Energy-Efficient Mode Selection and Resource Allocation for D2D-Enabled Heterogeneous Networks: A Deep Reinforcement Learning Approach

Improving energy efficiency has shown increasing importance in designing future cellular system. In this work, we consider the issue of energy efficiency in D2D-enabled heterogeneous cellular networks. Specifically, communication mode selection and resource allocation are jointly considered with the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 20; no. 2; pp. 1175 - 1187
Main Authors Zhang, Tao, Zhu, Kun, Wang, Junhua
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Improving energy efficiency has shown increasing importance in designing future cellular system. In this work, we consider the issue of energy efficiency in D2D-enabled heterogeneous cellular networks. Specifically, communication mode selection and resource allocation are jointly considered with the aim to maximize the energy efficiency in the long term. And an Markov decision process (MDP) problem is formulated, where each user can switch between traditional cellular mode and D2D mode dynamically. We employ deep deterministic policy gradient (DDPG), a model-free deep reinforcement learning algorithm, to solve the MDP problem in continuous state and action space. The architecture of proposed method consists of one actor network and one critic network. The actor network uses deterministic policy gradient scheme to generate deterministic actions for agent directly, and the critic network employs value function based Q networks to evaluate the performance of the actor network. Simulation results show the convergence property of proposed algorithm and the effectiveness in improving the energy efficiency in a D2D-enabled heterogeneous network.
AbstractList Improving energy efficiency has shown increasing importance in designing future cellular system. In this work, we consider the issue of energy efficiency in D2D-enabled heterogeneous cellular networks. Specifically, communication mode selection and resource allocation are jointly considered with the aim to maximize the energy efficiency in the long term. And an Markov decision process (MDP) problem is formulated, where each user can switch between traditional cellular mode and D2D mode dynamically. We employ deep deterministic policy gradient (DDPG), a model-free deep reinforcement learning algorithm, to solve the MDP problem in continuous state and action space. The architecture of proposed method consists of one actor network and one critic network. The actor network uses deterministic policy gradient scheme to generate deterministic actions for agent directly, and the critic network employs value function based Q networks to evaluate the performance of the actor network. Simulation results show the convergence property of proposed algorithm and the effectiveness in improving the energy efficiency in a D2D-enabled heterogeneous network.
Author Wang, Junhua
Zhu, Kun
Zhang, Tao
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0003-1830-788X
  surname: Zhang
  fullname: Zhang, Tao
  email: tao@nuaa.edu.cn
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 2
  givenname: Kun
  orcidid: 0000-0001-6784-5583
  surname: Zhu
  fullname: Zhu, Kun
  email: zhukun@nuaa.edu.cn
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 3
  givenname: Junhua
  surname: Wang
  fullname: Wang, Junhua
  email: jhua1207@nuaa.edu.cn
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
BookMark eNp9kM1OGzEUha0KpPK3r9SNpa4n-G_sGXZRkgJSKBJE6nJ08VynpoOd2hNVvECfG4egLliwsmWf7x7d75gchBiQkC-cTThn7fnq52wimGATySRXUn8iR7yum0oI1Rzs7lJXXBj9mRzn_MgYN7quj8i_RcC0fq4WznnrMYz0JvZI73FAO_oYKISe3mGO22SRTochWnh9dzHRuZhXiwAPA_b0CkdMcY0B4zbTHzj-jel3vqBTOkfclBE-FMTi065jiZCCD2s63WxSBPvrlBw6GDKevZ0nZPV9sZpdVcvby-vZdFlZWZuxchqUASVbwdre2p5r0wKTBmpQ2oHC3jwI17C6CNC9YI0RzgCAaRCUQnlCvu3HltY_W8xj91gWC6WxK5oao5SpeUnpfcqmmHNC11k_vm49JvBDx1m3U94V5d1OefemvIDsHbhJ_gnS80fI1z3iEfF_vBXSlG_5AnCOjus
CODEN ITWCAX
CitedBy_id crossref_primary_10_1007_s11277_023_10307_5
crossref_primary_10_1109_ACCESS_2024_3460656
crossref_primary_10_1109_JIOT_2024_3421616
crossref_primary_10_1109_TWC_2023_3255216
crossref_primary_10_1109_TNSE_2023_3255544
crossref_primary_10_1007_s11277_024_11255_4
crossref_primary_10_1109_COMST_2024_3405075
crossref_primary_10_3390_s23156796
crossref_primary_10_1007_s11276_023_03230_x
crossref_primary_10_1109_TVT_2023_3267452
crossref_primary_10_1109_TII_2022_3227655
crossref_primary_10_1109_TWC_2024_3509475
crossref_primary_10_1109_TWC_2023_3271673
crossref_primary_10_1109_TWC_2023_3244192
crossref_primary_10_1109_ACCESS_2024_3434619
crossref_primary_10_1109_TWC_2023_3314701
crossref_primary_10_1109_ACCESS_2023_3302250
crossref_primary_10_1016_j_comnet_2023_109912
crossref_primary_10_1109_TVT_2023_3283306
crossref_primary_10_1002_dac_6060
crossref_primary_10_1109_TMC_2021_3085206
crossref_primary_10_1109_JSYST_2022_3179351
crossref_primary_10_1109_TWC_2024_3483291
crossref_primary_10_1109_MNET_122_2200102
crossref_primary_10_1109_JIOT_2022_3160197
crossref_primary_10_1016_j_heliyon_2024_e30697
crossref_primary_10_3390_s24165141
crossref_primary_10_1109_JIOT_2024_3406044
crossref_primary_10_1109_TCCN_2022_3198652
crossref_primary_10_1109_LWC_2022_3170998
crossref_primary_10_3390_electronics12030647
crossref_primary_10_1109_ACCESS_2023_3238799
crossref_primary_10_3390_electronics12020360
crossref_primary_10_1016_j_phycom_2024_102423
crossref_primary_10_1016_j_comnet_2023_109823
crossref_primary_10_1109_ACCESS_2021_3129465
crossref_primary_10_1016_j_adhoc_2025_103788
crossref_primary_10_1002_dac_6092
crossref_primary_10_1016_j_adhoc_2022_102978
crossref_primary_10_1109_LWC_2021_3120287
crossref_primary_10_1109_TVT_2024_3392738
crossref_primary_10_1109_TVT_2024_3425459
crossref_primary_10_1109_JSYST_2022_3145398
crossref_primary_10_1109_TNSM_2024_3482549
crossref_primary_10_1109_TMLCN_2024_3369007
crossref_primary_10_1186_s13638_024_02339_7
crossref_primary_10_3389_fnbot_2023_1093132
crossref_primary_10_1109_COMST_2021_3130901
crossref_primary_10_1109_TNSE_2023_3346445
crossref_primary_10_1007_s11276_022_03176_6
crossref_primary_10_1109_JIOT_2023_3333826
crossref_primary_10_1007_s11277_024_11420_9
crossref_primary_10_1109_JIOT_2024_3487913
crossref_primary_10_1109_LCOMM_2021_3079920
crossref_primary_10_1109_TII_2023_3315744
crossref_primary_10_1109_TVT_2023_3327571
crossref_primary_10_3390_math11071702
crossref_primary_10_1109_TVT_2023_3267660
crossref_primary_10_1109_JIOT_2021_3106283
crossref_primary_10_1109_ACCESS_2024_3349944
crossref_primary_10_1109_TVT_2023_3276647
Cites_doi 10.1109/LCOMM.2019.2907252
10.1109/PIMRC.2015.7343537
10.1109/TGCN.2018.2844301
10.1109/WCNC.2019.8885887
10.1007/3-540-49430-8_2
10.1109/TENCON.2018.8650160
10.1049/iet-com.2018.6028
10.1016/j.automatica.2010.02.018
10.1109/IWCMC.2018.8450467
10.1109/TMC.2018.2871073
10.1109/TWC.2017.2769644
10.1109/TWC.2019.2933417
10.1109/COMST.2019.2904897
10.1109/TCOMM.2016.2580153
10.1109/ICCW.2018.8403676
10.1007/s11276-020-02261-y
10.1109/ICCSPA.2019.8713700
10.1049/iet-com.2019.0466
10.1109/TVT.2017.2760281
10.1109/WCNC.2010.5506248
10.1109/VTCFall.2018.8690728
10.1007/s11235-017-0320-5
10.1109/TVT.2017.2731798
10.1109/TCYB.2016.2542923
10.1109/ICC.2015.7248660
10.1109/LWC.2019.2917907
10.1109/PIMRC.2017.8292468
10.1109/TVT.2019.2916395
10.1109/TVT.2014.2311580
10.1109/ACCESS.2019.2956111
10.1109/TVT.2014.2362005
10.1109/TNN.1998.712192
10.1109/ACCESS.2019.2944403
10.3390/fi10010003
10.1109/LWC.2019.2916352
10.1016/j.engappai.2013.06.016
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2020.3031436
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 1187
ExternalDocumentID 10_1109_TWC_2020_3031436
9237143
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61701230; 62071230; 62002166
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20170805
  funderid: 10.13039/501100004608
– fundername: China Postdoctoral Science Foundation
  grantid: 2020M671483
  funderid: 10.13039/501100002858
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-f6a47a439209dccd1679a037a5a46fa4ed7b2f8054366d20872f7aaa78ea44e3
IEDL.DBID RIE
ISSN 1536-1276
IngestDate Fri Jul 25 12:24:29 EDT 2025
Thu Apr 24 23:10:44 EDT 2025
Tue Jul 01 04:13:28 EDT 2025
Wed Aug 27 05:44:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-f6a47a439209dccd1679a037a5a46fa4ed7b2f8054366d20872f7aaa78ea44e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6784-5583
0000-0003-1830-788X
PQID 2488744751
PQPubID 105736
PageCount 13
ParticipantIDs proquest_journals_2488744751
ieee_primary_9237143
crossref_citationtrail_10_1109_TWC_2020_3031436
crossref_primary_10_1109_TWC_2020_3031436
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Feb.
2021-2-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-Feb.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref11
ref32
ref10
wang (ref48) 2015
ref2
ref1
lecun (ref46) 1998
ref39
zhao (ref38) 2011
ref17
ref16
ref19
ref18
sutton (ref33) 2000; 12
silver (ref40) 2014
lillicrap (ref41) 2015
ref24
ref23
(ref43) 2014
ref26
ref25
ref42
ref44
van hasselt (ref47) 2016
ref21
(ref20) 2019
mnih (ref36) 2013
ref28
ref27
ref29
(ref45) 2010
ref8
ref7
ref9
ref4
ref3
ref6
chen (ref22) 2019
ref5
nachum (ref37) 2017
References_xml – ident: ref2
  doi: 10.1109/LCOMM.2019.2907252
– ident: ref44
  doi: 10.1109/PIMRC.2015.7343537
– year: 2015
  ident: ref48
  article-title: Dueling network architectures for deep reinforcement learning
  publication-title: arXiv 1511 06581
– ident: ref26
  doi: 10.1109/TGCN.2018.2844301
– ident: ref16
  doi: 10.1109/WCNC.2019.8885887
– year: 1998
  ident: ref46
  article-title: Efficient backprop
  publication-title: Neural Networks Tricks of the Trade
  doi: 10.1007/3-540-49430-8_2
– year: 2014
  ident: ref43
  publication-title: Study on LTE Device to Device Proximity Services Radio Aspects
– ident: ref24
  doi: 10.1109/TENCON.2018.8650160
– ident: ref23
  doi: 10.1049/iet-com.2018.6028
– start-page: 387
  year: 2014
  ident: ref40
  article-title: Deterministic policy gradient algorithms
  publication-title: Int Conf Mach Learn
– ident: ref39
  doi: 10.1016/j.automatica.2010.02.018
– ident: ref6
  doi: 10.1109/IWCMC.2018.8450467
– ident: ref5
  doi: 10.1109/TMC.2018.2871073
– ident: ref27
  doi: 10.1109/TWC.2017.2769644
– start-page: 2775
  year: 2017
  ident: ref37
  article-title: Bridging the gap between value and policy based reinforcement learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref28
  doi: 10.1109/TWC.2019.2933417
– ident: ref42
  doi: 10.1109/COMST.2019.2904897
– ident: ref29
  doi: 10.1109/TCOMM.2016.2580153
– ident: ref14
  doi: 10.1109/ICCW.2018.8403676
– ident: ref19
  doi: 10.1007/s11276-020-02261-y
– start-page: 2094
  year: 2016
  ident: ref47
  article-title: Deep reinforcement learning with double Q-learning
  publication-title: Proc 30th AAAI Conf Artificial Intell
– ident: ref9
  doi: 10.1109/ICCSPA.2019.8713700
– year: 2015
  ident: ref41
  article-title: Continuous control with deep reinforcement learning
  publication-title: arXiv 1509 02971
– ident: ref18
  doi: 10.1049/iet-com.2019.0466
– ident: ref21
  doi: 10.1109/TVT.2017.2760281
– start-page: 262
  year: 2011
  ident: ref38
  article-title: Analysis and improvement of policy gradient estimation
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref30
  doi: 10.1109/WCNC.2010.5506248
– ident: ref15
  doi: 10.1109/VTCFall.2018.8690728
– start-page: 123
  year: 2019
  ident: ref20
  article-title: SWIPT techniques in multi-tier D2D networks for energy efficiency
  publication-title: Proc TENCON - IEEE Region 10 Conf (TENCON)
– ident: ref7
  doi: 10.1007/s11235-017-0320-5
– ident: ref1
  doi: 10.1109/TVT.2017.2731798
– ident: ref34
  doi: 10.1109/TCYB.2016.2542923
– ident: ref31
  doi: 10.1109/ICC.2015.7248660
– year: 2013
  ident: ref36
  article-title: Playing atari with deep reinforcement learning
  publication-title: arXiv 1312 5602
– ident: ref3
  doi: 10.1109/LWC.2019.2917907
– ident: ref25
  doi: 10.1109/PIMRC.2017.8292468
– ident: ref8
  doi: 10.1109/TVT.2019.2916395
– year: 2010
  ident: ref45
  publication-title: Evolved Universal Terrestrial Radio Access (E-UTRA) Further advancements for E-UTRA physical layer aspects
– ident: ref11
  doi: 10.1109/TVT.2014.2311580
– ident: ref17
  doi: 10.1109/ACCESS.2019.2956111
– ident: ref12
  doi: 10.1109/TVT.2014.2362005
– ident: ref32
  doi: 10.1109/TNN.1998.712192
– ident: ref10
  doi: 10.1109/ACCESS.2019.2944403
– ident: ref13
  doi: 10.3390/fi10010003
– start-page: 146
  year: 2019
  ident: ref22
  article-title: A reinforcement learning based joint spectrum allocation and power control algorithm for D2D communication underlaying cellular networks
  publication-title: Proc Int Conf Artif Intell Commun Netw
– volume: 12
  start-page: 1057
  year: 2000
  ident: ref33
  article-title: Policy gradient methods for reinforcement learning with function approximation
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref4
  doi: 10.1109/LWC.2019.2916352
– ident: ref35
  doi: 10.1016/j.engappai.2013.06.016
SSID ssj0017655
Score 2.5769267
Snippet Improving energy efficiency has shown increasing importance in designing future cellular system. In this work, we consider the issue of energy efficiency in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1175
SubjectTerms Algorithms
Base stations
Cellular communication
deep deterministic policy gradient
Deep learning
device-to-device (D2D) communication
Device-to-device communication
Energy conversion efficiency
Energy efficiency
Heterogeneous networks
Machine learning
Markov processes
Modal choice
mode selection
Networks
Optimization
Power control
Resource allocation
Resource management
Wireless communication
Title Energy-Efficient Mode Selection and Resource Allocation for D2D-Enabled Heterogeneous Networks: A Deep Reinforcement Learning Approach
URI https://ieeexplore.ieee.org/document/9237143
https://www.proquest.com/docview/2488744751
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB0BJ3rgoxQRoJUPvSDVifHu2mtuEQmKkOBCULmtHHvMAZQgklz4Afxuxt7NUtEK9bZarVeW3tie8cy8B_BTGoForOBBe-T5RAdeKpvxzJRZUMEQMLHf-epajW7zy7vibg1-tb0wiJiKz7AbH1Mu38_cMl6V9cgZiXLd67BOgVvdq9VmDLRKCqe0gKOujG5TksL0xr_PKRCUFJ9GrvZExvx-BCVNlb824nS6XGzD1WpedVHJQ3e5mHTdywfKxv-d-A5sNW4m69d2sQtrOP0KX_4gH9yD12Fq--PDRCJB41nURWM3SRiH0GJ26tnqdp_1H-Opl96Tm8sGcsCHqe3Ks1GsqJmRIeJsOWfXdV35_Iz12QDxiX6RyFlduodkDZ_rPes3ZObfYHwxHJ-PeKPKwF1W6AUPyubakh8jhfHO-ZjHsSLTtrC5CjZHrycylOQKZkp5KUotg7bW6hJtnmO2DxvT2RQPgIVSoQjilOL5mI90pnAFuQw6eGtMKGQHeiucKtcwlkfhjMcqRS7CVIRsFZGtGmQ7cNKOeKrZOj75di8C1X7XYNSB45UpVM1ynleStjkdqRFPD_896gg2ZSx2SeXcx7CxeF7id_JWFpMfyUzfAKxK5pE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbhMxEB2V9gAcaEupCBTwoRcknDjeXXvNLWpSBWhyIYjeVo497qFVUjXJpR_AdzP2brYIEOK2Wq1Xlt7YM_bMvAdwKo1ANFbwoD3yfK4DL5XNeGbKLKhgCJjY7zyZqvG3_PNlcbkDH9peGERMxWfYjY8pl--XbhOvynoUjES57kewR36_6NfdWm3OQKukcUpLOCrL6DYpKUxv9v2MjoKSTqiRrT3RMT84oaSq8sdWnPzL-T5MtjOry0quu5v1vOvufyNt_N-pH8CzJtBkg9oyDmEHF8_h6S_0g0fwY5Qa__go0UjQeBaV0djXJI1DeDG78Gx7v88GN9HvpfcU6LKhHPJRarzybBxrapZkirjcrNi0rixffWQDNkS8pV8kelaXbiJZw-h6xQYNnfkLmJ2PZmdj3ugycJcVes2Dsrm2FMlIYbxzPmZyrMi0LWyugs3R67kMJQWDmVJeilLLoK21ukSb55gdw-5iucCXwEKpUATRpxN9zEg6U7iCggYdvDUmFLIDvS1OlWs4y6N0xk2Vzi7CVIRsFZGtGmQ78L4dcVvzdfzj26MIVPtdg1EHTramUDULelVJ2uh0JEfsv_r7qHfweDybXFQXn6ZfXsMTGUtfUnH3Ceyu7zb4hmKX9fxtMtmf2YHp2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Efficient+Mode+Selection+and+Resource+Allocation+for+D2D-Enabled+Heterogeneous+Networks%3A+A+Deep+Reinforcement+Learning+Approach&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Zhang%2C+Tao&rft.au=Zhu%2C+Kun&rft.au=Wang%2C+Junhua&rft.date=2021-02-01&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=20&rft.issue=2&rft.spage=1175&rft.epage=1187&rft_id=info:doi/10.1109%2FTWC.2020.3031436&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TWC_2020_3031436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon