.004_bb0055) 2013; 9
Rao (10.1016/j.jnoncrysol.2019.02.004_bb0070) 2008; 15
Shao (10.1016/j.jnoncrysol.2019.02.004_bb0025) 2015; 162
Parale (10.1016/j.jnoncrysol.2019.02.004_bb0035) 2018; 75
Rao (10.1016/j.jnoncrysol.2019.02.004_bb0040) 2018
Shi (10.1016/j.jnoncrysol.2019.02.004_bb0165) 2017; 7
References_xml – volume: 7
  start-page: 1181
  year: 1989
  end-page: 1184
  ident: bb0120
  article-title: Fabrication of hollow silica aerogel spheres by a droplet generation method and sol–gel processing
  publication-title: J. Vac. Sci. Technol. A
– volume: 23
  start-page: 1547
  year: 2016
  end-page: 1556
  ident: bb0020
  article-title: Comparative studies on the physical properties of TEOS, TMOS and Na2SiO3 based silica aerogels by ambient pressure drying method
  publication-title: J. Porous. Mater.
– volume: 15
  start-page: 507
  year: 2008
  end-page: 512
  ident: bb0070
  article-title: Effect of protic solvents on the physical properties of the ambient pressure dried hydrophobic silica aerogels using sodium silicate precursor
  publication-title: J. Porous. Mater.
– volume: 18
  start-page: 50
  year: 2013
  end-page: 57
  ident: bb0130
  article-title: Optically transparent silica aerogels based on sodium silicate by a two step sol–gel process and ambient pressure drying
  publication-title: Solid State Sci.
– volume: 75
  start-page: 63
  year: 2018
  end-page: 70
  ident: bb0035
  article-title: Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area
  publication-title: Solid State Sci.
– volume: 305
  start-page: 124
  year: 2007
  end-page: 132
  ident: bb0065
  article-title: Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels
  publication-title: J. Colloid Interface Sci.
– volume: 9
  year: 2008
  ident: bb0085
  article-title: A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient-pressure drying
  publication-title: Sci. Technol. Adv. Mater.
– volume: 145
  start-page: 44
  year: 1992
  end-page: 50
  ident: bb0110
  article-title: Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process
  publication-title: J. Non-Cryst. Solids
– volume: 5
  start-page: 55579
  year: 2015
  end-page: 55587
  ident: bb0135
  article-title: Characterization and comparison of uniform hydrophilic/hydrophobic transparent silica aerogel beads: skeleton strength and surface modification
  publication-title: RSC Adv.
– volume: 12
  start-page: 911
  year: 2010
  end-page: 918
  ident: bb0160
  article-title: Production of low-density sodium silicate-based hydrophobic silica aerogel beads by a novel fast gelation process and ambient pressure drying process
  publication-title: Solid State Sci.
– volume: 141
  start-page: 570
  year: 2013
  end-page: 575
  ident: bb0090
  article-title: Superhydrophobic sodium silicate based silica aerogel prepared by ambient pressure drying
  publication-title: Mater. Chem. Phys.
– volume: 490
  start-page: 200
  year: 2016
  end-page: 206
  ident: bb0155
  article-title: Effect of surface modification on physical properties of silica aerogels derived from fly ash acid sludge
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 254
  start-page: 6902
  year: 2008
  end-page: 6907
  ident: bb0175
  article-title: Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels
  publication-title: Appl. Surf. Sci.
– volume: 357
  start-page: 2156
  year: 2011
  end-page: 2162
  ident: bb0145
  article-title: Synthesis of sodium silicate-based hydrophilic silica aerogel beads with superior properties: effect of heat-treatment
  publication-title: J. Non-Cryst. Solids
– volume: 100
  start-page: 350
  year: 2007
  end-page: 355
  ident: bb0050
  article-title: Methyltrimethoxysilane based monolithic silica aerogels via ambient pressure drying
  publication-title: Microporous Mesoporous Mater.
– volume: 62
  start-page: 201
  year: 2012
  end-page: 207
  ident: bb0170
  article-title: Synthesis of MWCNTs doped sodium silicate based aerogels by ambient pressure drying
  publication-title: J. Sol-Gel Sci. Technol.
– volume: 465
  start-page: 31
  year: 2017
  end-page: 38
  ident: bb0075
  article-title: Graphene oxide reinforced high surface area silica aerogels
  publication-title: J. Non-Cryst. Solids
– volume: 476
  start-page: 397
  year: 2009
  end-page: 402
  ident: bb0080
  article-title: Physical properties of sodium silicate based silica aerogels prepared by single step sol–gel process dried at ambient pressure
  publication-title: J. Alloys Compd.
– volume: 42
  start-page: 6965
  year: 2007
  end-page: 6971
  ident: bb0125
  article-title: Physical properties of methyltrimethoxysilane based elastic silica aerogels prepared by the two-stage sol–gel process
  publication-title: J. Mater. Sci.
– volume: 414
  start-page: 24
  year: 2014
  end-page: 32
  ident: bb0100
  article-title: From nanospheres to microribbons: self-assembled eosin Y doped PMMA nanoparticles as photonic crystals
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 4039
  year: 2017
  end-page: 4045
  ident: bb0165
  article-title: Superhydrophobic silica aerogels reinforced with polyacrylonitrile fibers for adsorbing oil from water and oil mixtures
  publication-title: RSC Adv.
– volume: 6
  start-page: 353
  year: 2015
  ident: bb0105
  article-title: Exploiting the hierarchical morphology of single-walled and multi-walled carbon nanotube films for highly hydrophobic coatings
  publication-title: Beilstein J. Nanotechnol.
– volume: 112
  start-page: 504
  year: 2008
  end-page: 509
  ident: bb0150
  article-title: Superhydrophobic silica aerogel powders with simultaneous surface modification, solvent exchange and sodium ion removal from hydrogels
  publication-title: Microporous Mesoporous Mater.
– volume: 146
  start-page: 240
  year: 2014
  end-page: 252
  ident: bb0140
  article-title: Development of a transparent hydrorepellent modified SiO2 coatings for glazed sanitarywares
  publication-title: Mater. Chem. Phys.
– volume: 300
  start-page: 279
  year: 2006
  end-page: 285
  ident: bb0115
  article-title: Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor
  publication-title: J. Colloid Interface Sci.
– volume: 4
  start-page: 4535
  year: 2014
  end-page: 4542
  ident: bb0015
  article-title: Superhydrophobic silica aerogel microspheres from methyltrimethoxysilane: rapid synthesis via ambient pressure drying and excellent absorption properties
  publication-title: RSC Adv.
– volume: 151
  start-page: 494
  year: 2017
  end-page: 500
  ident: bb0060
  article-title: Hydrophobic silica aerogel glass-fibre composite with higher strength and thermal insulation based on methyltrimethoxysilane (MTMS) precursor
  publication-title: Energ. Build.
– volume: 253
  start-page: 6032
  year: 2007
  end-page: 6040
  ident: bb0010
  article-title: Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents
  publication-title: Appl. Surf. Sci.
– start-page: 1
  year: 2018
  end-page: 27
  ident: bb0040
  article-title: Elastic superhydrophobic and water glass-based silica aerogels and applications
  publication-title: J. Sol-Gel Sci. Technol.
– volume: 26
  start-page: 537
  year: 2015
  end-page: 541
  ident: bb0095
  article-title: Rapid synthesis of sodium silicate based hydrophobic silica aerogel granules with large surface area
  publication-title: Adv. Powder Technol.
– volume: 162
  start-page: 346
  year: 2015
  end-page: 353
  ident: bb0025
  article-title: Ambient pressure dried shape-controllable sodium silicate based composite silica aerogel monoliths
  publication-title: Mater. Chem. Phys.
– volume: 54
  start-page: 105
  year: 2010
  end-page: 117
  ident: bb0030
  article-title: Ambient pressure drying: a successful approach for the preparation of silica and silica based mixed oxide aerogels
  publication-title: J. Sol-Gel Sci. Technol.
– volume: 2010
  start-page: 23
  year: 2010
  ident: bb0005
  article-title: Silica aerogel: synthesis and applications
  publication-title: J. Nanomater.
– volume: 70
  start-page: 511
  year: 2014
  end-page: 516
  ident: bb0180
  article-title: Preparation and thermal properties of chemically prepared nanoporous silica aerogels
  publication-title: J. Sol-Gel Sci. Technol.
– volume: 9
  start-page: 1397
  year: 2013
  end-page: 1404
  ident: bb0055
  article-title: Edge-to-edge assembled graphene oxide aerogels with outstanding mechanical performance and superhigh chemical activity
  publication-title: Small
– volume: 5
  start-page: 13985
  year: 2015
  end-page: 13992
  ident: bb0045
  article-title: Silica aerogel-supported cobalt nanocomposites as efficient catalysts toward hydrogen generation from aqueous ammonia borane
  publication-title: RSC Adv.
– volume: 414
  start-page: 24
  year: 2014
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0100
  article-title: From nanospheres to microribbons: self-assembled eosin Y doped PMMA nanoparticles as photonic crystals
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2013.09.045
– volume: 100
  start-page: 350
  year: 2007
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0050
  article-title: Methyltrimethoxysilane based monolithic silica aerogels via ambient pressure drying
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2006.10.026
– volume: 490
  start-page: 200
  year: 2016
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0155
  article-title: Effect of surface modification on physical properties of silica aerogels derived from fly ash acid sludge
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2015.11.055
– volume: 254
  start-page: 6902
  year: 2008
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0175
  article-title: Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.04.109
– volume: 15
  start-page: 507
  year: 2008
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0070
  article-title: Effect of protic solvents on the physical properties of the ambient pressure dried hydrophobic silica aerogels using sodium silicate precursor
  publication-title: J. Porous. Mater.
  doi: 10.1007/s10934-007-9104-8
– volume: 6
  start-page: 353
  year: 2015
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0105
  article-title: Exploiting the hierarchical morphology of single-walled and multi-walled carbon nanotube films for highly hydrophobic coatings
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.6.34
– volume: 145
  start-page: 44
  year: 1992
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0110
  article-title: Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(05)80427-2
– volume: 4
  start-page: 4535
  year: 2014
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0015
  article-title: Superhydrophobic silica aerogel microspheres from methyltrimethoxysilane: rapid synthesis via ambient pressure drying and excellent absorption properties
  publication-title: RSC Adv.
  doi: 10.1039/C3RA46911E
– volume: 7
  start-page: 1181
  year: 1989
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0120
  article-title: Fabrication of hollow silica aerogel spheres by a droplet generation method and sol–gel processing
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.576250
– volume: 9
  year: 2008
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0085
  article-title: A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient-pressure drying
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1088/1468-6996/9/3/035006
– volume: 253
  start-page: 6032
  year: 2007
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0010
  article-title: Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2006.12.117
– volume: 5
  start-page: 13985
  year: 2015
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0045
  article-title: Silica aerogel-supported cobalt nanocomposites as efficient catalysts toward hydrogen generation from aqueous ammonia borane
  publication-title: RSC Adv.
  doi: 10.1039/C4RA14002H
– volume: 465
  start-page: 31
  year: 2017
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0075
  article-title: Graphene oxide reinforced high surface area silica aerogels
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2017.03.030
– volume: 357
  start-page: 2156
  year: 2011
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0145
  article-title: Synthesis of sodium silicate-based hydrophilic silica aerogel beads with superior properties: effect of heat-treatment
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2011.02.022
– volume: 5
  start-page: 55579
  year: 2015
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0135
  article-title: Characterization and comparison of uniform hydrophilic/hydrophobic transparent silica aerogel beads: skeleton strength and surface modification
  publication-title: RSC Adv.
  doi: 10.1039/C5RA08714G
– volume: 70
  start-page: 511
  year: 2014
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0180
  article-title: Preparation and thermal properties of chemically prepared nanoporous silica aerogels
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-014-3315-7
– volume: 23
  start-page: 1547
  year: 2016
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0020
  article-title: Comparative studies on the physical properties of TEOS, TMOS and Na2SiO3 based silica aerogels by ambient pressure drying method
  publication-title: J. Porous. Mater.
  doi: 10.1007/s10934-016-0215-y
– start-page: 1
  year: 2018
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0040
  article-title: Elastic superhydrophobic and water glass-based silica aerogels and applications
  publication-title: J. Sol-Gel Sci. Technol.
– volume: 151
  start-page: 494
  year: 2017
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0060
  article-title: Hydrophobic silica aerogel glass-fibre composite with higher strength and thermal insulation based on methyltrimethoxysilane (MTMS) precursor
  publication-title: Energ. Build.
  doi: 10.1016/j.enbuild.2017.07.003
– volume: 26
  start-page: 537
  year: 2015
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0095
  article-title: Rapid synthesis of sodium silicate based hydrophobic silica aerogel granules with large surface area
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2015.01.002
– volume: 146
  start-page: 240
  year: 2014
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0140
  article-title: Development of a transparent hydrorepellent modified SiO2 coatings for glazed sanitarywares
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2014.03.005
– volume: 305
  start-page: 124
  year: 2007
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0065
  article-title: Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2006.09.025
– volume: 75
  start-page: 63
  year: 2018
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0035
  article-title: Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2017.10.016
– volume: 62
  start-page: 201
  year: 2012
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0170
  article-title: Synthesis of MWCNTs doped sodium silicate based aerogels by ambient pressure drying
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-012-2710-1
– volume: 7
  start-page: 4039
  year: 2017
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0165
  article-title: Superhydrophobic silica aerogels reinforced with polyacrylonitrile fibers for adsorbing oil from water and oil mixtures
  publication-title: RSC Adv.
  doi: 10.1039/C6RA26831E
– volume: 162
  start-page: 346
  year: 2015
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0025
  article-title: Ambient pressure dried shape-controllable sodium silicate based composite silica aerogel monoliths
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2015.05.077
– volume: 300
  start-page: 279
  year: 2006
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0115
  article-title: Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2006.03.044
– volume: 476
  start-page: 397
  year: 2009
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0080
  article-title: Physical properties of sodium silicate based silica aerogels prepared by single step sol–gel process dried at ambient pressure
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2008.09.029
– volume: 12
  start-page: 911
  year: 2010
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0160
  article-title: Production of low-density sodium silicate-based hydrophobic silica aerogel beads by a novel fast gelation process and ambient pressure drying process
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2010.01.032
– volume: 54
  start-page: 105
  year: 2010
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0030
  article-title: Ambient pressure drying: a successful approach for the preparation of silica and silica based mixed oxide aerogels
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-010-2164-2
– volume: 141
  start-page: 570
  year: 2013
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0090
  article-title: Superhydrophobic sodium silicate based silica aerogel prepared by ambient pressure drying
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2013.05.064
– volume: 9
  start-page: 1397
  year: 2013
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0055
  article-title: Edge-to-edge assembled graphene oxide aerogels with outstanding mechanical performance and superhigh chemical activity
  publication-title: Small
  doi: 10.1002/smll.201202965
– volume: 2010
  start-page: 23
  year: 2010
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0005
  article-title: Silica aerogel: synthesis and applications
  publication-title: J. Nanomater.
  doi: 10.1155/2010/409310
– volume: 42
  start-page: 6965
  year: 2007
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0125
  article-title: Physical properties of methyltrimethoxysilane based elastic silica aerogels prepared by the two-stage sol–gel process
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-006-1409-5
– volume: 18
  start-page: 50
  year: 2013
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0130
  article-title: Optically transparent silica aerogels based on sodium silicate by a two step sol–gel process and ambient pressure drying
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2012.12.016
– volume: 112
  start-page: 504
  year: 2008
  ident: 10.1016/j.jnoncrysol.2019.02.004_bb0150
  article-title: Superhydrophobic silica aerogel powders with simultaneous surface modification, solvent exchange and sodium ion removal from hydrogels
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2007.10.030
SSID ssj0000738
Score 2.582633
Snippet The silica aerogel was synthesized by simple and cost-effective sol-gel process under ambient pressure drying. The wet gel was modified by using...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 140
SubjectTerms BET
FE-SEM
Silica aerogel
Superhydrophobicity
Surface modification
TGA-DTA
Title Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process
URI https://dx.doi.org/10.1016/j.jnoncrysol.2019.02.004
Volume 511
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kIupBtCrWF3vwGm0em-3iSYpSFb2o0FtIdjc2Ym3YNkIv_nZn8vABgoKXkGyysMwMO9-G75sBOPK4Fyvj47EkEMIJtDROLAPuSO1iOuCJK2L6NXBzGw4egqshHy5Av9HCEK2y3vurPb3creuRk9qaJ3mWkcYXUxseyBGCUJvHISnYA0FRfvz2SfPAEO59VAzHr2s2T8XxesIjtrJz9DKRvGRVvTP4OUV9STsX67BW40V2Vi1pAxbMSxuW-02btjasfqko2IalktGpppswuytsigZi44nOUgSabIo3xZhNs0r3xiiB4WiRGzuaazvJR5MkU_V7Fhs7ecRVsdyakqXOXjMcHSckoGQlfbawhmlLOimWV3qDLXi4OL_vD5y6xYKjfC5mTio5iUl118RhGvRk6va6ijh9oUJTaoRDoY6ln2qJLlU8lp5Sghv0JEGTRPjb0EIbmh1gyvNTTyuDeMcLRMJjzvHSCxHwuQTUOiAaq0aqrj9ObTCeo4Zo9hR9-iMif0RdL0J_dMD9mJlXNTj-MOe0cVz0LZ4iTBW_zt791-w9WKGniha5D62ZLcwBQpdZcljG5iEsnl1eD27fAbWH8cQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90IuqD6FT8Ng--FtePNAs-jaHMr72osLfQJql2OFeyVfC_97KmU0FQ8KWUhINyF-5-Kb_fHcBpQINE6hCvJRFjXqS49hIeUY8rH8sBTX2W2F8Dd_249xhdD-hgAbq1FsbSKl3ur3L6LFu7lTPnzbMiz63GF0sbXsgRgtgxj4NFWLLdqWgDljpXN73-Z0JmYXveNBwNHKGnonkN8ZYtzTsG2vK8eNXAM_q5Sn2pPJcbsO4gI-lUX7UJC_q1CSvdelJbE9a-NBVswvKM1CknWzC9L02GPiKjscozxJpkgi_liEzySvpGbA3D1bLQ5vldmXHxPE5z6fZJos34Cb-KFEbPiOrkLcfVUWo1lGTGoC2NJspYqRQpKsnBNjxeXjx0e56bsuDJkLKpl3Fq9aSqpZM4i9o889staWl9sYxYrBARxSrhYaY4RlXShAdSMqoxmBadpCzcgQb6UO8CkUGYBUpqhDxBxFKaUIqPdoyYz7dYbQ9Y7VUhXQtyOwnjRdRcs6H4jIew8RCtQGA89sCfWxZVG44_2JzXgRPfjpTAavGr9f6_rE9gpfdwdytur_o3B7BqdyqW5CE0pqbUR4hkpumxO6kf9Sf0dQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+modified+sodium+silicate+based+superhydrophobic+silica+aerogels+prepared+via+ambient+pressure+drying+process&rft.jtitle=Journal+of+non-crystalline+solids&rft.au=Khedkar%2C+Mangesh+V.&rft.au=Somvanshi%2C+Sandeep+B.&rft.au=Humbe%2C+Ashok+V.&rft.au=Jadhav%2C+K.M.&rft.date=2019-05-01&rft.pub=Elsevier+B.V&rft.issn=0022-3093&rft.eissn=1873-4812&rft.volume=511&rft.spage=140&rft.epage=146&rft_id=info:doi/10.1016%2Fj.jnoncrysol.2019.02.004&rft.externalDocID=S002230931930105X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3093&client=summon