Theoretical study of a multichannel plasmonic waveguide notch filter with double-sided nanodisk and two slot cavities

Based on the transmission characteristics of surface plasmonic subwavelength structure, a multichannel plasmonic notch filter comprising two slot resonators and a nano-disk cavity with the metal-insulator-metal waveguide is proposed and investigated numerically using the finite element method (FEM)....

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 14; p. 102506
Main Authors Qi, Yunping, Zhou, Peiyang, Zhang, Ting, Zhang, Xuewei, Wang, Yue, Liu, Chuqin, Bai, Yulong, Wang, Xiangxian
Format Journal Article
LanguageEnglish
Published Elsevier 01.09.2019
Online AccessGet full text
ISSN2211-3797
2211-3797
DOI10.1016/j.rinp.2019.102506

Cover

Loading…
Abstract Based on the transmission characteristics of surface plasmonic subwavelength structure, a multichannel plasmonic notch filter comprising two slot resonators and a nano-disk cavity with the metal-insulator-metal waveguide is proposed and investigated numerically using the finite element method (FEM). It demonstrates that our proposed structure has the novel multichannel notch filter characteristics in optical regime. And the three resonance trough wavelengths of the notch filter can be tuned by changing the radius of the nano-disk and width of the slot, which is in good agreement with the results of the coupled mode theory (CMT). Moreover, the second resonance trough wavelength of the transmission spectrum increases in almost the same intervals of 30 nm when the radius of nano-disk cavity increases in intervals of 10 nm, showing a Fano line and an obvious red-shift. At the third resonance trough, the results show that the plasmon-induced transparency (PIT) is produced. And the PIT response is strongly influenced by the separation gap between the adjacent slot cavities. Additionally, the FOM* (figure of merit) and sensitivity of this structure can be as high as 99 and 750 nm/RIU, respectively. The results of this study not only present a tunable multichannel plasmonic notch filter, but also aid in developing ultra-compact refractive index sensor in optical highly integration circuits. Keywords: Surface plasmon polaritons, Metal-insulator-metal waveguides, Plasmon-induced transparency, Plasmonic filter
AbstractList Based on the transmission characteristics of surface plasmonic subwavelength structure, a multichannel plasmonic notch filter comprising two slot resonators and a nano-disk cavity with the metal-insulator-metal waveguide is proposed and investigated numerically using the finite element method (FEM). It demonstrates that our proposed structure has the novel multichannel notch filter characteristics in optical regime. And the three resonance trough wavelengths of the notch filter can be tuned by changing the radius of the nano-disk and width of the slot, which is in good agreement with the results of the coupled mode theory (CMT). Moreover, the second resonance trough wavelength of the transmission spectrum increases in almost the same intervals of 30 nm when the radius of nano-disk cavity increases in intervals of 10 nm, showing a Fano line and an obvious red-shift. At the third resonance trough, the results show that the plasmon-induced transparency (PIT) is produced. And the PIT response is strongly influenced by the separation gap between the adjacent slot cavities. Additionally, the FOM* (figure of merit) and sensitivity of this structure can be as high as 99 and 750 nm/RIU, respectively. The results of this study not only present a tunable multichannel plasmonic notch filter, but also aid in developing ultra-compact refractive index sensor in optical highly integration circuits. Keywords: Surface plasmon polaritons, Metal-insulator-metal waveguides, Plasmon-induced transparency, Plasmonic filter
ArticleNumber 102506
Author Qi, Yunping
Wang, Yue
Zhang, Ting
Zhang, Xuewei
Wang, Xiangxian
Zhou, Peiyang
Liu, Chuqin
Bai, Yulong
Author_xml – sequence: 1
  givenname: Yunping
  surname: Qi
  fullname: Qi, Yunping
– sequence: 2
  givenname: Peiyang
  surname: Zhou
  fullname: Zhou, Peiyang
– sequence: 3
  givenname: Ting
  surname: Zhang
  fullname: Zhang, Ting
– sequence: 4
  givenname: Xuewei
  surname: Zhang
  fullname: Zhang, Xuewei
– sequence: 5
  givenname: Yue
  surname: Wang
  fullname: Wang, Yue
– sequence: 6
  givenname: Chuqin
  surname: Liu
  fullname: Liu, Chuqin
– sequence: 7
  givenname: Yulong
  surname: Bai
  fullname: Bai, Yulong
– sequence: 8
  givenname: Xiangxian
  surname: Wang
  fullname: Wang, Xiangxian
BookMark eNp9kctqHDEUREVwII7jH8hKP9ATPVpS99KYPAyGbJy1uK2HR2ONNEhqD_77aDLBBC-yukVdqqA4H9FFyskh9JmSDSVUftltSkiHDSN07gYTRL5Dl4xROnA1q4t_9Ad0XeuOkJ4ahaD0Eq0PW5eLa8FAxLWt9gVnjwHv19i9LaTkIj5EqPucgsFHeHaPa7AOp9zMFvsQmyv4GNoW27wu0Q21fy1OkLIN9QlDsrgdM64xN2zgObTg6if03kOs7vrvvUK_vn19uP0x3P_8fnd7cz8YLlQb_AhWGC7NIpgEymGaJVXgpelTGe_aCOATlZLwWUkp7GQYODWymZFl5PwK3Z17bYadPpSwh_KiMwT9x8jlUUPpO6PTXFjlQY0LV36kMwFu_DxPQo3cGQVL72LnLlNyrcX51z5K9ImD3ukTB33ioM8cemh6EzKhQQs5tQIh_i_6G8Q0kmU
CitedBy_id crossref_primary_10_1016_j_optmat_2021_111678
crossref_primary_10_1109_ACCESS_2020_2992700
crossref_primary_10_1016_j_rinp_2019_102693
crossref_primary_10_1209_0295_5075_134_67001
crossref_primary_10_1007_s11468_021_01447_0
crossref_primary_10_1088_1402_4896_abca5b
crossref_primary_10_1007_s11664_024_11410_4
crossref_primary_10_1016_j_ijleo_2024_171819
crossref_primary_10_1038_s41598_023_41193_3
crossref_primary_10_1364_JOSAB_506177
crossref_primary_10_1016_j_diamond_2020_108227
crossref_primary_10_1016_j_rinp_2021_104218
crossref_primary_10_1007_s11082_022_04297_0
crossref_primary_10_3390_photonics9100720
crossref_primary_10_1007_s12648_023_02601_6
crossref_primary_10_1007_s11468_019_01018_4
crossref_primary_10_1109_JSEN_2024_3357691
crossref_primary_10_1007_s13320_020_0598_x
crossref_primary_10_3390_mi11030309
crossref_primary_10_1016_j_mssp_2022_106985
crossref_primary_10_1016_j_physe_2019_113840
crossref_primary_10_1364_JOSAB_505290
crossref_primary_10_1016_j_rio_2023_100495
crossref_primary_10_1142_S0217984921505539
crossref_primary_10_1016_j_physleta_2020_126544
crossref_primary_10_1088_1361_6463_abce7f
crossref_primary_10_1016_j_ijleo_2019_163655
crossref_primary_10_1088_1674_1056_abb229
crossref_primary_10_2528_PIERC20050202
crossref_primary_10_1016_j_rinp_2020_103012
crossref_primary_10_3390_nano11113147
crossref_primary_10_1016_j_rinp_2020_103175
crossref_primary_10_1016_j_rinp_2023_106745
crossref_primary_10_3390_mi11020189
crossref_primary_10_1016_j_rio_2023_100447
crossref_primary_10_3390_nano10102030
crossref_primary_10_1016_j_rinp_2024_107783
crossref_primary_10_1016_j_cjph_2021_02_006
crossref_primary_10_1016_j_rinp_2019_102791
crossref_primary_10_1007_s11468_024_02451_w
crossref_primary_10_1007_s12596_022_00915_y
crossref_primary_10_1016_j_ijleo_2023_171162
crossref_primary_10_1088_1402_4896_acf34a
crossref_primary_10_1088_1742_6596_1859_1_012027
crossref_primary_10_1007_s12043_023_02592_3
crossref_primary_10_3390_nano10020257
crossref_primary_10_1007_s10825_023_02022_y
crossref_primary_10_1007_s11082_020_02360_2
crossref_primary_10_1109_JPHOT_2022_3191627
crossref_primary_10_1007_s12648_024_03371_5
crossref_primary_10_7498_aps_69_20200405
crossref_primary_10_1007_s11468_022_01781_x
crossref_primary_10_1088_2040_8986_aca682
crossref_primary_10_1016_j_optcom_2020_126338
crossref_primary_10_1109_JPHOT_2023_3329940
crossref_primary_10_1016_j_rinp_2023_106365
crossref_primary_10_1109_JPHOT_2021_3087743
crossref_primary_10_3390_nano10020207
crossref_primary_10_1016_j_optlastec_2022_108692
crossref_primary_10_1088_1402_4896_acc90a
crossref_primary_10_1038_s41598_022_12458_0
crossref_primary_10_1088_1674_1056_ab888c
crossref_primary_10_1117_1_JNP_19_016007
crossref_primary_10_1209_0295_5075_132_27001
crossref_primary_10_1088_1402_4896_abfbff
crossref_primary_10_1016_j_rinp_2020_103116
crossref_primary_10_1109_JSEN_2022_3150904
Cites_doi 10.1364/OL.41.001233
10.1063/1.4883647
10.1364/OL.33.002874
10.1186/s11671-016-1633-0
10.7567/APEX.8.032202
10.1364/AO.57.009770
10.1364/JOSAB.26.001263
10.1016/j.optcom.2005.09.034
10.1364/OE.23.006554
10.1080/09500340.2014.982225
10.1088/1361-6463/aae642
10.1007/s11082-018-1601-2
10.1007/s11082-019-1759-2
10.1007/s11468-012-9384-y
10.7567/APEX.8.092201
10.1364/AO.53.001604
10.1039/c3cp53703j
10.1007/s11468-017-0661-7
10.1016/j.rinp.2019.102367
10.1364/OE.22.011399
10.3390/s17040784
10.1038/s41598-018-20952-7
10.1007/s11771-015-2724-2
10.1364/OE.16.000413
10.1364/OPEX.13.010795
10.1007/s11468-019-00956-3
10.1109/LPT.2016.2556220
10.1021/nl300659v
10.1364/OE.17.007549
10.1364/OE.20.005696
10.1007/s11082-014-0059-0
10.1063/1.4953682
10.1109/JLT.2016.2626078
10.1364/JOSAA.11.002816
10.1016/j.optcom.2018.02.009
10.1109/LPT.2016.2554123
10.1016/j.rinp.2018.12.029
10.1063/1.1954880
10.1007/s13320-018-0509-6
10.1038/nature01937
10.1103/PhysRevA.85.053803
10.1038/nphoton.2008.131
10.7567/JJAP.55.022201
10.1364/OE.25.003525
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.rinp.2019.102506
DatabaseName CrossRef
DOAJ
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2211-3797
ExternalDocumentID oai_doaj_org_article_35d7fa74b37f4190a3cf9985743ec7ab
10_1016_j_rinp_2019_102506
GroupedDBID --K
0R~
457
5VS
AAEDT
AAEDW
AAFWJ
AAIKJ
AALRI
AAXUO
AAYWO
AAYXX
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
O-L
O9-
OK1
RIG
ROL
SES
SSZ
XH2
ID FETCH-LOGICAL-c357t-f4ad5c36cb526a13a89617af6c01923617c5a381660397665d8c2ae742920b433
IEDL.DBID M48
ISSN 2211-3797
IngestDate Wed Aug 27 01:08:37 EDT 2025
Thu Apr 24 22:52:41 EDT 2025
Tue Jul 01 02:27:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-f4ad5c36cb526a13a89617af6c01923617c5a381660397665d8c2ae742920b433
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.rinp.2019.102506
ParticipantIDs doaj_primary_oai_doaj_org_article_35d7fa74b37f4190a3cf9985743ec7ab
crossref_primary_10_1016_j_rinp_2019_102506
crossref_citationtrail_10_1016_j_rinp_2019_102506
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-00
2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-00
PublicationDecade 2010
PublicationTitle Results in physics
PublicationYear 2019
Publisher Elsevier
Publisher_xml – name: Elsevier
References Zhang (10.1016/j.rinp.2019.102506_b0140) 2014; 104
Wang (10.1016/j.rinp.2019.102506_b9012) 2019; 12
Lin (10.1016/j.rinp.2019.102506_b0120) 2009; 26
Zhang (10.1016/j.rinp.2019.102506_b0160) 2018; 13
Li (10.1016/j.rinp.2019.102506_b0025) 2016; 28
Li (10.1016/j.rinp.2019.102506_b0075) 2016; 119
Tang (10.1016/j.rinp.2019.102506_b0010) 2015; 8
Liu (10.1016/j.rinp.2019.102506_b0040) 2014; 16
Duan (10.1016/j.rinp.2019.102506_b0175) 2017; 25
Wang (10.1016/j.rinp.2019.102506_b9014) 2019; 51
Yang (10.1016/j.rinp.2019.102506_b0080) 2018; 8
Wang (10.1016/j.rinp.2019.102506_b0170) 2016; 55
Yue (10.1016/j.rinp.2019.102506_b0055) 2017; 17
Smith (10.1016/j.rinp.2019.102506_b9000) 2012; 20
Chen (10.1016/j.rinp.2019.102506_b0195) 2016; 28
Zhang (10.1016/j.rinp.2019.102506_b0095) 2019
Miyata (10.1016/j.rinp.2019.102506_b0145) 2014; 22
Song (10.1016/j.rinp.2019.102506_b0155) 2018; 57
Xia (10.1016/j.rinp.2019.102506_b0030) 2015; 62
Yi (10.1016/j.rinp.2019.102506_b0090) 2019
Li (10.1016/j.rinp.2019.102506_b0020) 2015; 8
10.1016/j.rinp.2019.102506_b0130
Yang (10.1016/j.rinp.2019.102506_b0220) 2015; 22
Zhang (10.1016/j.rinp.2019.102506_b0125) 2009; 17
Lu (10.1016/j.rinp.2019.102506_b0035) 2012; 85
Chen (10.1016/j.rinp.2019.102506_b0150) 2012; 12
Qi (10.1016/j.rinp.2019.102506_b9001) 2018; 67
Park (10.1016/j.rinp.2019.102506_b0060) 2008; 16
Jing (10.1016/j.rinp.2019.102506_b0210) 2014; 53
Lai (10.1016/j.rinp.2019.102506_b0185) 2015; 23
Han (10.1016/j.rinp.2019.102506_b0050) 2006; 259
Oulton (10.1016/j.rinp.2019.102506_b0215) 2008; 2
Barnes (10.1016/j.rinp.2019.102506_b0005) 2003; 424
Pang (10.1016/j.rinp.2019.102506_b9013) 2018; 50
Wang (10.1016/j.rinp.2019.102506_b0065) 2005; 87
Wang (10.1016/j.rinp.2019.102506_b0205) 2019; 52
Gao (10.1016/j.rinp.2019.102506_b0045) 2006; 13
Zhang (10.1016/j.rinp.2019.102506_b0085) 2018; 8
Niu (10.1016/j.rinp.2019.102506_b0165) 2018; 416
Jing (10.1016/j.rinp.2019.102506_b0100) 2019
Chen (10.1016/j.rinp.2019.102506_b0200) 2016; 8
Chen (10.1016/j.rinp.2019.102506_b0190) 2017; 35
Ni (10.1016/j.rinp.2019.102506_b0135) 2015; 47
Yun (10.1016/j.rinp.2019.102506_b0110) 2013; 8
Lin (10.1016/j.rinp.2019.102506_b0115) 2009; 33
Wang (10.1016/j.rinp.2019.102506_b0180) 2016; 41
Song (10.1016/j.rinp.2019.102506_b0015) 2016; 11
References_xml – volume: 41
  start-page: 1233
  issue: 6
  year: 2016
  ident: 10.1016/j.rinp.2019.102506_b0180
  article-title: Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure
  publication-title: Opt Lett
  doi: 10.1364/OL.41.001233
– volume: 104
  issue: 23
  year: 2014
  ident: 10.1016/j.rinp.2019.102506_b0140
  article-title: Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4883647
– volume: 33
  start-page: 2874
  issue: 23
  year: 2009
  ident: 10.1016/j.rinp.2019.102506_b0115
  article-title: Tooth-shaped plasmonic waveguide filters with nanometeric sizes
  publication-title: Opt Lett
  doi: 10.1364/OL.33.002874
– volume: 11
  start-page: 419
  issue: 1
  year: 2016
  ident: 10.1016/j.rinp.2019.102506_b0015
  article-title: Characteristics of plasmonic Bragg reflectors with graphene-based silicon grating
  publication-title: Nanoscale Res Lett
  doi: 10.1186/s11671-016-1633-0
– volume: 8
  issue: 3
  year: 2015
  ident: 10.1016/j.rinp.2019.102506_b0010
  article-title: Plasmonic induced transparency and unidirectional control based on the waveguide structure with quadrant ring resonators
  publication-title: Appl Phys Express
  doi: 10.7567/APEX.8.032202
– volume: 57
  start-page: 9770
  issue: 33
  year: 2018
  ident: 10.1016/j.rinp.2019.102506_b0155
  article-title: Wavelength-sensitive plasmonically induced transparency in bilayer graphene-based metal-dielectric-metal waveguide
  publication-title: Appied Optics
  doi: 10.1364/AO.57.009770
– volume: 26
  start-page: 1263
  issue: 7
  year: 2009
  ident: 10.1016/j.rinp.2019.102506_b0120
  article-title: Numerical modeling of a teeth-shaped nano-plasmonic waveguide filter
  publication-title: J Opt Soc Am B
  doi: 10.1364/JOSAB.26.001263
– volume: 259
  start-page: 690
  issue: 2
  year: 2006
  ident: 10.1016/j.rinp.2019.102506_b0050
  article-title: Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons
  publication-title: Opt Commun
  doi: 10.1016/j.optcom.2005.09.034
– volume: 23
  start-page: 6554
  issue: 5
  year: 2015
  ident: 10.1016/j.rinp.2019.102506_b0185
  article-title: Double plasmonic nanodisks design for electromagnetically induced transparency and slow light
  publication-title: Opt Express
  doi: 10.1364/OE.23.006554
– volume: 62
  start-page: 358
  issue: 5
  year: 2015
  ident: 10.1016/j.rinp.2019.102506_b0030
  article-title: A dual-way directional surface-plasmon-polaritons launcher based on asymmetric slanted nanoslits
  publication-title: J Mod Opt
  doi: 10.1080/09500340.2014.982225
– volume: 8
  start-page: 4800107
  year: 2016
  ident: 10.1016/j.rinp.2019.102506_b0200
  article-title: Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials
  publication-title: IEEE Photonics J
– volume: 52
  issue: 1
  year: 2019
  ident: 10.1016/j.rinp.2019.102506_b0205
  article-title: Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures
  publication-title: J Phys D
  doi: 10.1088/1361-6463/aae642
– volume: 50
  start-page: 335
  year: 2018
  ident: 10.1016/j.rinp.2019.102506_b9013
  article-title: Theoretical study of multiexposure zeroth-order waveguide mode interference lithography
  publication-title: Opt Quant Electron
  doi: 10.1007/s11082-018-1601-2
– volume: 51
  start-page: 38
  year: 2019
  ident: 10.1016/j.rinp.2019.102506_b9014
  article-title: Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation
  publication-title: Opt Quant Electron
  doi: 10.1007/s11082-019-1759-2
– volume: 8
  start-page: 267
  issue: 2
  year: 2013
  ident: 10.1016/j.rinp.2019.102506_b0110
  article-title: Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity
  publication-title: Plasmonics
  doi: 10.1007/s11468-012-9384-y
– volume: 8
  issue: 9
  year: 2015
  ident: 10.1016/j.rinp.2019.102506_b0020
  article-title: Zhai X; Wang L L. Realizing controlled plasmonically induced reflection in metal-insulator-metal plasmonic waveguide-resonator coupling systems
  publication-title: Appl Phys Express
  doi: 10.7567/APEX.8.092201
– volume: 53
  start-page: 1604
  issue: 8
  year: 2014
  ident: 10.1016/j.rinp.2019.102506_b0210
  article-title: Plasmon-induced transparency in metal–insulator–metal waveguide side-coupled with multiple cavities
  publication-title: Appl Opt
  doi: 10.1364/AO.53.001604
– volume: 16
  start-page: 4320
  year: 2014
  ident: 10.1016/j.rinp.2019.102506_b0040
  article-title: Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by finite-difference time-domain method
  publication-title: PCCP
  doi: 10.1039/c3cp53703j
– volume: 13
  start-page: 1535
  issue: 5
  year: 2018
  ident: 10.1016/j.rinp.2019.102506_b0160
  article-title: Multispectral plasmon-induced transparency based on asymmetric metallic nanoslices array metasurface
  publication-title: Plasmonics
  doi: 10.1007/s11468-017-0661-7
– year: 2019
  ident: 10.1016/j.rinp.2019.102506_b0090
  article-title: Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2019.102367
– volume: 22
  start-page: 11399
  issue: 10
  year: 2014
  ident: 10.1016/j.rinp.2019.102506_b0145
  article-title: Multi-spectral plasmon induced transparency via in-plane dipole and dual-quadrupole coupling
  publication-title: Opt Express
  doi: 10.1364/OE.22.011399
– volume: 17
  start-page: 784
  issue: 4
  year: 2017
  ident: 10.1016/j.rinp.2019.102506_b0055
  article-title: Refractive index sensor based on fano resonances in metal-insulator-metal waveguides coupled with resonators
  publication-title: Sensors
  doi: 10.3390/s17040784
– volume: 8
  start-page: 2560
  year: 2018
  ident: 10.1016/j.rinp.2019.102506_b0080
  article-title: Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-20952-7
– volume: 22
  start-page: 2020
  issue: 6
  year: 2015
  ident: 10.1016/j.rinp.2019.102506_b0220
  article-title: Formation mechanism and modulation of electromagnetically induced transparency-like transmission in side-coupled structures
  publication-title: J Cent South Univ
  doi: 10.1007/s11771-015-2724-2
– volume: 16
  start-page: 413
  issue: 1
  year: 2008
  ident: 10.1016/j.rinp.2019.102506_b0060
  article-title: High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating
  publication-title: Opt Express
  doi: 10.1364/OE.16.000413
– volume: 13
  start-page: 10795
  issue: 26
  year: 2006
  ident: 10.1016/j.rinp.2019.102506_b0045
  article-title: Surface plasmon polariton propagation and combination in Y-shaped metallic channels
  publication-title: Opt Express
  doi: 10.1364/OPEX.13.010795
– year: 2019
  ident: 10.1016/j.rinp.2019.102506_b0095
  article-title: Five-band terahertz perfect absorber based on metal layer-coupled dielectric metamaterial
  publication-title: Plasmonics
  doi: 10.1007/s11468-019-00956-3
– volume: 28
  start-page: 1529
  year: 2016
  ident: 10.1016/j.rinp.2019.102506_b0195
  article-title: Optical magnetic field enhancement via coupling magnetic plasmons to optical cavity modes
  publication-title: IEEE Photonics Technol Lett
  doi: 10.1109/LPT.2016.2556220
– volume: 12
  start-page: 2494
  issue: 5
  year: 2012
  ident: 10.1016/j.rinp.2019.102506_b0150
  article-title: Plasmon-induced transparency in asymmetric t-shape single slit
  publication-title: Nano Lett
  doi: 10.1021/nl300659v
– volume: 17
  start-page: 7533
  issue: 9
  year: 2009
  ident: 10.1016/j.rinp.2019.102506_b0125
  article-title: A subwavelength coupler-type MIM optical filter
  publication-title: Opt Express
  doi: 10.1364/OE.17.007549
– volume: 20
  issue: 5
  year: 2012
  ident: 10.1016/j.rinp.2019.102506_b9000
  article-title: Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography
  publication-title: Opt Express
  doi: 10.1364/OE.20.005696
– volume: 47
  start-page: 1339
  issue: 6
  year: 2015
  ident: 10.1016/j.rinp.2019.102506_b0135
  article-title: Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of waveguide resonator systems
  publication-title: Opt Quant Electron
  doi: 10.1007/s11082-014-0059-0
– volume: 119
  issue: 24
  year: 2016
  ident: 10.1016/j.rinp.2019.102506_b0075
  article-title: Fano response induced by the interference between localized plasmons and interface reflections in metal-insulator-metal waveguide structure
  publication-title: J Appl Phys
  doi: 10.1063/1.4953682
– volume: 35
  start-page: 71
  year: 2017
  ident: 10.1016/j.rinp.2019.102506_b0190
  article-title: Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials
  publication-title: J Lightwave Technol
  doi: 10.1109/JLT.2016.2626078
– ident: 10.1016/j.rinp.2019.102506_b0130
  doi: 10.1364/JOSAA.11.002816
– volume: 416
  start-page: 77
  year: 2018
  ident: 10.1016/j.rinp.2019.102506_b0165
  article-title: Tunable plasmon-induced transparency with graphene-based T-shaped array metasurfaces
  publication-title: Opt Commun
  doi: 10.1016/j.optcom.2018.02.009
– volume: 28
  start-page: 1454
  issue: 13
  year: 2016
  ident: 10.1016/j.rinp.2019.102506_b0025
  article-title: Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings
  publication-title: IEEE Photonics Technol Lett
  doi: 10.1109/LPT.2016.2554123
– volume: 12
  start-page: 732
  year: 2019
  ident: 10.1016/j.rinp.2019.102506_b9012
  article-title: Theoretical investigation of subwavelength structures fabrication based on multiexposure surface plasmon interference lithography
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2018.12.029
– volume: 87
  issue: 1
  year: 2005
  ident: 10.1016/j.rinp.2019.102506_b0065
  article-title: Plasmon Bragg reflectors and nanocavities on flat metallic surfaces
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1954880
– volume: 8
  start-page: 367
  issue: 4
  year: 2018
  ident: 10.1016/j.rinp.2019.102506_b0085
  article-title: Refractive index sensor based on fano resonances in plasmonic waveguide with dual side-coupled ring resonators
  publication-title: Photonic Sens
  doi: 10.1007/s13320-018-0509-6
– volume: 424
  start-page: 824
  year: 2003
  ident: 10.1016/j.rinp.2019.102506_b0005
  article-title: Surface plasmon subwavelength optics
  publication-title: Nature
  doi: 10.1038/nature01937
– volume: 85
  start-page: 53803
  issue: 5
  year: 2012
  ident: 10.1016/j.rinp.2019.102506_b0035
  article-title: Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.85.053803
– volume: 67
  issue: 19
  year: 2018
  ident: 10.1016/j.rinp.2019.102506_b9001
  article-title: Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embeddedby cross structure
  publication-title: Acta Physica Sinica
– volume: 2
  start-page: 496
  issue: 8
  year: 2008
  ident: 10.1016/j.rinp.2019.102506_b0215
  article-title: A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation
  publication-title: Nat Photonics
  doi: 10.1038/nphoton.2008.131
– year: 2019
  ident: 10.1016/j.rinp.2019.102506_b0100
  article-title: High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials
  publication-title: Phys Scr
– volume: 55
  issue: 2
  year: 2016
  ident: 10.1016/j.rinp.2019.102506_b0170
  article-title: Tunable multimode plasmon-induced transparency with graphene side-coupled-resonators
  publication-title: Jpn J Appl Phys
  doi: 10.7567/JJAP.55.022201
– volume: 25
  start-page: 3525
  issue: 4
  year: 2017
  ident: 10.1016/j.rinp.2019.102506_b0175
  article-title: Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system
  publication-title: Opt Express
  doi: 10.1364/OE.25.003525
SSID ssj0001645511
Score 2.4048233
Snippet Based on the transmission characteristics of surface plasmonic subwavelength structure, a multichannel plasmonic notch filter comprising two slot resonators...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 102506
SummonAdditionalLinks – databaseName: DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64v5uBNirZJmu1RxWXx4EnBW5m8ZHVNxe3q3zeT1nVPevHUUpISJkPmS2byfYydqmLoixx1ZrwmCbO4DlaUQtTS5jl3Ii8wsX3eleMHcfsoH5ekvqgmrKMH7gx3zqVVHpXQXHkRoxdy4-MWQcbI54xCTatvjHlLm6l0ulKKCAVot1UUxNOnKtXfmOmKu94ngcgq84qoCyTJHS1FpSXy_hRlRptso4eHcNkNa4utuLDN1lKZppntsPn9z71DSMyw0HhASGWBdIc3uCm8RUD8Soy38Ikf7mk-sQ5CE2cH_IRy40Bnr2CbuZ66jNQ6LQQMjZ3MXgCDhfazgdm0acHgR-Jb3WUPo5v763HWCydkhkvVZl6glYaXRsuixJzjsIpABX1pEqCL70ZiyhheEBwppR2aAp1K0lVacL7HVkMT3D4DIbBCo7XRaIRQWHE9VJVxUtGzKAcs_zZcbXpWcRK3mNbf5WPPNRm7JmPXnbEH7GzR563j1Pi19RXNx6Il8WGnD9FL6t5L6r-85OA_fnLI1mlcXYXZEVtt3-fuOEKSVp8k7_sCyBHdoQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Theoretical study of a multichannel plasmonic waveguide notch filter with double-sided nanodisk and two slot cavities
URI https://doaj.org/article/35d7fa74b37f4190a3cf9985743ec7ab
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQCKmXCvqhAmU1B25Vqia2480BIUAgVNQeEKtyi8ZfaNvgwG4Wyr_H480ClVBPnBJFjhWN7cwbe-Y9xnZUMfRFjjozXpOEWfwPVnSEqKXNc-5EXmBi-_xZnozE9wt5scQWcke9AacvhnakJzWaNF__3tzvxQW_-5SrNRkH4p7MK2IikMTAvRI9kyIphx893E97LqWIAIFisKIg9j5Vqb6O5uVu_vFVzyj9k-85XmNve9AI-_NRXmdLLrxjqyl500zfs9n5UzUiJL5YaD0gpGRBquwNroHrCJOviAcX7vDWXc7G1kFo45iBH9OJOdCOLNh2phuXkYanhYChtePpH8BgobtrYdq0HRi8TSysH9jo-Oj88CTr5RQyw6XqMi_QSsNLo2VRYs5xWEX4gr40CebFeyMxnSN-I5BSSjs0BTqVBK204PwjWw5tcJ8YCIEVGq2NRiOEworroaqMk4quRbnB8oXhatNzjZPkRVMvksp-12Tsmoxdz429wb48vnM9Z9r4b-sDGo_HlsSSnR60k8u6X3Q1l1Z5VEJz5UVEPsiNj-GljKjJGYV68zU62WJv6LvmeWef2XI3mbntCFQ6PWAr-6dnv04HKdAfpLn4AJQH6KE
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+study+of+a+multichannel+plasmonic+waveguide+notch+filter+with+double-sided+nanodisk+and+two+slot+cavities&rft.jtitle=Results+in+physics&rft.au=Yunping+Qi&rft.au=Peiyang+Zhou&rft.au=Ting+Zhang&rft.au=Xuewei+Zhang&rft.date=2019-09-01&rft.pub=Elsevier&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=14&rft_id=info:doi/10.1016%2Fj.rinp.2019.102506&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_35d7fa74b37f4190a3cf9985743ec7ab
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon