Pipeline Safety Early Warning by Multifeature-Fusion CNN and LightGBM Analysis of Signals From Distributed Optical Fiber Sensors
Energy pipelines are the backbones of global energy systems. Monitoring their safety and automatically identifying and locating third-party damage events are crucial to energy supply. However, most traditional methods lack in-depth consideration of distributed fiber signals and have not been tested...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 70; pp. 1 - 13 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Energy pipelines are the backbones of global energy systems. Monitoring their safety and automatically identifying and locating third-party damage events are crucial to energy supply. However, most traditional methods lack in-depth consideration of distributed fiber signals and have not been tested on real-world long-distance pipelines, making it difficult to deploy them in operating long-distance pipelines. In this study, we utilize a novel real-time machine-learning method based on phase-sensitive optical time domain reflectometer technology to monitor the safety of oil and gas pipelines. Specifically, we build a multifeature-fusion convolutional neural network and LightGBM fusion model based on two novel complementary spatiotemporal features. The method was applied to a large amount of data collected from real-world oil-gas transportation pipelines of the China National Petroleum Corporation. The proposed method could accurately locate and identify third-party damage events in real-time under conditions of strong noise and various types of system hardware, and could effectively handle signal drift in the time and space dimensions. Our methodology has been deployed at real long-distance energy pipeline sites and our work will contribute to energy pipeline safety and energy supply security. Furthermore, the proposed solution could be generalized to other fields, such as industrial inspection, measurement, and monitoring. |
---|---|
AbstractList | Energy pipelines are the backbones of global energy systems. Monitoring their safety and automatically identifying and locating third-party damage events are crucial to energy supply. However, most traditional methods lack in-depth consideration of distributed fiber signals and have not been tested on real-world long-distance pipelines, making it difficult to deploy them in operating long-distance pipelines. In this study, we utilize a novel real-time machine-learning method based on phase-sensitive optical time domain reflectometer technology to monitor the safety of oil and gas pipelines. Specifically, we build a multifeature-fusion convolutional neural network and LightGBM fusion model based on two novel complementary spatiotemporal features. The method was applied to a large amount of data collected from real-world oil-gas transportation pipelines of the China National Petroleum Corporation. The proposed method could accurately locate and identify third-party damage events in real-time under conditions of strong noise and various types of system hardware, and could effectively handle signal drift in the time and space dimensions. Our methodology has been deployed at real long-distance energy pipeline sites and our work will contribute to energy pipeline safety and energy supply security. Furthermore, the proposed solution could be generalized to other fields, such as industrial inspection, measurement, and monitoring. |
Author | Li, Yi Yang, Yiyuan Zhang, Haifeng |
Author_xml | – sequence: 1 givenname: Yiyuan orcidid: 0000-0002-5320-095X surname: Yang fullname: Yang, Yiyuan email: yangyy19@mails.tsinghua.edu.cn organization: Department of Automation, Tsinghua University, Beijing, China – sequence: 2 givenname: Haifeng orcidid: 0000-0001-9403-3548 surname: Zhang fullname: Zhang, Haifeng email: zhanghf@tsinghua-gd.org organization: Pearl River Delta, Research Institute of Tsinghua University, Guangzhou, China – sequence: 3 givenname: Yi orcidid: 0000-0002-8855-4520 surname: Li fullname: Li, Yi email: liyi@sz.tsinghua.edu.cn organization: Shenzhen International Graduate School, Tsinghua University, Shenzhen, China |
BookMark | eNp9kDtPwzAURi0EEuWxI7FYYk7xI47jEUoLSC0gFcQYuc51MQpOsZ0hGz-dVEUMDExXV_rOfZwjtO9bDwidUTKmlKjL5_vFmBFGx5woJmi5h0ZUCJmpomD7aEQILTOVi-IQHcX4TgiRRS5H6OvJbaBxHvBSW0g9nurQ9PhVB-_8Gq96vOia5Czo1AXIZl10rceThwesfY3nbv2Wbq8X-Mrrpo8u4tbipVsPXcSz0H7gGxdTcKsuQY0fN8kZ3eCZW0HAS_CxDfEEHdghDac_9Ri9zKbPk7ts_nh7P7maZ4YLmTJblGxVC6CGm1ozBQBUcM1zILWSUtVALQXGcmYN5YbLkhhJuNLE5kVuS36MLnZzN6H97CCm6r3twvbQigkpKFOSiyFFdikT2hgD2GoT3IcOfUVJtfVcDZ6rrefqx_OAFH8Q45JOg6YUtGv-A893oBue-d2jRE5pmfNv_22M_A |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1109_TIM_2023_3277937 crossref_primary_10_1109_TIM_2023_3308239 crossref_primary_10_1088_1361_6501_acf781 crossref_primary_10_1109_JSEN_2023_3268540 crossref_primary_10_1109_JSEN_2024_3406474 crossref_primary_10_1109_JSEN_2024_3475030 crossref_primary_10_1109_TIM_2024_3385810 crossref_primary_10_1109_JSEN_2022_3197443 crossref_primary_10_1109_TNSM_2024_3486167 crossref_primary_10_1109_TIM_2023_3244253 crossref_primary_10_1109_TIM_2023_3336173 crossref_primary_10_1109_TAI_2023_3333821 crossref_primary_10_1109_JSEN_2024_3387918 crossref_primary_10_1109_TIM_2024_3449973 |
Cites_doi | 10.1109/TIM.2021.3091988 10.1016/j.jngse.2009.08.002 10.1109/TIM.2006.887778 10.1016/j.jlp.2018.03.012 10.1109/JLT.2019.2926745 10.1109/JLT.2019.2923839 10.1016/j.ssci.2016.01.021 10.1016/j.measurement.2009.12.022 10.1016/j.infrared.2019.01.003 10.1088/1755-1315/546/2/022009 10.1177/1687814018808679 10.1364/OE.27.007405 10.1145/3364908.3364918 10.1007/978-3-540-74976-9_8 10.1016/j.sna.2018.02.033 10.1109/TPWRD.2019.2892306 10.1080/15732479.2015.1053093 10.1016/j.measurement.2007.07.007 10.3390/app7080841 10.3390/s19153421 10.1109/JSEN.2021.3066037 10.1016/j.patrec.2005.10.010 10.1007/s13320-017-0360-1 10.1364/OFS.2018.TuE16 10.1063/1.5113955 10.1109/JLT.2016.2542981 10.1109/CISP-BMEI.2018.8633226 10.1109/ACP.2018.8596159 10.1109/TCYB.2017.2734043 10.1201/9781315119014 10.1016/j.yofte.2019.01.023 10.1364/OFS.2018.ThE22 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2021.3092518 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 13 |
ExternalDocumentID | 10_1109_TIM_2021_3092518 9541184 |
Genre | orig-research |
GrantInformation_xml | – fundername: Pipeline Branch of the China National Petroleum Corporation (CNPC) grantid: GDGS-2020-JS-24 funderid: 10.13039/501100002886 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c357t-f682bd5e1c3cda29eee153a34e0d9779de1f1e2242fc13c3780c7039a0f464f83 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:17:05 EDT 2025 Tue Jul 01 03:07:06 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Wed Aug 27 02:27:18 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-f682bd5e1c3cda29eee153a34e0d9779de1f1e2242fc13c3780c7039a0f464f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9403-3548 0000-0002-8855-4520 0000-0002-5320-095X |
PQID | 2575129735 |
PQPubID | 85462 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_TIM_2021_3092518 crossref_citationtrail_10_1109_TIM_2021_3092518 ieee_primary_9541184 proquest_journals_2575129735 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 chang (ref6) 2021; 70 ref15 ref14 ref30 ref11 ref10 ref2 ref1 martins (ref42) 2015; 9634 ref39 ref17 ref38 ref16 ref19 (ref44) 2018 ref18 (ref45) 2021 ke (ref34) 2017 santurkar (ref31) 2018 ref24 ref23 ref26 ref25 ref20 ref41 ref21 ref43 yang (ref36) 2021 yang (ref9) 2021 kingma (ref33) 2014 ref28 ref27 ref29 ref8 srivastava (ref37) 2014; 15 ref7 aktas (ref22) 2017; 10208 ruder (ref32) 2016 ref4 ref3 ref5 (ref46) 2021 ref40 lu (ref12) 2010; 28 |
References_xml | – year: 2018 ident: ref31 article-title: How does batch normalization help optimization? publication-title: arXiv 1805 11604 – ident: ref35 doi: 10.1109/TIM.2021.3091988 – ident: ref13 doi: 10.1016/j.jngse.2009.08.002 – ident: ref11 doi: 10.1109/TIM.2006.887778 – year: 2021 ident: ref45 publication-title: Fotech Solutions – ident: ref18 doi: 10.1016/j.jlp.2018.03.012 – volume: 10208 year: 2017 ident: ref22 article-title: Deep learning based multi-threat classification for phase-OTDR fiber optic distributed acoustic sensing applications publication-title: Proc SPIE – ident: ref21 doi: 10.1109/JLT.2019.2926745 – ident: ref27 doi: 10.1109/JLT.2019.2923839 – ident: ref1 doi: 10.1016/j.ssci.2016.01.021 – ident: ref41 doi: 10.1016/j.measurement.2009.12.022 – ident: ref40 doi: 10.1016/j.infrared.2019.01.003 – start-page: 14991 year: 2021 ident: ref9 article-title: Early safety warnings for long-distance pipelines: A distributed optical fiber sensor machine learning approach publication-title: Proc 35th AAAI Conf Artif Intell – ident: ref30 doi: 10.1088/1755-1315/546/2/022009 – ident: ref15 doi: 10.1177/1687814018808679 – volume: 9634 year: 2015 ident: ref42 article-title: Early detection of pipeline integrity threats using a smart fiber optic surveillance system: The pit-stop project publication-title: Proc 24th Int Conf Opt Fibre Sensors – ident: ref26 doi: 10.1364/OE.27.007405 – ident: ref28 doi: 10.1145/3364908.3364918 – ident: ref39 doi: 10.1007/978-3-540-74976-9_8 – year: 2014 ident: ref33 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref8 doi: 10.1016/j.sna.2018.02.033 – year: 2016 ident: ref32 article-title: An overview of gradient descent optimization algorithms publication-title: arXiv 1609 04747 – ident: ref10 doi: 10.1109/TPWRD.2019.2892306 – ident: ref17 doi: 10.1080/15732479.2015.1053093 – ident: ref14 doi: 10.1016/j.measurement.2007.07.007 – ident: ref24 doi: 10.3390/app7080841 – ident: ref23 doi: 10.3390/s19153421 – start-page: 3146 year: 2017 ident: ref34 article-title: LightGBM: A highly efficient gradient boosting decision tree publication-title: Proc Adv Neural Inf Process Syst – year: 2018 ident: ref44 publication-title: Future Fibre Technologies Co – ident: ref3 doi: 10.1109/JSEN.2021.3066037 – ident: ref38 doi: 10.1016/j.patrec.2005.10.010 – volume: 15 start-page: 1929 year: 2014 ident: ref37 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: ref2 doi: 10.1007/s13320-017-0360-1 – ident: ref29 doi: 10.1364/OFS.2018.TuE16 – ident: ref5 doi: 10.1063/1.5113955 – ident: ref7 doi: 10.1109/JLT.2016.2542981 – ident: ref16 doi: 10.1109/CISP-BMEI.2018.8633226 – volume: 28 start-page: 3243 year: 2010 ident: ref12 article-title: Distributed vibration sensor based on coherent detection of phase-OTDR publication-title: J Lightw Technol – ident: ref43 doi: 10.1109/ACP.2018.8596159 – volume: 70 start-page: 1 year: 2021 ident: ref6 article-title: A case study on fiber optic interferometric seafloor seismic and Tsunami monitoring system in south China sea publication-title: IEEE Trans Instrum Meas – year: 2021 ident: ref46 publication-title: Omnisens – ident: ref20 doi: 10.1109/TCYB.2017.2734043 – ident: ref4 doi: 10.1201/9781315119014 – start-page: 4110 year: 2021 ident: ref36 article-title: Pipeline safety early warning method for distributed signal using bilinear CNN and LightGBM publication-title: Proc IEEE Int Conf Acoust Speech Signal Process (ICASSP) – ident: ref19 doi: 10.1016/j.yofte.2019.01.023 – ident: ref25 doi: 10.1364/OFS.2018.ThE22 |
SSID | ssj0007647 |
Score | 2.4550312 |
Snippet | Energy pipelines are the backbones of global energy systems. Monitoring their safety and automatically identifying and locating third-party damage events are... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Damage detection Distributed optical fiber sensor Energy Gas pipelines industrial signal processing and monitoring Inspection lightGBM Machine learning Monitoring multifeature fusion convolutional neural network (MFCNN) Natural gas Optical communication Optical fibers Optical network units Optical sensors Optical signal processing Petroleum pipelines Pipeline safety pipeline safety early warning (PSEW) Pipelines Real time Real-time systems Reflectometers Safety Signal processing algorithms |
Title | Pipeline Safety Early Warning by Multifeature-Fusion CNN and LightGBM Analysis of Signals From Distributed Optical Fiber Sensors |
URI | https://ieeexplore.ieee.org/document/9541184 https://www.proquest.com/docview/2575129735 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lZDgwKMFsdCiOXBBIrtJ7DjxEVpCQeyCtK3oLUrsCapaNqvd7KGc-OmMnWTFS4hbDrblaOyZb8Yz3wA8Tw1b2UolQZ1kKpDEfkppBAWpMq4vjlU6dtXI05k6PZfvL5KLHXi5rYUhIp98RmP36d_ybWM2LlQ20YlkPCx3YZcdt65Wa6t1UyU7fsyILzCjguFJMtSTs3dTdgTjaCxCzeY8-8UE-Z4qfyhib13yezAd9tUllVyNN201Nt9-o2z8343fh7s9zMRX3bl4ADu02Ic7P5EP7sMtn_xp1gfw_dPl0pWlE87Lmtob9KzH-LkLmmB1g75MtyZPAhrkGxdhw-PZDMuFxQ_OvX_7eooDvwk2Nc4vvzhiZsxXzVc8ceS8rq8WWfy49MFzzF2mCs7ZiW5W64dwnr85Oz4N-s4MgRFJ2ga1yuLKJhQZYWwZa_5h1pylkBRaBpTaUlRHxOggrk0kjEiz0LBq0WVYSyXrTDyCvUWzoMeAqdKpjqpSa8noUlAmpWbMplKbVKqScgSTQViF6WnLXfeM68K7L6EuWLyFE2_Ri3cEL7Yzlh1lxz_GHjhpbcf1ghrB4XAeiv5Or4vYPVG5Vl_Jk7_Pegq33dpdgOYQ9trVho4YsrTVM39WfwCcWeZr |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9NAEB2VIkQ5FGipCC2wBzhwcOKP9dp74AAtJqFJQEoqejP2eowqwI5iRyic-CH8Ff4bs2s74kvcKnHzYb2W1m9n3s7OvAF4FCjysqnwrdwPhcWRzimJ8tAKhNJ9cTIhXV2NPJmK4Rl_de6fb8G3TS0MIprkM-zrR3OXn5VqpUNlA-lz4sO8TaE8xfVnOqBVT0cn9Dcfu270Yn48tNoeApby_KC2chG6aeajozyVJa6kOWmPJx5HOyPqIzN0cgfJj7m5cjzlBaGtaBPIxM654Hno0bxX4CrxDN9tqsM2dj4QvFHkdMhkEA_pLkFtOZiPJnT0dJ2-Z0siEOEvTs90cfnD9Bt_Ft2E791KNGksH_qrOu2rL7-JRP6vS3ULdlsizZ41yL8NW1jswY2f5BX34JpJb1XVPnx9c7HQhffIZkmO9ZoZXWf2tgkLsXTNTCFyjkbm1IpWOobIjqdTlhQZG-sAxsvnE9YpuLAyZ7OL91p6mkXL8hM70fLDunMYZuz1wlwPsEjn4rAZFlW5rO7A2aUsxgFsF2WBd4EFQgbSSRMpOfFnD0POJbFSEWR-KlLOezDowBGrVphd9wf5GJsDmi1jglOs4RS3cOrBk80bi0aU5B9j9zU6NuNaYPTgqMNf3FqtKnb1JZxuZubf-_tbD-H6cD4Zx-PR9PQQdvR3mnDUEWzXyxXeJ4JWpw_MPmHw7rLR9gPgtUQ7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pipeline+Safety+Early+Warning+by+Multifeature-Fusion+CNN+and+LightGBM+Analysis+of+Signals+From+Distributed+Optical+Fiber+Sensors&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Yang%2C+Yiyuan&rft.au=Zhang%2C+Haifeng&rft.au=Li%2C+Yi&rft.date=2021&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=70&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTIM.2021.3092518&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2021_3092518 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |