Reinforcement mechanism analysis of lattice beam and prestressed anchor rod system for loess slope

Lattice beam and prestressed anchor rod are used to enhance stability and prevent failure of soil or rock slopes. In this study, a model of Lattice beam and prestressed anchor rod (LBPAR) system was designed with reinforcement mechanisms and a model test was constructed with a circular slip surface...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in earth science (Lausanne) Vol. 11
Main Authors Liu, Yang, Han, Dongdong, Liu, Nina, Wang, Wentao
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 09.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lattice beam and prestressed anchor rod are used to enhance stability and prevent failure of soil or rock slopes. In this study, a model of Lattice beam and prestressed anchor rod (LBPAR) system was designed with reinforcement mechanisms and a model test was constructed with a circular slip surface of a loess slope. First, interaction between the loess slope and the LBPAR system was investigated by an LBPAR system analysis model. Stability of sliding mass from the sliding bed with an arc-shaped sliding surface was then studied by an experimental model designed. Finally, internal force distribution of lattice beams in the LBPAR system was investigated by using a large-scale physical model test. The results were compared to those calculated using the reverse beam method, indicating that the LBPAR system strengthened the sliding mass in space and improved the overall stability of the loess slope. With vertical loading, the axial tensile stress of the main anchor rod increases continuously. The bending area of the anchor rod was concentrated within 2 m of the sliding surface. And the maximum bending moment reaches 70 N·m. The sliding mass was subject to vertical load pressure, lattice beams’ pressure, and dead weight in the meantime and the maximum earth pressure value is near the node of the lattice beams. It is proved that such a method excels in the engineering design of loess landslides, which has promising applications in the future.
AbstractList Lattice beam and prestressed anchor rod are used to enhance stability and prevent failure of soil or rock slopes. In this study, a model of Lattice beam and prestressed anchor rod (LBPAR) system was designed with reinforcement mechanisms and a model test was constructed with a circular slip surface of a loess slope. First, interaction between the loess slope and the LBPAR system was investigated by an LBPAR system analysis model. Stability of sliding mass from the sliding bed with an arc-shaped sliding surface was then studied by an experimental model designed. Finally, internal force distribution of lattice beams in the LBPAR system was investigated by using a large-scale physical model test. The results were compared to those calculated using the reverse beam method, indicating that the LBPAR system strengthened the sliding mass in space and improved the overall stability of the loess slope. With vertical loading, the axial tensile stress of the main anchor rod increases continuously. The bending area of the anchor rod was concentrated within 2 m of the sliding surface. And the maximum bending moment reaches 70 N·m. The sliding mass was subject to vertical load pressure, lattice beams’ pressure, and dead weight in the meantime and the maximum earth pressure value is near the node of the lattice beams. It is proved that such a method excels in the engineering design of loess landslides, which has promising applications in the future.
Author Liu, Nina
Wang, Wentao
Liu, Yang
Han, Dongdong
Author_xml – sequence: 1
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
– sequence: 2
  givenname: Dongdong
  surname: Han
  fullname: Han, Dongdong
– sequence: 3
  givenname: Nina
  surname: Liu
  fullname: Liu, Nina
– sequence: 4
  givenname: Wentao
  surname: Wang
  fullname: Wang, Wentao
BookMark eNp9kF1LBSEQhiUK-vwDXfkHzslVV9fLiL4gCKKuZXTHMnbXg3pz_n2ePiC66ELGmeF9GJ5jsr-kBQk579haiMFcBIRc15xxse463nWa75Ejzo1aKanE_q__ITkr5Z0x1gneS2aOiHvCuISUPc64VDqjf4MllpnCAtO2xEJToBPUGj1Sh7BbjHSTsdT2Co6t928p05xGWral4kwbjk6pbWmZ0gZPyUGAqeDZdz0hLzfXz1d3q4fH2_ury4eVF72uq6B6GAy0hukAGDwPSisALbzyzPWDc50yho0jOomMB8e81L2S0hkndRAn5P6LOyZ4t5scZ8hbmyDaz0HKr7Z5in5Cq410g1I9b1ip_ABGmJEF57RmjqNqrOGL5XMqJWOwPlaoMS01Q5xsx-xOvf1Ub3fq7bf6FuV_oj-n_BP6AOFbjFs
CitedBy_id crossref_primary_10_1007_s11069_024_06783_y
crossref_primary_10_3390_buildings14071942
crossref_primary_10_1155_2023_7464640
crossref_primary_10_1007_s13202_023_01737_9
crossref_primary_10_1038_s41598_023_36554_x
crossref_primary_10_3389_feart_2024_1454629
Cites_doi 10.1680/geot.1999.49.6.835
10.1016/j.enggeo.2017.09.016
10.1016/j.jseaes.2018.11.015
10.1016/j.soildyn.2019.03.034
10.1007/s11629-018-5188-7
10.1007/s10346-019-01144-4
10.3389/feart.2021.757724
10.1139/t11-009
10.1016/j.enggeo.2020.105968
10.1016/j.enggeo.2014.10.012
10.1016/j.energy.2021.122845
10.1016/j.enggeo.2020.105941
10.1061/(asce)1090-0241(1999)125:10(910)
10.1016/j.tust.2006.07.005
10.1007/s12665-014-3951-9
10.1006/jare.1996.0031
10.1016/j.enggeo.2013.03.027
10.1007/s10346-013-0418-0
10.1680/geot.1955.5.1.7
10.3208/sandf1972.32.59
10.3208/sandf1972.25.43
10.1007/s10064-021-02237-y
10.1016/j.enggeo.2017.02.021
10.1007/s40891-020-00209-y
10.1111/j.1755-6724.2005.tb00875.x
10.1016/j.enggeo.2020.105910
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/feart.2023.1121172
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2296-6463
ExternalDocumentID oai_doaj_org_article_794b86652b5846c8a939d0fbb770b2e6
10_3389_feart_2023_1121172
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c357t-f65a89ac3507faefc2f676aa73c6c0b58bb16990ddeb4e02fb0c475644b9b47f3
IEDL.DBID DOA
ISSN 2296-6463
IngestDate Wed Aug 27 01:31:32 EDT 2025
Tue Jul 01 02:00:07 EDT 2025
Thu Apr 24 23:02:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-f65a89ac3507faefc2f676aa73c6c0b58bb16990ddeb4e02fb0c475644b9b47f3
OpenAccessLink https://doaj.org/article/794b86652b5846c8a939d0fbb770b2e6
ParticipantIDs doaj_primary_oai_doaj_org_article_794b86652b5846c8a939d0fbb770b2e6
crossref_citationtrail_10_3389_feart_2023_1121172
crossref_primary_10_3389_feart_2023_1121172
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-09
PublicationDateYYYYMMDD 2023-05-09
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-09
  day: 09
PublicationDecade 2020
PublicationTitle Frontiers in earth science (Lausanne)
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References BéLANGER (B4) 2007; 22
Day (B7) 1999; 125
Wang (B20) 2019; 16
Chang (B6) 2021; 280
Sun (B16) 2021; 80
Wang (B19) 2014; 11
Sun (B17) 2020; 6
Arai (B1) 1985; 25
Su (B15) 2021; 280
Firincioglu (B8) 2021; 281
Huang (B9) 2019; 16
Baoping (B3) 2005; 79
Matsui (B11) 1992; 32
Zhang (B24) 2011; 48
Bishop (B5) 1954; 5
Zhou (B25) 2013; 160
Assallay (B2) 1996; 32
Xu (B21) 2018; 236
Zhu (B26) 2015; 186
Ye (B22) 2019; 122
Peng (B12) 2018; 236
Zhang (B23) 2021; 9
Liu (B10) 2022; 241
Son (B14) 1999; 49
Wang (B18) 2014; 73
Peng (B13) 2019; 170
References_xml – volume: 49
  start-page: 835
  year: 1999
  ident: B14
  article-title: Slope stability analysis by strength reduction
  publication-title: Géotechnique
  doi: 10.1680/geot.1999.49.6.835
– volume: 236
  start-page: 97
  year: 2018
  ident: B12
  article-title: Distribution and failure modes of the landslides in Heitai terrace, China
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2017.09.016
– volume: 170
  start-page: 329
  year: 2019
  ident: B13
  article-title: Distribution and genetic types of loess landslides in China
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2018.11.015
– volume: 122
  start-page: 228
  year: 2019
  ident: B22
  article-title: Model establishment and response analysis of slope reinforced by frame with prestressed anchors under seismic considering the prestress
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2019.03.034
– volume: 16
  start-page: 1715
  year: 2019
  ident: B9
  article-title: A novel radial cable for restraining tensile failure in steep fill-rock interfaces
  publication-title: J. Mt. Sci.
  doi: 10.1007/s11629-018-5188-7
– volume: 16
  start-page: 937
  year: 2019
  ident: B20
  article-title: Mechanisms of wetting-induced loess slope failures
  publication-title: Landslides
  doi: 10.1007/s10346-019-01144-4
– volume: 9
  start-page: 1
  year: 2021
  ident: B23
  article-title: Research on application of multi-channel selector in centrifugal model test of anchoring slope by frame beam
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2021.757724
– volume: 48
  start-page: 1138
  year: 2011
  ident: B24
  article-title: New methods for system reliability analysis of soil slopes
  publication-title: Can. Geotechnical J.
  doi: 10.1139/t11-009
– volume: 281
  start-page: 105968
  year: 2021
  ident: B8
  article-title: Insights and perspectives into the limit equilibrium method from 2D and 3D analyses
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2020.105968
– volume: 186
  start-page: 34
  year: 2015
  ident: B26
  article-title: Investigation of the evolutionary process of a reinforced model slope using a fiber-optic monitoring network
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2014.10.012
– volume: 241
  start-page: 122845
  year: 2022
  ident: B10
  article-title: Study on the effect of cemented natural fractures on hydraulic fracture propagation in volcanic reservoirs
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122845
– volume: 280
  start-page: 105941
  year: 2021
  ident: B6
  article-title: Experimental study of the failure mode and mechanism of loess fill slopes induced by rainfall
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2020.105941
– volume: 125
  start-page: 910
  year: 1999
  ident: B7
  article-title: Design method for stabilization of slopes with piles
  publication-title: J. Geotechnical Geoenvironmental Eng.
  doi: 10.1061/(asce)1090-0241(1999)125:10(910)
– volume: 22
  start-page: 272
  year: 2007
  ident: B4
  article-title: Underground landscape: The urbanism and infrastructure of Toronto’s downtown pedestrian network
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2006.07.005
– volume: 73
  start-page: 7933
  year: 2014
  ident: B18
  article-title: Research on loess flow-slides induced by rainfall in July 2013 in Yan’an, NW China
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-014-3951-9
– volume: 32
  start-page: 373
  year: 1996
  ident: B2
  article-title: Engineering properties of loess in Libya
  publication-title: J. Arid Environ.
  doi: 10.1006/jare.1996.0031
– volume: 160
  start-page: 21
  year: 2013
  ident: B25
  article-title: Analysis of stability of three-dimensional slopes using the rigorous limit equilibrium method
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2013.03.027
– volume: 11
  start-page: 141
  year: 2014
  ident: B19
  article-title: A loess landslide induced by excavation and rainfall
  publication-title: Landslides
  doi: 10.1007/s10346-013-0418-0
– volume: 5
  start-page: 7
  year: 1954
  ident: B5
  article-title: The use of the slip circle in the stability analysis of slopes
  publication-title: Géotechnique
  doi: 10.1680/geot.1955.5.1.7
– volume: 32
  start-page: 59
  year: 1992
  ident: B11
  article-title: Finite element slope stability analysis by shear strength reduction technique
  publication-title: Soils Found.
  doi: 10.3208/sandf1972.32.59
– volume: 25
  start-page: 43
  year: 1985
  ident: B1
  article-title: Determination of noncircular slip surface giving the minimum factor of safety in slope stability analysis
  publication-title: Soils Found.
  doi: 10.3208/sandf1972.25.43
– volume: 80
  start-page: 4367
  year: 2021
  ident: B16
  article-title: Slope stability analysis by strength reduction method based on average residual displacement increment criterion
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-021-02237-y
– volume: 236
  start-page: 29
  year: 2018
  ident: B21
  article-title: The mechanics of a saturated silty loess and implications for landslides
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2017.02.021
– volume: 6
  start-page: 29
  year: 2020
  ident: B17
  article-title: Application of distributed fiber optic sensing technique to monitor stability of a geogrid-reinforced model slope
  publication-title: Int. J. Geosynth. Ground Eng.
  doi: 10.1007/s40891-020-00209-y
– volume: 79
  start-page: 139
  year: 2005
  ident: B3
  article-title: Deformation characteristics of loess landslide along the contact between loess and neocene red mudstone
  publication-title: ACTA Geol. SIN.
  doi: 10.1111/j.1755-6724.2005.tb00875.x
– volume: 280
  start-page: 105910
  year: 2021
  ident: B15
  article-title: A three-dimensional slope stability analysis method based on finite element method stress analysis
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2020.105910
SSID ssj0001325409
Score 2.299227
Snippet Lattice beam and prestressed anchor rod are used to enhance stability and prevent failure of soil or rock slopes. In this study, a model of Lattice beam and...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms landslide
lattice frame
loess slope
prestressed anchor rod
reinforcement mechanism
Title Reinforcement mechanism analysis of lattice beam and prestressed anchor rod system for loess slope
URI https://doaj.org/article/794b86652b5846c8a939d0fbb770b2e6
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yIHgRP3H9IgdvUjZN0qY5qqiLoAdxYW8lSRMQuttltx78986kdVkvevGYJg3hMczLhJk3hFwJF3wQPkuCNAECFCxWliaFYQ4MAXzEBBY4P7_k44l8mmbTjVZfmBPWyQN3wI3AXixqsnGLVOkKo4WuWLBWKWa5j2LbwHkbwVR8XREQ-DDdVclAFKZHAQwHcye5wKqZNFX8BxNtCPZHZnnYI7v9lZDedEfZJ1t-fkC2H2PL3c9DYl99VDd18SGPzjzW6r6vZtT0eiK0CbQ2LWaxUesNTlQU81tjGYivYAw-bknBVdJOuJnCdrRuYJau6mbhj8jk4f7tbpz0nRESJzLVJiHPTKENDJgKxgfHQ65yY5RwuWOAlLVpDjwDvstKz3iwzEmVwd3HaitVEMdkMG_m_oRQnRplTQWcFaysCuxCxishPfcQiBWpGZL0G6XS9bLh2L2iLiF8QGTLiGyJyJY9skNyvf5n0Ylm_Lr6FsFfr0TB6_gBzKDszaD8ywxO_2OTM7KDB4v5jPqcDNrlh7-AO0drL6N5fQHoN9SN
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+mechanism+analysis+of+lattice+beam+and+prestressed+anchor+rod+system+for+loess+slope&rft.jtitle=Frontiers+in+earth+science+%28Lausanne%29&rft.au=Liu%2C+Yang&rft.au=Han%2C+Dongdong&rft.au=Liu%2C+Nina&rft.au=Wang%2C+Wentao&rft.date=2023-05-09&rft.issn=2296-6463&rft.eissn=2296-6463&rft.volume=11&rft_id=info:doi/10.3389%2Ffeart.2023.1121172&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_feart_2023_1121172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-6463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-6463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-6463&client=summon