Theoretical study of a multichannel plasmonic waveguide notch filter with double-sided nanodisk and two slot cavities
Based on the transmission characteristics of surface plasmonic subwavelength structure, a multichannel plasmonic notch filter comprising two slot resonators and a nano-disk cavity with the metal-insulator-metal waveguide is proposed and investigated numerically using the finite element method (FEM)....
Saved in:
Published in | Results in physics Vol. 14; p. 102506 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier
01.09.2019
|
Online Access | Get full text |
ISSN | 2211-3797 2211-3797 |
DOI | 10.1016/j.rinp.2019.102506 |
Cover
Loading…
Abstract | Based on the transmission characteristics of surface plasmonic subwavelength structure, a multichannel plasmonic notch filter comprising two slot resonators and a nano-disk cavity with the metal-insulator-metal waveguide is proposed and investigated numerically using the finite element method (FEM). It demonstrates that our proposed structure has the novel multichannel notch filter characteristics in optical regime. And the three resonance trough wavelengths of the notch filter can be tuned by changing the radius of the nano-disk and width of the slot, which is in good agreement with the results of the coupled mode theory (CMT). Moreover, the second resonance trough wavelength of the transmission spectrum increases in almost the same intervals of 30 nm when the radius of nano-disk cavity increases in intervals of 10 nm, showing a Fano line and an obvious red-shift. At the third resonance trough, the results show that the plasmon-induced transparency (PIT) is produced. And the PIT response is strongly influenced by the separation gap between the adjacent slot cavities. Additionally, the FOM* (figure of merit) and sensitivity of this structure can be as high as 99 and 750 nm/RIU, respectively. The results of this study not only present a tunable multichannel plasmonic notch filter, but also aid in developing ultra-compact refractive index sensor in optical highly integration circuits. Keywords: Surface plasmon polaritons, Metal-insulator-metal waveguides, Plasmon-induced transparency, Plasmonic filter |
---|---|
AbstractList | Based on the transmission characteristics of surface plasmonic subwavelength structure, a multichannel plasmonic notch filter comprising two slot resonators and a nano-disk cavity with the metal-insulator-metal waveguide is proposed and investigated numerically using the finite element method (FEM). It demonstrates that our proposed structure has the novel multichannel notch filter characteristics in optical regime. And the three resonance trough wavelengths of the notch filter can be tuned by changing the radius of the nano-disk and width of the slot, which is in good agreement with the results of the coupled mode theory (CMT). Moreover, the second resonance trough wavelength of the transmission spectrum increases in almost the same intervals of 30 nm when the radius of nano-disk cavity increases in intervals of 10 nm, showing a Fano line and an obvious red-shift. At the third resonance trough, the results show that the plasmon-induced transparency (PIT) is produced. And the PIT response is strongly influenced by the separation gap between the adjacent slot cavities. Additionally, the FOM* (figure of merit) and sensitivity of this structure can be as high as 99 and 750 nm/RIU, respectively. The results of this study not only present a tunable multichannel plasmonic notch filter, but also aid in developing ultra-compact refractive index sensor in optical highly integration circuits. Keywords: Surface plasmon polaritons, Metal-insulator-metal waveguides, Plasmon-induced transparency, Plasmonic filter |
ArticleNumber | 102506 |
Author | Qi, Yunping Wang, Yue Zhang, Ting Zhang, Xuewei Wang, Xiangxian Zhou, Peiyang Liu, Chuqin Bai, Yulong |
Author_xml | – sequence: 1 givenname: Yunping surname: Qi fullname: Qi, Yunping – sequence: 2 givenname: Peiyang surname: Zhou fullname: Zhou, Peiyang – sequence: 3 givenname: Ting surname: Zhang fullname: Zhang, Ting – sequence: 4 givenname: Xuewei surname: Zhang fullname: Zhang, Xuewei – sequence: 5 givenname: Yue surname: Wang fullname: Wang, Yue – sequence: 6 givenname: Chuqin surname: Liu fullname: Liu, Chuqin – sequence: 7 givenname: Yulong surname: Bai fullname: Bai, Yulong – sequence: 8 givenname: Xiangxian surname: Wang fullname: Wang, Xiangxian |
BookMark | eNp9kctqHDEUREVwII7jH8hKP9ATPVpS99KYPAyGbJy1uK2HR2ONNEhqD_77aDLBBC-yukVdqqA4H9FFyskh9JmSDSVUftltSkiHDSN07gYTRL5Dl4xROnA1q4t_9Ad0XeuOkJ4ahaD0Eq0PW5eLa8FAxLWt9gVnjwHv19i9LaTkIj5EqPucgsFHeHaPa7AOp9zMFvsQmyv4GNoW27wu0Q21fy1OkLIN9QlDsrgdM64xN2zgObTg6if03kOs7vrvvUK_vn19uP0x3P_8fnd7cz8YLlQb_AhWGC7NIpgEymGaJVXgpelTGe_aCOATlZLwWUkp7GQYODWymZFl5PwK3Z17bYadPpSwh_KiMwT9x8jlUUPpO6PTXFjlQY0LV36kMwFu_DxPQo3cGQVL72LnLlNyrcX51z5K9ImD3ukTB33ioM8cemh6EzKhQQs5tQIh_i_6G8Q0kmU |
CitedBy_id | crossref_primary_10_1016_j_optmat_2021_111678 crossref_primary_10_1109_ACCESS_2020_2992700 crossref_primary_10_1016_j_rinp_2019_102693 crossref_primary_10_1209_0295_5075_134_67001 crossref_primary_10_1007_s11468_021_01447_0 crossref_primary_10_1088_1402_4896_abca5b crossref_primary_10_1007_s11664_024_11410_4 crossref_primary_10_1016_j_ijleo_2024_171819 crossref_primary_10_1038_s41598_023_41193_3 crossref_primary_10_1364_JOSAB_506177 crossref_primary_10_1016_j_diamond_2020_108227 crossref_primary_10_1016_j_rinp_2021_104218 crossref_primary_10_1007_s11082_022_04297_0 crossref_primary_10_3390_photonics9100720 crossref_primary_10_1007_s12648_023_02601_6 crossref_primary_10_1007_s11468_019_01018_4 crossref_primary_10_1109_JSEN_2024_3357691 crossref_primary_10_1007_s13320_020_0598_x crossref_primary_10_3390_mi11030309 crossref_primary_10_1016_j_mssp_2022_106985 crossref_primary_10_1016_j_physe_2019_113840 crossref_primary_10_1364_JOSAB_505290 crossref_primary_10_1016_j_rio_2023_100495 crossref_primary_10_1142_S0217984921505539 crossref_primary_10_1016_j_physleta_2020_126544 crossref_primary_10_1088_1361_6463_abce7f crossref_primary_10_1016_j_ijleo_2019_163655 crossref_primary_10_1088_1674_1056_abb229 crossref_primary_10_2528_PIERC20050202 crossref_primary_10_1016_j_rinp_2020_103012 crossref_primary_10_3390_nano11113147 crossref_primary_10_1016_j_rinp_2020_103175 crossref_primary_10_1016_j_rinp_2023_106745 crossref_primary_10_3390_mi11020189 crossref_primary_10_1016_j_rio_2023_100447 crossref_primary_10_3390_nano10102030 crossref_primary_10_1016_j_rinp_2024_107783 crossref_primary_10_1016_j_cjph_2021_02_006 crossref_primary_10_1016_j_rinp_2019_102791 crossref_primary_10_1007_s11468_024_02451_w crossref_primary_10_1007_s12596_022_00915_y crossref_primary_10_1016_j_ijleo_2023_171162 crossref_primary_10_1088_1402_4896_acf34a crossref_primary_10_1088_1742_6596_1859_1_012027 crossref_primary_10_1007_s12043_023_02592_3 crossref_primary_10_3390_nano10020257 crossref_primary_10_1007_s10825_023_02022_y crossref_primary_10_1007_s11082_020_02360_2 crossref_primary_10_1109_JPHOT_2022_3191627 crossref_primary_10_1007_s12648_024_03371_5 crossref_primary_10_7498_aps_69_20200405 crossref_primary_10_1007_s11468_022_01781_x crossref_primary_10_1088_2040_8986_aca682 crossref_primary_10_1016_j_optcom_2020_126338 crossref_primary_10_1109_JPHOT_2023_3329940 crossref_primary_10_1016_j_rinp_2023_106365 crossref_primary_10_1109_JPHOT_2021_3087743 crossref_primary_10_3390_nano10020207 crossref_primary_10_1016_j_optlastec_2022_108692 crossref_primary_10_1088_1402_4896_acc90a crossref_primary_10_1038_s41598_022_12458_0 crossref_primary_10_1088_1674_1056_ab888c crossref_primary_10_1117_1_JNP_19_016007 crossref_primary_10_1209_0295_5075_132_27001 crossref_primary_10_1088_1402_4896_abfbff crossref_primary_10_1016_j_rinp_2020_103116 crossref_primary_10_1109_JSEN_2022_3150904 |
Cites_doi | 10.1364/OL.41.001233 10.1063/1.4883647 10.1364/OL.33.002874 10.1186/s11671-016-1633-0 10.7567/APEX.8.032202 10.1364/AO.57.009770 10.1364/JOSAB.26.001263 10.1016/j.optcom.2005.09.034 10.1364/OE.23.006554 10.1080/09500340.2014.982225 10.1088/1361-6463/aae642 10.1007/s11082-018-1601-2 10.1007/s11082-019-1759-2 10.1007/s11468-012-9384-y 10.7567/APEX.8.092201 10.1364/AO.53.001604 10.1039/c3cp53703j 10.1007/s11468-017-0661-7 10.1016/j.rinp.2019.102367 10.1364/OE.22.011399 10.3390/s17040784 10.1038/s41598-018-20952-7 10.1007/s11771-015-2724-2 10.1364/OE.16.000413 10.1364/OPEX.13.010795 10.1007/s11468-019-00956-3 10.1109/LPT.2016.2556220 10.1021/nl300659v 10.1364/OE.17.007549 10.1364/OE.20.005696 10.1007/s11082-014-0059-0 10.1063/1.4953682 10.1109/JLT.2016.2626078 10.1364/JOSAA.11.002816 10.1016/j.optcom.2018.02.009 10.1109/LPT.2016.2554123 10.1016/j.rinp.2018.12.029 10.1063/1.1954880 10.1007/s13320-018-0509-6 10.1038/nature01937 10.1103/PhysRevA.85.053803 10.1038/nphoton.2008.131 10.7567/JJAP.55.022201 10.1364/OE.25.003525 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1016/j.rinp.2019.102506 |
DatabaseName | CrossRef DOAJ |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2211-3797 |
ExternalDocumentID | oai_doaj_org_article_35d7fa74b37f4190a3cf9985743ec7ab 10_1016_j_rinp_2019_102506 |
GroupedDBID | --K 0R~ 457 5VS AAEDT AAEDW AAFWJ AAIKJ AALRI AAXUO AAYWO AAYXX ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPKN AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV CITATION EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M48 M~E O-L O9- OK1 RIG ROL SES SSZ XH2 |
ID | FETCH-LOGICAL-c357t-f4ad5c36cb526a13a89617af6c01923617c5a381660397665d8c2ae742920b433 |
IEDL.DBID | M48 |
ISSN | 2211-3797 |
IngestDate | Wed Aug 27 01:08:37 EDT 2025 Thu Apr 24 22:52:41 EDT 2025 Tue Jul 01 02:27:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-f4ad5c36cb526a13a89617af6c01923617c5a381660397665d8c2ae742920b433 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.rinp.2019.102506 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_35d7fa74b37f4190a3cf9985743ec7ab crossref_primary_10_1016_j_rinp_2019_102506 crossref_citationtrail_10_1016_j_rinp_2019_102506 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-00 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-00 |
PublicationDecade | 2010 |
PublicationTitle | Results in physics |
PublicationYear | 2019 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Zhang (10.1016/j.rinp.2019.102506_b0140) 2014; 104 Wang (10.1016/j.rinp.2019.102506_b9012) 2019; 12 Lin (10.1016/j.rinp.2019.102506_b0120) 2009; 26 Zhang (10.1016/j.rinp.2019.102506_b0160) 2018; 13 Li (10.1016/j.rinp.2019.102506_b0025) 2016; 28 Li (10.1016/j.rinp.2019.102506_b0075) 2016; 119 Tang (10.1016/j.rinp.2019.102506_b0010) 2015; 8 Liu (10.1016/j.rinp.2019.102506_b0040) 2014; 16 Duan (10.1016/j.rinp.2019.102506_b0175) 2017; 25 Wang (10.1016/j.rinp.2019.102506_b9014) 2019; 51 Yang (10.1016/j.rinp.2019.102506_b0080) 2018; 8 Wang (10.1016/j.rinp.2019.102506_b0170) 2016; 55 Yue (10.1016/j.rinp.2019.102506_b0055) 2017; 17 Smith (10.1016/j.rinp.2019.102506_b9000) 2012; 20 Chen (10.1016/j.rinp.2019.102506_b0195) 2016; 28 Zhang (10.1016/j.rinp.2019.102506_b0095) 2019 Miyata (10.1016/j.rinp.2019.102506_b0145) 2014; 22 Song (10.1016/j.rinp.2019.102506_b0155) 2018; 57 Xia (10.1016/j.rinp.2019.102506_b0030) 2015; 62 Yi (10.1016/j.rinp.2019.102506_b0090) 2019 Li (10.1016/j.rinp.2019.102506_b0020) 2015; 8 10.1016/j.rinp.2019.102506_b0130 Yang (10.1016/j.rinp.2019.102506_b0220) 2015; 22 Zhang (10.1016/j.rinp.2019.102506_b0125) 2009; 17 Lu (10.1016/j.rinp.2019.102506_b0035) 2012; 85 Chen (10.1016/j.rinp.2019.102506_b0150) 2012; 12 Qi (10.1016/j.rinp.2019.102506_b9001) 2018; 67 Park (10.1016/j.rinp.2019.102506_b0060) 2008; 16 Jing (10.1016/j.rinp.2019.102506_b0210) 2014; 53 Lai (10.1016/j.rinp.2019.102506_b0185) 2015; 23 Han (10.1016/j.rinp.2019.102506_b0050) 2006; 259 Oulton (10.1016/j.rinp.2019.102506_b0215) 2008; 2 Barnes (10.1016/j.rinp.2019.102506_b0005) 2003; 424 Pang (10.1016/j.rinp.2019.102506_b9013) 2018; 50 Wang (10.1016/j.rinp.2019.102506_b0065) 2005; 87 Wang (10.1016/j.rinp.2019.102506_b0205) 2019; 52 Gao (10.1016/j.rinp.2019.102506_b0045) 2006; 13 Zhang (10.1016/j.rinp.2019.102506_b0085) 2018; 8 Niu (10.1016/j.rinp.2019.102506_b0165) 2018; 416 Jing (10.1016/j.rinp.2019.102506_b0100) 2019 Chen (10.1016/j.rinp.2019.102506_b0200) 2016; 8 Chen (10.1016/j.rinp.2019.102506_b0190) 2017; 35 Ni (10.1016/j.rinp.2019.102506_b0135) 2015; 47 Yun (10.1016/j.rinp.2019.102506_b0110) 2013; 8 Lin (10.1016/j.rinp.2019.102506_b0115) 2009; 33 Wang (10.1016/j.rinp.2019.102506_b0180) 2016; 41 Song (10.1016/j.rinp.2019.102506_b0015) 2016; 11 |
References_xml | – volume: 41 start-page: 1233 issue: 6 year: 2016 ident: 10.1016/j.rinp.2019.102506_b0180 article-title: Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure publication-title: Opt Lett doi: 10.1364/OL.41.001233 – volume: 104 issue: 23 year: 2014 ident: 10.1016/j.rinp.2019.102506_b0140 article-title: Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity publication-title: Appl Phys Lett doi: 10.1063/1.4883647 – volume: 33 start-page: 2874 issue: 23 year: 2009 ident: 10.1016/j.rinp.2019.102506_b0115 article-title: Tooth-shaped plasmonic waveguide filters with nanometeric sizes publication-title: Opt Lett doi: 10.1364/OL.33.002874 – volume: 11 start-page: 419 issue: 1 year: 2016 ident: 10.1016/j.rinp.2019.102506_b0015 article-title: Characteristics of plasmonic Bragg reflectors with graphene-based silicon grating publication-title: Nanoscale Res Lett doi: 10.1186/s11671-016-1633-0 – volume: 8 issue: 3 year: 2015 ident: 10.1016/j.rinp.2019.102506_b0010 article-title: Plasmonic induced transparency and unidirectional control based on the waveguide structure with quadrant ring resonators publication-title: Appl Phys Express doi: 10.7567/APEX.8.032202 – volume: 57 start-page: 9770 issue: 33 year: 2018 ident: 10.1016/j.rinp.2019.102506_b0155 article-title: Wavelength-sensitive plasmonically induced transparency in bilayer graphene-based metal-dielectric-metal waveguide publication-title: Appied Optics doi: 10.1364/AO.57.009770 – volume: 26 start-page: 1263 issue: 7 year: 2009 ident: 10.1016/j.rinp.2019.102506_b0120 article-title: Numerical modeling of a teeth-shaped nano-plasmonic waveguide filter publication-title: J Opt Soc Am B doi: 10.1364/JOSAB.26.001263 – volume: 259 start-page: 690 issue: 2 year: 2006 ident: 10.1016/j.rinp.2019.102506_b0050 article-title: Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons publication-title: Opt Commun doi: 10.1016/j.optcom.2005.09.034 – volume: 23 start-page: 6554 issue: 5 year: 2015 ident: 10.1016/j.rinp.2019.102506_b0185 article-title: Double plasmonic nanodisks design for electromagnetically induced transparency and slow light publication-title: Opt Express doi: 10.1364/OE.23.006554 – volume: 62 start-page: 358 issue: 5 year: 2015 ident: 10.1016/j.rinp.2019.102506_b0030 article-title: A dual-way directional surface-plasmon-polaritons launcher based on asymmetric slanted nanoslits publication-title: J Mod Opt doi: 10.1080/09500340.2014.982225 – volume: 8 start-page: 4800107 year: 2016 ident: 10.1016/j.rinp.2019.102506_b0200 article-title: Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials publication-title: IEEE Photonics J – volume: 52 issue: 1 year: 2019 ident: 10.1016/j.rinp.2019.102506_b0205 article-title: Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures publication-title: J Phys D doi: 10.1088/1361-6463/aae642 – volume: 50 start-page: 335 year: 2018 ident: 10.1016/j.rinp.2019.102506_b9013 article-title: Theoretical study of multiexposure zeroth-order waveguide mode interference lithography publication-title: Opt Quant Electron doi: 10.1007/s11082-018-1601-2 – volume: 51 start-page: 38 year: 2019 ident: 10.1016/j.rinp.2019.102506_b9014 article-title: Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation publication-title: Opt Quant Electron doi: 10.1007/s11082-019-1759-2 – volume: 8 start-page: 267 issue: 2 year: 2013 ident: 10.1016/j.rinp.2019.102506_b0110 article-title: Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity publication-title: Plasmonics doi: 10.1007/s11468-012-9384-y – volume: 8 issue: 9 year: 2015 ident: 10.1016/j.rinp.2019.102506_b0020 article-title: Zhai X; Wang L L. Realizing controlled plasmonically induced reflection in metal-insulator-metal plasmonic waveguide-resonator coupling systems publication-title: Appl Phys Express doi: 10.7567/APEX.8.092201 – volume: 53 start-page: 1604 issue: 8 year: 2014 ident: 10.1016/j.rinp.2019.102506_b0210 article-title: Plasmon-induced transparency in metal–insulator–metal waveguide side-coupled with multiple cavities publication-title: Appl Opt doi: 10.1364/AO.53.001604 – volume: 16 start-page: 4320 year: 2014 ident: 10.1016/j.rinp.2019.102506_b0040 article-title: Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by finite-difference time-domain method publication-title: PCCP doi: 10.1039/c3cp53703j – volume: 13 start-page: 1535 issue: 5 year: 2018 ident: 10.1016/j.rinp.2019.102506_b0160 article-title: Multispectral plasmon-induced transparency based on asymmetric metallic nanoslices array metasurface publication-title: Plasmonics doi: 10.1007/s11468-017-0661-7 – year: 2019 ident: 10.1016/j.rinp.2019.102506_b0090 article-title: Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application publication-title: Results Phys doi: 10.1016/j.rinp.2019.102367 – volume: 22 start-page: 11399 issue: 10 year: 2014 ident: 10.1016/j.rinp.2019.102506_b0145 article-title: Multi-spectral plasmon induced transparency via in-plane dipole and dual-quadrupole coupling publication-title: Opt Express doi: 10.1364/OE.22.011399 – volume: 17 start-page: 784 issue: 4 year: 2017 ident: 10.1016/j.rinp.2019.102506_b0055 article-title: Refractive index sensor based on fano resonances in metal-insulator-metal waveguides coupled with resonators publication-title: Sensors doi: 10.3390/s17040784 – volume: 8 start-page: 2560 year: 2018 ident: 10.1016/j.rinp.2019.102506_b0080 article-title: Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory publication-title: Sci Rep doi: 10.1038/s41598-018-20952-7 – volume: 22 start-page: 2020 issue: 6 year: 2015 ident: 10.1016/j.rinp.2019.102506_b0220 article-title: Formation mechanism and modulation of electromagnetically induced transparency-like transmission in side-coupled structures publication-title: J Cent South Univ doi: 10.1007/s11771-015-2724-2 – volume: 16 start-page: 413 issue: 1 year: 2008 ident: 10.1016/j.rinp.2019.102506_b0060 article-title: High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating publication-title: Opt Express doi: 10.1364/OE.16.000413 – volume: 13 start-page: 10795 issue: 26 year: 2006 ident: 10.1016/j.rinp.2019.102506_b0045 article-title: Surface plasmon polariton propagation and combination in Y-shaped metallic channels publication-title: Opt Express doi: 10.1364/OPEX.13.010795 – year: 2019 ident: 10.1016/j.rinp.2019.102506_b0095 article-title: Five-band terahertz perfect absorber based on metal layer-coupled dielectric metamaterial publication-title: Plasmonics doi: 10.1007/s11468-019-00956-3 – volume: 28 start-page: 1529 year: 2016 ident: 10.1016/j.rinp.2019.102506_b0195 article-title: Optical magnetic field enhancement via coupling magnetic plasmons to optical cavity modes publication-title: IEEE Photonics Technol Lett doi: 10.1109/LPT.2016.2556220 – volume: 12 start-page: 2494 issue: 5 year: 2012 ident: 10.1016/j.rinp.2019.102506_b0150 article-title: Plasmon-induced transparency in asymmetric t-shape single slit publication-title: Nano Lett doi: 10.1021/nl300659v – volume: 17 start-page: 7533 issue: 9 year: 2009 ident: 10.1016/j.rinp.2019.102506_b0125 article-title: A subwavelength coupler-type MIM optical filter publication-title: Opt Express doi: 10.1364/OE.17.007549 – volume: 20 issue: 5 year: 2012 ident: 10.1016/j.rinp.2019.102506_b9000 article-title: Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography publication-title: Opt Express doi: 10.1364/OE.20.005696 – volume: 47 start-page: 1339 issue: 6 year: 2015 ident: 10.1016/j.rinp.2019.102506_b0135 article-title: Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of waveguide resonator systems publication-title: Opt Quant Electron doi: 10.1007/s11082-014-0059-0 – volume: 119 issue: 24 year: 2016 ident: 10.1016/j.rinp.2019.102506_b0075 article-title: Fano response induced by the interference between localized plasmons and interface reflections in metal-insulator-metal waveguide structure publication-title: J Appl Phys doi: 10.1063/1.4953682 – volume: 35 start-page: 71 year: 2017 ident: 10.1016/j.rinp.2019.102506_b0190 article-title: Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials publication-title: J Lightwave Technol doi: 10.1109/JLT.2016.2626078 – ident: 10.1016/j.rinp.2019.102506_b0130 doi: 10.1364/JOSAA.11.002816 – volume: 416 start-page: 77 year: 2018 ident: 10.1016/j.rinp.2019.102506_b0165 article-title: Tunable plasmon-induced transparency with graphene-based T-shaped array metasurfaces publication-title: Opt Commun doi: 10.1016/j.optcom.2018.02.009 – volume: 28 start-page: 1454 issue: 13 year: 2016 ident: 10.1016/j.rinp.2019.102506_b0025 article-title: Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings publication-title: IEEE Photonics Technol Lett doi: 10.1109/LPT.2016.2554123 – volume: 12 start-page: 732 year: 2019 ident: 10.1016/j.rinp.2019.102506_b9012 article-title: Theoretical investigation of subwavelength structures fabrication based on multiexposure surface plasmon interference lithography publication-title: Results Phys doi: 10.1016/j.rinp.2018.12.029 – volume: 87 issue: 1 year: 2005 ident: 10.1016/j.rinp.2019.102506_b0065 article-title: Plasmon Bragg reflectors and nanocavities on flat metallic surfaces publication-title: Appl Phys Lett doi: 10.1063/1.1954880 – volume: 8 start-page: 367 issue: 4 year: 2018 ident: 10.1016/j.rinp.2019.102506_b0085 article-title: Refractive index sensor based on fano resonances in plasmonic waveguide with dual side-coupled ring resonators publication-title: Photonic Sens doi: 10.1007/s13320-018-0509-6 – volume: 424 start-page: 824 year: 2003 ident: 10.1016/j.rinp.2019.102506_b0005 article-title: Surface plasmon subwavelength optics publication-title: Nature doi: 10.1038/nature01937 – volume: 85 start-page: 53803 issue: 5 year: 2012 ident: 10.1016/j.rinp.2019.102506_b0035 article-title: Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems publication-title: Phys Rev A doi: 10.1103/PhysRevA.85.053803 – volume: 67 issue: 19 year: 2018 ident: 10.1016/j.rinp.2019.102506_b9001 article-title: Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embeddedby cross structure publication-title: Acta Physica Sinica – volume: 2 start-page: 496 issue: 8 year: 2008 ident: 10.1016/j.rinp.2019.102506_b0215 article-title: A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation publication-title: Nat Photonics doi: 10.1038/nphoton.2008.131 – year: 2019 ident: 10.1016/j.rinp.2019.102506_b0100 article-title: High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials publication-title: Phys Scr – volume: 55 issue: 2 year: 2016 ident: 10.1016/j.rinp.2019.102506_b0170 article-title: Tunable multimode plasmon-induced transparency with graphene side-coupled-resonators publication-title: Jpn J Appl Phys doi: 10.7567/JJAP.55.022201 – volume: 25 start-page: 3525 issue: 4 year: 2017 ident: 10.1016/j.rinp.2019.102506_b0175 article-title: Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system publication-title: Opt Express doi: 10.1364/OE.25.003525 |
SSID | ssj0001645511 |
Score | 2.4048233 |
Snippet | Based on the transmission characteristics of surface plasmonic subwavelength structure, a multichannel plasmonic notch filter comprising two slot resonators... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 102506 |
SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64v5uBNirZJmu1RxWXx4EnBW5m8ZHVNxe3q3zeT1nVPevHUUpISJkPmS2byfYydqmLoixx1ZrwmCbO4DlaUQtTS5jl3Ii8wsX3eleMHcfsoH5ekvqgmrKMH7gx3zqVVHpXQXHkRoxdy4-MWQcbI54xCTatvjHlLm6l0ulKKCAVot1UUxNOnKtXfmOmKu94ngcgq84qoCyTJHS1FpSXy_hRlRptso4eHcNkNa4utuLDN1lKZppntsPn9z71DSMyw0HhASGWBdIc3uCm8RUD8Soy38Ikf7mk-sQ5CE2cH_IRy40Bnr2CbuZ66jNQ6LQQMjZ3MXgCDhfazgdm0acHgR-Jb3WUPo5v763HWCydkhkvVZl6glYaXRsuixJzjsIpABX1pEqCL70ZiyhheEBwppR2aAp1K0lVacL7HVkMT3D4DIbBCo7XRaIRQWHE9VJVxUtGzKAcs_zZcbXpWcRK3mNbf5WPPNRm7JmPXnbEH7GzR563j1Pi19RXNx6Il8WGnD9FL6t5L6r-85OA_fnLI1mlcXYXZEVtt3-fuOEKSVp8k7_sCyBHdoQ priority: 102 providerName: Directory of Open Access Journals |
Title | Theoretical study of a multichannel plasmonic waveguide notch filter with double-sided nanodisk and two slot cavities |
URI | https://doaj.org/article/35d7fa74b37f4190a3cf9985743ec7ab |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQCKmXCvqhAmU1B25Vqia2480BIUAgVNQeEKtyi8ZfaNvgwG4Wyr_H480ClVBPnBJFjhWN7cwbe-Y9xnZUMfRFjjozXpOEWfwPVnSEqKXNc-5EXmBi-_xZnozE9wt5scQWcke9AacvhnakJzWaNF__3tzvxQW_-5SrNRkH4p7MK2IikMTAvRI9kyIphx893E97LqWIAIFisKIg9j5Vqb6O5uVu_vFVzyj9k-85XmNve9AI-_NRXmdLLrxjqyl500zfs9n5UzUiJL5YaD0gpGRBquwNroHrCJOviAcX7vDWXc7G1kFo45iBH9OJOdCOLNh2phuXkYanhYChtePpH8BgobtrYdq0HRi8TSysH9jo-Oj88CTr5RQyw6XqMi_QSsNLo2VRYs5xWEX4gr40CebFeyMxnSN-I5BSSjs0BTqVBK204PwjWw5tcJ8YCIEVGq2NRiOEworroaqMk4quRbnB8oXhatNzjZPkRVMvksp-12Tsmoxdz429wb48vnM9Z9r4b-sDGo_HlsSSnR60k8u6X3Q1l1Z5VEJz5UVEPsiNj-GljKjJGYV68zU62WJv6LvmeWef2XI3mbntCFQ6PWAr-6dnv04HKdAfpLn4AJQH6KE |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+study+of+a+multichannel+plasmonic+waveguide+notch+filter+with+double-sided+nanodisk+and+two+slot+cavities&rft.jtitle=Results+in+physics&rft.au=Yunping+Qi&rft.au=Peiyang+Zhou&rft.au=Ting+Zhang&rft.au=Xuewei+Zhang&rft.date=2019-09-01&rft.pub=Elsevier&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=14&rft_id=info:doi/10.1016%2Fj.rinp.2019.102506&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_35d7fa74b37f4190a3cf9985743ec7ab |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon |