Pipeline Safety Early Warning by Multifeature-Fusion CNN and LightGBM Analysis of Signals From Distributed Optical Fiber Sensors

Energy pipelines are the backbones of global energy systems. Monitoring their safety and automatically identifying and locating third-party damage events are crucial to energy supply. However, most traditional methods lack in-depth consideration of distributed fiber signals and have not been tested...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 70; pp. 1 - 13
Main Authors Yang, Yiyuan, Zhang, Haifeng, Li, Yi
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Energy pipelines are the backbones of global energy systems. Monitoring their safety and automatically identifying and locating third-party damage events are crucial to energy supply. However, most traditional methods lack in-depth consideration of distributed fiber signals and have not been tested on real-world long-distance pipelines, making it difficult to deploy them in operating long-distance pipelines. In this study, we utilize a novel real-time machine-learning method based on phase-sensitive optical time domain reflectometer technology to monitor the safety of oil and gas pipelines. Specifically, we build a multifeature-fusion convolutional neural network and LightGBM fusion model based on two novel complementary spatiotemporal features. The method was applied to a large amount of data collected from real-world oil-gas transportation pipelines of the China National Petroleum Corporation. The proposed method could accurately locate and identify third-party damage events in real-time under conditions of strong noise and various types of system hardware, and could effectively handle signal drift in the time and space dimensions. Our methodology has been deployed at real long-distance energy pipeline sites and our work will contribute to energy pipeline safety and energy supply security. Furthermore, the proposed solution could be generalized to other fields, such as industrial inspection, measurement, and monitoring.
AbstractList Energy pipelines are the backbones of global energy systems. Monitoring their safety and automatically identifying and locating third-party damage events are crucial to energy supply. However, most traditional methods lack in-depth consideration of distributed fiber signals and have not been tested on real-world long-distance pipelines, making it difficult to deploy them in operating long-distance pipelines. In this study, we utilize a novel real-time machine-learning method based on phase-sensitive optical time domain reflectometer technology to monitor the safety of oil and gas pipelines. Specifically, we build a multifeature-fusion convolutional neural network and LightGBM fusion model based on two novel complementary spatiotemporal features. The method was applied to a large amount of data collected from real-world oil-gas transportation pipelines of the China National Petroleum Corporation. The proposed method could accurately locate and identify third-party damage events in real-time under conditions of strong noise and various types of system hardware, and could effectively handle signal drift in the time and space dimensions. Our methodology has been deployed at real long-distance energy pipeline sites and our work will contribute to energy pipeline safety and energy supply security. Furthermore, the proposed solution could be generalized to other fields, such as industrial inspection, measurement, and monitoring.
Author Li, Yi
Yang, Yiyuan
Zhang, Haifeng
Author_xml – sequence: 1
  givenname: Yiyuan
  orcidid: 0000-0002-5320-095X
  surname: Yang
  fullname: Yang, Yiyuan
  email: yangyy19@mails.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Haifeng
  orcidid: 0000-0001-9403-3548
  surname: Zhang
  fullname: Zhang, Haifeng
  email: zhanghf@tsinghua-gd.org
  organization: Pearl River Delta, Research Institute of Tsinghua University, Guangzhou, China
– sequence: 3
  givenname: Yi
  orcidid: 0000-0002-8855-4520
  surname: Li
  fullname: Li, Yi
  email: liyi@sz.tsinghua.edu.cn
  organization: Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
BookMark eNp9kDtPwzAURi0EEuWxI7FYYk7xI47jEUoLSC0gFcQYuc51MQpOsZ0hGz-dVEUMDExXV_rOfZwjtO9bDwidUTKmlKjL5_vFmBFGx5woJmi5h0ZUCJmpomD7aEQILTOVi-IQHcX4TgiRRS5H6OvJbaBxHvBSW0g9nurQ9PhVB-_8Gq96vOia5Czo1AXIZl10rceThwesfY3nbv2Wbq8X-Mrrpo8u4tbipVsPXcSz0H7gGxdTcKsuQY0fN8kZ3eCZW0HAS_CxDfEEHdghDac_9Ri9zKbPk7ts_nh7P7maZ4YLmTJblGxVC6CGm1ozBQBUcM1zILWSUtVALQXGcmYN5YbLkhhJuNLE5kVuS36MLnZzN6H97CCm6r3twvbQigkpKFOSiyFFdikT2hgD2GoT3IcOfUVJtfVcDZ6rrefqx_OAFH8Q45JOg6YUtGv-A893oBue-d2jRE5pmfNv_22M_A
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2023_3277937
crossref_primary_10_1109_TIM_2023_3308239
crossref_primary_10_1088_1361_6501_acf781
crossref_primary_10_1109_JSEN_2023_3268540
crossref_primary_10_1109_JSEN_2024_3406474
crossref_primary_10_1109_JSEN_2024_3475030
crossref_primary_10_1109_TIM_2024_3385810
crossref_primary_10_1109_JSEN_2022_3197443
crossref_primary_10_1109_TNSM_2024_3486167
crossref_primary_10_1109_TIM_2023_3244253
crossref_primary_10_1109_TIM_2023_3336173
crossref_primary_10_1109_TAI_2023_3333821
crossref_primary_10_1109_JSEN_2024_3387918
crossref_primary_10_1109_TIM_2024_3449973
Cites_doi 10.1109/TIM.2021.3091988
10.1016/j.jngse.2009.08.002
10.1109/TIM.2006.887778
10.1016/j.jlp.2018.03.012
10.1109/JLT.2019.2926745
10.1109/JLT.2019.2923839
10.1016/j.ssci.2016.01.021
10.1016/j.measurement.2009.12.022
10.1016/j.infrared.2019.01.003
10.1088/1755-1315/546/2/022009
10.1177/1687814018808679
10.1364/OE.27.007405
10.1145/3364908.3364918
10.1007/978-3-540-74976-9_8
10.1016/j.sna.2018.02.033
10.1109/TPWRD.2019.2892306
10.1080/15732479.2015.1053093
10.1016/j.measurement.2007.07.007
10.3390/app7080841
10.3390/s19153421
10.1109/JSEN.2021.3066037
10.1016/j.patrec.2005.10.010
10.1007/s13320-017-0360-1
10.1364/OFS.2018.TuE16
10.1063/1.5113955
10.1109/JLT.2016.2542981
10.1109/CISP-BMEI.2018.8633226
10.1109/ACP.2018.8596159
10.1109/TCYB.2017.2734043
10.1201/9781315119014
10.1016/j.yofte.2019.01.023
10.1364/OFS.2018.ThE22
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2021.3092518
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 13
ExternalDocumentID 10_1109_TIM_2021_3092518
9541184
Genre orig-research
GrantInformation_xml – fundername: Pipeline Branch of the China National Petroleum Corporation (CNPC)
  grantid: GDGS-2020-JS-24
  funderid: 10.13039/501100002886
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c357t-f682bd5e1c3cda29eee153a34e0d9779de1f1e2242fc13c3780c7039a0f464f83
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:17:05 EDT 2025
Tue Jul 01 03:07:06 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Wed Aug 27 02:27:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-f682bd5e1c3cda29eee153a34e0d9779de1f1e2242fc13c3780c7039a0f464f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9403-3548
0000-0002-8855-4520
0000-0002-5320-095X
PQID 2575129735
PQPubID 85462
PageCount 13
ParticipantIDs crossref_primary_10_1109_TIM_2021_3092518
crossref_citationtrail_10_1109_TIM_2021_3092518
ieee_primary_9541184
proquest_journals_2575129735
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
chang (ref6) 2021; 70
ref15
ref14
ref30
ref11
ref10
ref2
ref1
martins (ref42) 2015; 9634
ref39
ref17
ref38
ref16
ref19
(ref44) 2018
ref18
(ref45) 2021
ke (ref34) 2017
santurkar (ref31) 2018
ref24
ref23
ref26
ref25
ref20
ref41
ref21
ref43
yang (ref36) 2021
yang (ref9) 2021
kingma (ref33) 2014
ref28
ref27
ref29
ref8
srivastava (ref37) 2014; 15
ref7
aktas (ref22) 2017; 10208
ruder (ref32) 2016
ref4
ref3
ref5
(ref46) 2021
ref40
lu (ref12) 2010; 28
References_xml – year: 2018
  ident: ref31
  article-title: How does batch normalization help optimization?
  publication-title: arXiv 1805 11604
– ident: ref35
  doi: 10.1109/TIM.2021.3091988
– ident: ref13
  doi: 10.1016/j.jngse.2009.08.002
– ident: ref11
  doi: 10.1109/TIM.2006.887778
– year: 2021
  ident: ref45
  publication-title: Fotech Solutions
– ident: ref18
  doi: 10.1016/j.jlp.2018.03.012
– volume: 10208
  year: 2017
  ident: ref22
  article-title: Deep learning based multi-threat classification for phase-OTDR fiber optic distributed acoustic sensing applications
  publication-title: Proc SPIE
– ident: ref21
  doi: 10.1109/JLT.2019.2926745
– ident: ref27
  doi: 10.1109/JLT.2019.2923839
– ident: ref1
  doi: 10.1016/j.ssci.2016.01.021
– ident: ref41
  doi: 10.1016/j.measurement.2009.12.022
– ident: ref40
  doi: 10.1016/j.infrared.2019.01.003
– start-page: 14991
  year: 2021
  ident: ref9
  article-title: Early safety warnings for long-distance pipelines: A distributed optical fiber sensor machine learning approach
  publication-title: Proc 35th AAAI Conf Artif Intell
– ident: ref30
  doi: 10.1088/1755-1315/546/2/022009
– ident: ref15
  doi: 10.1177/1687814018808679
– volume: 9634
  year: 2015
  ident: ref42
  article-title: Early detection of pipeline integrity threats using a smart fiber optic surveillance system: The pit-stop project
  publication-title: Proc 24th Int Conf Opt Fibre Sensors
– ident: ref26
  doi: 10.1364/OE.27.007405
– ident: ref28
  doi: 10.1145/3364908.3364918
– ident: ref39
  doi: 10.1007/978-3-540-74976-9_8
– year: 2014
  ident: ref33
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref8
  doi: 10.1016/j.sna.2018.02.033
– year: 2016
  ident: ref32
  article-title: An overview of gradient descent optimization algorithms
  publication-title: arXiv 1609 04747
– ident: ref10
  doi: 10.1109/TPWRD.2019.2892306
– ident: ref17
  doi: 10.1080/15732479.2015.1053093
– ident: ref14
  doi: 10.1016/j.measurement.2007.07.007
– ident: ref24
  doi: 10.3390/app7080841
– ident: ref23
  doi: 10.3390/s19153421
– start-page: 3146
  year: 2017
  ident: ref34
  article-title: LightGBM: A highly efficient gradient boosting decision tree
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2018
  ident: ref44
  publication-title: Future Fibre Technologies Co
– ident: ref3
  doi: 10.1109/JSEN.2021.3066037
– ident: ref38
  doi: 10.1016/j.patrec.2005.10.010
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref37
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref2
  doi: 10.1007/s13320-017-0360-1
– ident: ref29
  doi: 10.1364/OFS.2018.TuE16
– ident: ref5
  doi: 10.1063/1.5113955
– ident: ref7
  doi: 10.1109/JLT.2016.2542981
– ident: ref16
  doi: 10.1109/CISP-BMEI.2018.8633226
– volume: 28
  start-page: 3243
  year: 2010
  ident: ref12
  article-title: Distributed vibration sensor based on coherent detection of phase-OTDR
  publication-title: J Lightw Technol
– ident: ref43
  doi: 10.1109/ACP.2018.8596159
– volume: 70
  start-page: 1
  year: 2021
  ident: ref6
  article-title: A case study on fiber optic interferometric seafloor seismic and Tsunami monitoring system in south China sea
  publication-title: IEEE Trans Instrum Meas
– year: 2021
  ident: ref46
  publication-title: Omnisens
– ident: ref20
  doi: 10.1109/TCYB.2017.2734043
– ident: ref4
  doi: 10.1201/9781315119014
– start-page: 4110
  year: 2021
  ident: ref36
  article-title: Pipeline safety early warning method for distributed signal using bilinear CNN and LightGBM
  publication-title: Proc IEEE Int Conf Acoust Speech Signal Process (ICASSP)
– ident: ref19
  doi: 10.1016/j.yofte.2019.01.023
– ident: ref25
  doi: 10.1364/OFS.2018.ThE22
SSID ssj0007647
Score 2.4550312
Snippet Energy pipelines are the backbones of global energy systems. Monitoring their safety and automatically identifying and locating third-party damage events are...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Damage detection
Distributed optical fiber sensor
Energy
Gas pipelines
industrial signal processing and monitoring
Inspection
lightGBM
Machine learning
Monitoring
multifeature fusion convolutional neural network (MFCNN)
Natural gas
Optical communication
Optical fibers
Optical network units
Optical sensors
Optical signal processing
Petroleum pipelines
Pipeline safety
pipeline safety early warning (PSEW)
Pipelines
Real time
Real-time systems
Reflectometers
Safety
Signal processing algorithms
Title Pipeline Safety Early Warning by Multifeature-Fusion CNN and LightGBM Analysis of Signals From Distributed Optical Fiber Sensors
URI https://ieeexplore.ieee.org/document/9541184
https://www.proquest.com/docview/2575129735
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lZDgwKMFsdCiOXBBIrtJ7DjxEVpCQeyCtK3oLUrsCapaNqvd7KGc-OmMnWTFS4hbDrblaOyZb8Yz3wA8Tw1b2UolQZ1kKpDEfkppBAWpMq4vjlU6dtXI05k6PZfvL5KLHXi5rYUhIp98RmP36d_ybWM2LlQ20YlkPCx3YZcdt65Wa6t1UyU7fsyILzCjguFJMtSTs3dTdgTjaCxCzeY8-8UE-Z4qfyhib13yezAd9tUllVyNN201Nt9-o2z8343fh7s9zMRX3bl4ADu02Ic7P5EP7sMtn_xp1gfw_dPl0pWlE87Lmtob9KzH-LkLmmB1g75MtyZPAhrkGxdhw-PZDMuFxQ_OvX_7eooDvwk2Nc4vvzhiZsxXzVc8ceS8rq8WWfy49MFzzF2mCs7ZiW5W64dwnr85Oz4N-s4MgRFJ2ga1yuLKJhQZYWwZa_5h1pylkBRaBpTaUlRHxOggrk0kjEiz0LBq0WVYSyXrTDyCvUWzoMeAqdKpjqpSa8noUlAmpWbMplKbVKqScgSTQViF6WnLXfeM68K7L6EuWLyFE2_Ri3cEL7Yzlh1lxz_GHjhpbcf1ghrB4XAeiv5Or4vYPVG5Vl_Jk7_Pegq33dpdgOYQ9trVho4YsrTVM39WfwCcWeZr
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9NAEB2VIkQ5FGipCC2wBzhwcOKP9dp74AAtJqFJQEoqejP2eowqwI5iRyic-CH8Ff4bs2s74kvcKnHzYb2W1m9n3s7OvAF4FCjysqnwrdwPhcWRzimJ8tAKhNJ9cTIhXV2NPJmK4Rl_de6fb8G3TS0MIprkM-zrR3OXn5VqpUNlA-lz4sO8TaE8xfVnOqBVT0cn9Dcfu270Yn48tNoeApby_KC2chG6aeajozyVJa6kOWmPJx5HOyPqIzN0cgfJj7m5cjzlBaGtaBPIxM654Hno0bxX4CrxDN9tqsM2dj4QvFHkdMhkEA_pLkFtOZiPJnT0dJ2-Z0siEOEvTs90cfnD9Bt_Ft2E791KNGksH_qrOu2rL7-JRP6vS3ULdlsizZ41yL8NW1jswY2f5BX34JpJb1XVPnx9c7HQhffIZkmO9ZoZXWf2tgkLsXTNTCFyjkbm1IpWOobIjqdTlhQZG-sAxsvnE9YpuLAyZ7OL91p6mkXL8hM70fLDunMYZuz1wlwPsEjn4rAZFlW5rO7A2aUsxgFsF2WBd4EFQgbSSRMpOfFnD0POJbFSEWR-KlLOezDowBGrVphd9wf5GJsDmi1jglOs4RS3cOrBk80bi0aU5B9j9zU6NuNaYPTgqMNf3FqtKnb1JZxuZubf-_tbD-H6cD4Zx-PR9PQQdvR3mnDUEWzXyxXeJ4JWpw_MPmHw7rLR9gPgtUQ7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pipeline+Safety+Early+Warning+by+Multifeature-Fusion+CNN+and+LightGBM+Analysis+of+Signals+From+Distributed+Optical+Fiber+Sensors&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Yang%2C+Yiyuan&rft.au=Zhang%2C+Haifeng&rft.au=Li%2C+Yi&rft.date=2021&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=70&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTIM.2021.3092518&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2021_3092518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon