Removal of sewage phosphorus by adsorption and mineral precipitation, with recovery as a fertilizing soil amendment

Clear sand adsorbs 15–35% total phosphorus (P) from septic tank effluent, but P is mobilized when low-P effluent is applied. Amorphous P compounds formed by alkali aluminate chemical addition may also be subject to leaching. Crystalline mineralization is the desired end effect that isolates P thorou...

Full description

Saved in:
Bibliographic Details
Published inWater science and technology Vol. 77; no. 8; pp. 1967 - 1978
Main Authors Jowett, Craig, Solntseva, Irina, Wu, Lingling, James, Chris, Glasauer, Susan
Format Journal Article
LanguageEnglish
Published England IWA Publishing 01.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Clear sand adsorbs 15–35% total phosphorus (P) from septic tank effluent, but P is mobilized when low-P effluent is applied. Amorphous P compounds formed by alkali aluminate chemical addition may also be subject to leaching. Crystalline mineralization is the desired end effect that isolates P thoroughly from the water resource. Using new low-energy iron electrochemistry (EC-P process), dissolved ferrous iron reacts with sewage phosphate ions (PO4) and precipitates onto filtration medium as vivianite [Fe3(PO4)2·8H2O], as identified by scanning electron microscopy and X-ray diffraction and predicted from Eh–pH–aHPO42− phase relations. Removal rates of 90–99% in sand, soil and synthetic foam filters are obtained. The precipitation of vivianite demonstrates that P can be immobilized quickly and without intermediary adsorption phases, as with Fe-rich soils. Vitreous silicate material (VSM) or rockwool that traps and precipitates mineral P after EC-P treatment was investigated as a means of P reuse as a fertilizing soil amendment. Comparative soil leaching and growth studies using corn plants demonstrate that the VSM alone reduces P losses from soils, and that VSM which has received EC-P effluent is equivalent to or better than commercial superphosphate fertilizer.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2018.027