UV line-driven disc wind as the origin of UltraFast Outflows in AGN
ABSTRACT UltraFast Outflows (UFOs) are observed in some active galactic nuclei (AGN), with blueshifted and highly ionized Fe-K absorption features. AGN typically have an ultraviolet (UV-) bright accretion flow, so UV line driving is an obvious candidate for launching these winds. However this mechan...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 503; no. 1; pp. 1442 - 1458 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
01.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0035-8711 1365-2966 |
DOI | 10.1093/mnras/staa3282 |
Cover
Abstract | ABSTRACT
UltraFast Outflows (UFOs) are observed in some active galactic nuclei (AGN), with blueshifted and highly ionized Fe-K absorption features. AGN typically have an ultraviolet (UV-) bright accretion flow, so UV line driving is an obvious candidate for launching these winds. However this mechanism requires material with UV opacity, in apparent conflict with the observed high-ionization state of the wind. In this paper, we synthesize the X-ray energy spectra resulting from different lines of sight through a state of the art radiation hydrodynamics UV line-driven disc wind simulation. We demonstrate that there are some lines of sight that only intercept highly ionized and fast outflowing material. The cooler material required for the UV line driving acceleration is out of the line of sight, close to the disc, shielded from the X-rays by a failed wind. We fit these simulated wind spectra to data from the archetypal UFO source PG 1211+143 and show that they broadly reproduce the depth and velocity of the iron absorption lines seen. This directly demonstrates that UV line driving is a viable mechanism to launch even the fastest UFOs. We simulate microcalorimeter observations of this wind and show that their high-energy resolution can resolve the detailed structure in the wind and recover the wind energetics when combined with models that correctly estimate the line formation radius of the wind. New data from microcalorimeters will pave the way for physical predictions of AGN wind feedback in cosmological simulations. |
---|---|
AbstractList | ABSTRACT
UltraFast Outflows (UFOs) are observed in some active galactic nuclei (AGN), with blueshifted and highly ionized Fe-K absorption features. AGN typically have an ultraviolet (UV-) bright accretion flow, so UV line driving is an obvious candidate for launching these winds. However this mechanism requires material with UV opacity, in apparent conflict with the observed high-ionization state of the wind. In this paper, we synthesize the X-ray energy spectra resulting from different lines of sight through a state of the art radiation hydrodynamics UV line-driven disc wind simulation. We demonstrate that there are some lines of sight that only intercept highly ionized and fast outflowing material. The cooler material required for the UV line driving acceleration is out of the line of sight, close to the disc, shielded from the X-rays by a failed wind. We fit these simulated wind spectra to data from the archetypal UFO source PG 1211+143 and show that they broadly reproduce the depth and velocity of the iron absorption lines seen. This directly demonstrates that UV line driving is a viable mechanism to launch even the fastest UFOs. We simulate microcalorimeter observations of this wind and show that their high-energy resolution can resolve the detailed structure in the wind and recover the wind energetics when combined with models that correctly estimate the line formation radius of the wind. New data from microcalorimeters will pave the way for physical predictions of AGN wind feedback in cosmological simulations. UltraFast Outflows (UFOs) are observed in some active galactic nuclei (AGN), with blueshifted and highly ionized Fe-K absorption features. AGN typically have an ultraviolet (UV-) bright accretion flow, so UV line driving is an obvious candidate for launching these winds. However this mechanism requires material with UV opacity, in apparent conflict with the observed high-ionization state of the wind. In this paper, we synthesize the X-ray energy spectra resulting from different lines of sight through a state of the art radiation hydrodynamics UV line-driven disc wind simulation. We demonstrate that there are some lines of sight that only intercept highly ionized and fast outflowing material. The cooler material required for the UV line driving acceleration is out of the line of sight, close to the disc, shielded from the X-rays by a failed wind. We fit these simulated wind spectra to data from the archetypal UFO source PG 1211+143 and show that they broadly reproduce the depth and velocity of the iron absorption lines seen. This directly demonstrates that UV line driving is a viable mechanism to launch even the fastest UFOs. We simulate microcalorimeter observations of this wind and show that their high-energy resolution can resolve the detailed structure in the wind and recover the wind energetics when combined with models that correctly estimate the line formation radius of the wind. New data from microcalorimeters will pave the way for physical predictions of AGN wind feedback in cosmological simulations. |
Author | Mizumoto, Misaki Nomura, Mariko Odaka, Hirokazu Done, Chris Ohsuga, Ken |
Author_xml | – sequence: 1 givenname: Misaki orcidid: 0000-0003-2161-0361 surname: Mizumoto fullname: Mizumoto, Misaki email: mizumoto.misaki.n68@kyoto-u.jp – sequence: 2 givenname: Mariko orcidid: 0000-0002-6236-5270 surname: Nomura fullname: Nomura, Mariko – sequence: 3 givenname: Chris surname: Done fullname: Done, Chris – sequence: 4 givenname: Ken surname: Ohsuga fullname: Ohsuga, Ken – sequence: 5 givenname: Hirokazu surname: Odaka fullname: Odaka, Hirokazu |
BookMark | eNqFkL9PAjEYhhuDiYCuzl0dDvr72pEQQRMii7heSq_VmqMlbZH433uKLibG6Rve73nz5hmBQYjBAnCN0QQjRae7kHSe5qI1JZKcgSGmgldECTEAQ4Qor2SN8QUY5fyKEGKUiCGYb55g54Ot2uTfbICtzwYefWihzrC8WBiTf_YBRgc3XUl6oXOB60NxXTxm2Aez5cMlOHe6y_bq-47BZnH7OL-rVuvl_Xy2qgzldakcY24rtpIiYzlxSnJGmOZSGVkrbqVgGjvhmCGtMjVrt1xyzltWY8OtqjkdA3bqNSnmnKxrjC-6-Bj6Yb5rMGo-RTRfIpofET02-YXtk9_p9P43cHMC4mH_3-8HCqZyog |
CitedBy_id | crossref_primary_10_3847_1538_4357_aca58c crossref_primary_10_1093_mnras_stac1422 crossref_primary_10_3847_1538_4357_acdb78 crossref_primary_10_3847_1538_4365_ad5961 crossref_primary_10_1093_mnras_stac1369 crossref_primary_10_1051_0004_6361_202244270 crossref_primary_10_3847_1538_4357_ad06ac crossref_primary_10_3390_universe11020069 crossref_primary_10_1093_mnras_stad2329 crossref_primary_10_3847_1538_4357_ad1107 crossref_primary_10_1093_mnras_stab2214 crossref_primary_10_1093_mnras_stab3426 crossref_primary_10_1093_mnras_stac2155 crossref_primary_10_3847_1538_4357_ad0bfa crossref_primary_10_3847_1538_3881_ad43db crossref_primary_10_3390_galaxies12020017 crossref_primary_10_3847_1538_4357_ac139d crossref_primary_10_1051_0004_6361_202245572 crossref_primary_10_1093_mnras_stac1058 crossref_primary_10_1093_mnras_stac2203 crossref_primary_10_1038_s41550_022_01857_y crossref_primary_10_3847_1538_4357_abedaf crossref_primary_10_1093_mnras_stac877 crossref_primary_10_1093_mnras_stac3171 crossref_primary_10_1002_asna_20240027 crossref_primary_10_3847_1538_4357_ac99de crossref_primary_10_3847_1538_4357_ad6b95 crossref_primary_10_1051_0004_6361_202244614 crossref_primary_10_3847_1538_4357_ac3763 crossref_primary_10_3847_1538_4357_acd380 crossref_primary_10_3847_1538_4357_ac9388 crossref_primary_10_1360_TB_2024_0611 |
Cites_doi | 10.1086/167900 10.1093/mnras/staa948 10.1088/0004-637X/728/2/98 10.1088/0004-637X/789/1/19 10.1051/0004-6361/200912579 10.1051/0004-6361/201629178 10.1093/mnrasl/slx129 10.1093/mnras/staa1117 10.1086/300353 10.1051/0004-6361:20000036 10.1093/mnras/sty1697 10.1086/174746 10.1046/j.1365-8711.2003.07006.x 10.1086/192291 10.1088/0004-637X/740/2/103 10.1051/0004-6361/200913440 10.1093/mnras/sty3056 10.1051/0004-6361/201015164 10.1086/378218 10.1051/0004-6361:20000066 10.1093/mnras/staa2321 10.3847/1538-4357/aabf38 10.1093/pasj/65.2.40 10.1088/0004-637X/694/1/1 10.1086/507458 10.1088/0004-637X/701/1/493 10.1051/0004-6361/201322464 10.1093/mnras/stv1207 10.1086/424039 10.1038/nature08007 10.1093/mnras/sts481 10.1086/420973 10.1088/2041-8205/763/1/L18 10.1093/mnrasl/slaa144 10.1086/425117 10.1093/mnras/199.4.883 10.1093/pasj/psv124 10.1086/156922 10.3847/1538-4357/aaf814 10.1086/317016 10.1111/j.1365-2966.2010.17215.x 10.1139/p07-197 10.1086/506911 10.1093/mnras/stw354 10.1086/317154 10.1093/mnras/stw2877 10.1086/176238 10.1093/mnras/sty2398 10.1093/mnras/stt807 10.1088/0004-637X/805/1/17 10.1051/0004-6361:20077947 10.1088/0004-637X/742/1/44 10.1093/mnras/stv2347 10.1051/0004-6361:20066548 10.1111/j.1365-2966.2006.10137.x 10.3847/2041-8213/ab5193 10.1093/mnras/sty1890 10.1111/j.1365-2966.2007.12336.x 10.1111/j.1365-2966.2010.16396.x 10.1086/169486 10.1016/S0168-9002(03)01368-8 10.1038/s41550-018-0406-3 10.1051/0004-6361:200810993 10.1093/mnras/stu2095 10.1086/324534 10.1093/mnras/stw1579 10.1046/j.1365-8711.2003.06980.x 10.1088/0004-637X/697/1/160 10.1038/nature14261 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2021 |
Copyright_xml | – notice: 2021 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2021 |
DBID | AAYXX CITATION |
DOI | 10.1093/mnras/staa3282 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 1458 |
ExternalDocumentID | 10_1093_mnras_staa3282 10.1093/mnras/staa3282 |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABCQX ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACUTJ ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX ABAZT ABEJV ABGNP ABVLG ACUXJ AHGBF ALXQX AMNDL ANAKG CITATION JXSIZ |
ID | FETCH-LOGICAL-c357t-f44fb6b830ce52f985424a589c8795e864a1f6f4c2d9c74db58555d471c5e9753 |
IEDL.DBID | TOX |
ISSN | 0035-8711 |
IngestDate | Thu Apr 24 23:05:38 EDT 2025 Tue Jul 01 01:23:20 EDT 2025 Wed Aug 28 03:19:05 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | galaxies: Seyfert galaxies: active galaxies: individual: PG 1211+143 X-rays: galaxies |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-f44fb6b830ce52f985424a589c8795e864a1f6f4c2d9c74db58555d471c5e9753 |
ORCID | 0000-0003-2161-0361 0000-0002-6236-5270 |
OpenAccessLink | http://hdl.handle.net/2433/262707 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1093_mnras_staa3282 crossref_primary_10_1093_mnras_staa3282 oup_primary_10_1093_mnras_staa3282 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Schurch (2022031900103863400_bib55) 2007; 381 Davis (2022031900103863400_bib12) 2011; 728 Kubota (2022031900103863400_bib31) 2018; 480 Stevens (2022031900103863400_bib61) 1990; 365 Pounds (2022031900103863400_bib47) 2003; 345 Reeves (2022031900103863400_bib53) 2003; 593 Waters (2022031900103863400_bib70) 2018; 481 Matzeu (2022031900103863400_bib35) 2017; 472 Ueda (2022031900103863400_bib67) 2004; 609 Mizumoto (2022031900103863400_bib38) 2019; 871 Agostinelli (2022031900103863400_bib1) 2003; 506 Magorrian (2022031900103863400_bib32) 1998; 115 Proga (2022031900103863400_bib49) 2004; 616 Miller (2022031900103863400_bib36) 2007; 463 Cicone (2022031900103863400_bib10) 2018; 2 Kriss (2022031900103863400_bib30) 2018; 859 Schurch (2022031900103863400_bib56) 2009; 694 HI4PI Collaboration (2022031900103863400_bib23) 2016; 594 Silk (2022031900103863400_bib58) 1998; 331 Gofford (2022031900103863400_bib19) 2015; 451 Gofford (2022031900103863400_bib18) 2013; 430 Costa (2022031900103863400_bib11) 2020; 497 Quera-Bofarull (2022031900103863400_bib51) 2020; 495 Feruglio (2022031900103863400_bib14) 2010; 518 Watanabe (2022031900103863400_bib69) 2006; 651 Fukumura (2022031900103863400_bib16) 2015; 805 Strüder (2022031900103863400_bib62) 2001; 365 Bentz (2022031900103863400_bib4) 2009; 697 Cardelli (2022031900103863400_bib7) 1989; 345 Proga (2022031900103863400_bib48) 2002; 565 Gallo (2022031900103863400_bib17) 2006; 368 King (2022031900103863400_bib28) 2003; 345 Jansen (2022031900103863400_bib25) 2001; 365 Odaka (2022031900103863400_bib44) 2011; 740 Wagner (2022031900103863400_bib68) 2013; 763 Wilms (2022031900103863400_bib71) 2000; 542 Kallman (2022031900103863400_bib26) 2004; 155 Proga (2022031900103863400_bib50) 2000; 543 Sim (2022031900103863400_bib59) 2010; 404 Matzeu (2022031900103863400_bib34) 2016; 458 Parker (2022031900103863400_bib45) 2020; 498 Pounds (2022031900103863400_bib46) 2013; 433 Cicone (2022031900103863400_bib9) 2014; 562 Reeves (2022031900103863400_bib52) 2009; 701 Sim (2022031900103863400_bib60) 2010; 408 Hagino (2022031900103863400_bib21) 2015; 446 Nomura (2022031900103863400_bib40) 2017; 465 Nomura (2022031900103863400_bib42) 2016; 68 Tombesi (2022031900103863400_bib63) 2010; 521 Mizumoto (2022031900103863400_bib37) 2019; 482 Cash (2022031900103863400_bib8) 1979; 228 Shemmer (2022031900103863400_bib57) 2006; 646 Blandford (2022031900103863400_bib5) 1982; 199 Gu (2022031900103863400_bib20) 2008; 86 Marziani (2022031900103863400_bib33) 1996; 104 Nomura (2022031900103863400_bib43) 2020; 494 Hagino (2022031900103863400_bib22) 2016; 461 Higginbottom (2022031900103863400_bib24) 2014; 789 Risaliti (2022031900103863400_bib54) 2010; 516 Konigl (2022031900103863400_bib29) 1994; 434 Murray (2022031900103863400_bib39) 1995; 451 Nomura (2022031900103863400_bib41) 2013; 65 Fabian (2022031900103863400_bib13) 2009; 459 Tombesi (2022031900103863400_bib64) 2011; 742 Tombesi (2022031900103863400_bib65) 2015; 519 Bachev (2022031900103863400_bib3) 2009; 493 Braito (2022031900103863400_bib6) 2018; 479 King (2022031900103863400_bib27) 2016; 455 Turner (2022031900103863400_bib66) 2007; 475 Fukumura (2022031900103863400_bib15) 2019; 885 Arnaud (2022031900103863400_bib2) 1996 |
References_xml | – volume: 345 start-page: 245 year: 1989 ident: 2022031900103863400_bib7 publication-title: ApJ doi: 10.1086/167900 – volume: 494 start-page: 3616 year: 2020 ident: 2022031900103863400_bib43 publication-title: MNRAS doi: 10.1093/mnras/staa948 – volume: 728 start-page: 98 year: 2011 ident: 2022031900103863400_bib12 publication-title: ApJ doi: 10.1088/0004-637X/728/2/98 – volume: 789 start-page: 19 year: 2014 ident: 2022031900103863400_bib24 publication-title: ApJ doi: 10.1088/0004-637X/789/1/19 – volume: 516 start-page: A89 year: 2010 ident: 2022031900103863400_bib54 publication-title: A&A doi: 10.1051/0004-6361/200912579 – volume: 594 start-page: A116 year: 2016 ident: 2022031900103863400_bib23 publication-title: A&A doi: 10.1051/0004-6361/201629178 – volume: 472 start-page: L15 year: 2017 ident: 2022031900103863400_bib35 publication-title: MNRAS doi: 10.1093/mnrasl/slx129 – volume: 495 start-page: 402 year: 2020 ident: 2022031900103863400_bib51 publication-title: MNRAS doi: 10.1093/mnras/staa1117 – volume: 115 start-page: 2285 year: 1998 ident: 2022031900103863400_bib32 publication-title: AJ doi: 10.1086/300353 – volume: 365 start-page: L1 year: 2001 ident: 2022031900103863400_bib25 publication-title: A&A doi: 10.1051/0004-6361:20000036 – volume: 479 start-page: 3592 year: 2018 ident: 2022031900103863400_bib6 publication-title: MNRAS doi: 10.1093/mnras/sty1697 – start-page: 17 volume-title: ASP Conf. Ser. Vol. 101 year: 1996 ident: 2022031900103863400_bib2 – volume: 434 start-page: 446 year: 1994 ident: 2022031900103863400_bib29 publication-title: ApJ doi: 10.1086/174746 – volume: 345 start-page: 705 year: 2003 ident: 2022031900103863400_bib47 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.07006.x – volume: 104 start-page: 37 year: 1996 ident: 2022031900103863400_bib33 publication-title: ApJS doi: 10.1086/192291 – volume: 740 start-page: 103 year: 2011 ident: 2022031900103863400_bib44 publication-title: ApJ doi: 10.1088/0004-637X/740/2/103 – volume: 521 start-page: A57 year: 2010 ident: 2022031900103863400_bib63 publication-title: A&A doi: 10.1051/0004-6361/200913440 – volume: 482 start-page: 5316 year: 2019 ident: 2022031900103863400_bib37 publication-title: MNRAS doi: 10.1093/mnras/sty3056 – volume: 518 start-page: L155 year: 2010 ident: 2022031900103863400_bib14 publication-title: A&A doi: 10.1051/0004-6361/201015164 – volume: 593 start-page: L65 year: 2003 ident: 2022031900103863400_bib53 publication-title: ApJ doi: 10.1086/378218 – volume: 365 start-page: L18 year: 2001 ident: 2022031900103863400_bib62 publication-title: A&A doi: 10.1051/0004-6361:20000066 – volume: 497 start-page: 5229 year: 2020 ident: 2022031900103863400_bib11 publication-title: MNRAS doi: 10.1093/mnras/staa2321 – volume: 859 start-page: 94 year: 2018 ident: 2022031900103863400_bib30 publication-title: ApJ doi: 10.3847/1538-4357/aabf38 – volume: 65 start-page: 40 year: 2013 ident: 2022031900103863400_bib41 publication-title: PASJ doi: 10.1093/pasj/65.2.40 – volume: 694 start-page: 1 year: 2009 ident: 2022031900103863400_bib56 publication-title: ApJ doi: 10.1088/0004-637X/694/1/1 – volume: 651 start-page: 421 year: 2006 ident: 2022031900103863400_bib69 publication-title: ApJ doi: 10.1086/507458 – volume: 701 start-page: 493 year: 2009 ident: 2022031900103863400_bib52 publication-title: ApJ doi: 10.1088/0004-637X/701/1/493 – volume: 562 start-page: A21 year: 2014 ident: 2022031900103863400_bib9 publication-title: A&A doi: 10.1051/0004-6361/201322464 – volume: 451 start-page: 4169 year: 2015 ident: 2022031900103863400_bib19 publication-title: MNRAS doi: 10.1093/mnras/stv1207 – volume: 155 start-page: 675 year: 2004 ident: 2022031900103863400_bib26 publication-title: ApJS doi: 10.1086/424039 – volume: 459 start-page: 540 year: 2009 ident: 2022031900103863400_bib13 publication-title: Nature doi: 10.1038/nature08007 – volume: 430 start-page: 60 year: 2013 ident: 2022031900103863400_bib18 publication-title: MNRAS doi: 10.1093/mnras/sts481 – volume: 609 start-page: 325 year: 2004 ident: 2022031900103863400_bib67 publication-title: ApJ doi: 10.1086/420973 – volume: 763 start-page: L18 year: 2013 ident: 2022031900103863400_bib68 publication-title: ApJ doi: 10.1088/2041-8205/763/1/L18 – volume: 498 start-page: L140 year: 2020 ident: 2022031900103863400_bib45 publication-title: MNRAS doi: 10.1093/mnrasl/slaa144 – volume: 331 start-page: L1 year: 1998 ident: 2022031900103863400_bib58 publication-title: A&A – volume: 616 start-page: 688 year: 2004 ident: 2022031900103863400_bib49 publication-title: ApJ doi: 10.1086/425117 – volume: 199 start-page: 883 year: 1982 ident: 2022031900103863400_bib5 publication-title: MNRAS doi: 10.1093/mnras/199.4.883 – volume: 68 start-page: 16 year: 2016 ident: 2022031900103863400_bib42 publication-title: PASJ doi: 10.1093/pasj/psv124 – volume: 228 start-page: 939 year: 1979 ident: 2022031900103863400_bib8 publication-title: ApJ doi: 10.1086/156922 – volume: 871 start-page: 156 year: 2019 ident: 2022031900103863400_bib38 publication-title: ApJ doi: 10.3847/1538-4357/aaf814 – volume: 542 start-page: 914 year: 2000 ident: 2022031900103863400_bib71 publication-title: ApJ doi: 10.1086/317016 – volume: 408 start-page: 1396 year: 2010 ident: 2022031900103863400_bib60 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.17215.x – volume: 86 start-page: 675 year: 2008 ident: 2022031900103863400_bib20 publication-title: Can. J. Phys. doi: 10.1139/p07-197 – volume: 646 start-page: L29 year: 2006 ident: 2022031900103863400_bib57 publication-title: ApJ doi: 10.1086/506911 – volume: 458 start-page: 1311 year: 2016 ident: 2022031900103863400_bib34 publication-title: MNRAS doi: 10.1093/mnras/stw354 – volume: 543 start-page: 686 year: 2000 ident: 2022031900103863400_bib50 publication-title: ApJ doi: 10.1086/317154 – volume: 465 start-page: 2873 year: 2017 ident: 2022031900103863400_bib40 publication-title: MNRAS doi: 10.1093/mnras/stw2877 – volume: 451 start-page: 498 year: 1995 ident: 2022031900103863400_bib39 publication-title: ApJ doi: 10.1086/176238 – volume: 481 start-page: 2628 year: 2018 ident: 2022031900103863400_bib70 publication-title: MNRAS doi: 10.1093/mnras/sty2398 – volume: 433 start-page: 1369 year: 2013 ident: 2022031900103863400_bib46 publication-title: MNRAS doi: 10.1093/mnras/stt807 – volume: 805 start-page: 17 year: 2015 ident: 2022031900103863400_bib16 publication-title: ApJ doi: 10.1088/0004-637X/805/1/17 – volume: 475 start-page: 121 year: 2007 ident: 2022031900103863400_bib66 publication-title: A&A doi: 10.1051/0004-6361:20077947 – volume: 742 start-page: 44 year: 2011 ident: 2022031900103863400_bib64 publication-title: ApJ doi: 10.1088/0004-637X/742/1/44 – volume: 455 start-page: 1211 year: 2016 ident: 2022031900103863400_bib27 publication-title: MNRAS doi: 10.1093/mnras/stv2347 – volume: 463 start-page: 131 year: 2007 ident: 2022031900103863400_bib36 publication-title: A&A doi: 10.1051/0004-6361:20066548 – volume: 368 start-page: 479 year: 2006 ident: 2022031900103863400_bib17 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.10137.x – volume: 885 start-page: L38 year: 2019 ident: 2022031900103863400_bib15 publication-title: ApJ doi: 10.3847/2041-8213/ab5193 – volume: 480 start-page: 1247 year: 2018 ident: 2022031900103863400_bib31 publication-title: MNRAS doi: 10.1093/mnras/sty1890 – volume: 381 start-page: 1413 year: 2007 ident: 2022031900103863400_bib55 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12336.x – volume: 404 start-page: 1369 year: 2010 ident: 2022031900103863400_bib59 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16396.x – volume: 365 start-page: 321 year: 1990 ident: 2022031900103863400_bib61 publication-title: ApJ doi: 10.1086/169486 – volume: 506 start-page: 250 year: 2003 ident: 2022031900103863400_bib1 publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/S0168-9002(03)01368-8 – volume: 2 start-page: 176 year: 2018 ident: 2022031900103863400_bib10 publication-title: Nat. Astron. doi: 10.1038/s41550-018-0406-3 – volume: 493 start-page: 907 year: 2009 ident: 2022031900103863400_bib3 publication-title: A&A doi: 10.1051/0004-6361:200810993 – volume: 446 start-page: 663 year: 2015 ident: 2022031900103863400_bib21 publication-title: MNRAS doi: 10.1093/mnras/stu2095 – volume: 565 start-page: 455 year: 2002 ident: 2022031900103863400_bib48 publication-title: ApJ doi: 10.1086/324534 – volume: 461 start-page: 3954 year: 2016 ident: 2022031900103863400_bib22 publication-title: MNRAS doi: 10.1093/mnras/stw1579 – volume: 345 start-page: 657 year: 2003 ident: 2022031900103863400_bib28 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06980.x – volume: 697 start-page: 160 year: 2009 ident: 2022031900103863400_bib4 publication-title: ApJ doi: 10.1088/0004-637X/697/1/160 – volume: 519 start-page: 436 year: 2015 ident: 2022031900103863400_bib65 publication-title: Nature doi: 10.1038/nature14261 |
SSID | ssj0004326 |
Score | 2.5736785 |
Snippet | ABSTRACT
UltraFast Outflows (UFOs) are observed in some active galactic nuclei (AGN), with blueshifted and highly ionized Fe-K absorption features. AGN... UltraFast Outflows (UFOs) are observed in some active galactic nuclei (AGN), with blueshifted and highly ionized Fe-K absorption features. AGN typically have... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1442 |
Title | UV line-driven disc wind as the origin of UltraFast Outflows in AGN |
Volume | 503 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7EkxfRqrS-WET0tLTJPpIcS7EWoe2lkd7CZpMFIU0kSSn-e2c3aX2g6C3JTnKY3ex8M7PzDUK3QiaaulKRgDOPMN_RJknIwUtxlHaoEAPPFApPZ2ISsqclX7Zk0dUPKfyA9ld5Kas-YCVJwT-A3RYssFnRi_nyowKS2sZqloARXABnR8_4_fUv5seUtH2yJuMjdNjCQDxs5u0Y7aV5B3WHlQlMF6s3fIftdRN3qDqoNwVwW5Q2Bg6Do-wFkKa9O0Gj8BkbsEiS0mxd2BTa4g342lhWGPAdbppf4ULjMKtLOZZVjefrWmfFpsIwMHycnaJw_LAYTUjbG4Eoyr2aaMZ0LGKfDlTKXR34nLlMcj9Qpnt46gsmHS00U24SKI8lMbgFnCdgihRPTTHtGdrPizztIuzBp3waSxkMUhbDP55IQyEZw5MEAJLsIbJVWaRa4nDTvyKLmgQ2jayKo62Ke-h-J__aUGb8KnkDM_CH0Pl_hC7QgWsOm9iTiJdovy7X6RWghTq-tgvlHasdvdc |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UV+line-driven+disc+wind+as+the+origin+of+UltraFast+Outflows+in+AGN&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Mizumoto%2C+Misaki&rft.au=Nomura%2C+Mariko&rft.au=Done%2C+Chris&rft.au=Ohsuga%2C+Ken&rft.date=2021-05-01&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=503&rft.issue=1&rft.spage=1442&rft.epage=1458&rft_id=info:doi/10.1093%2Fmnras%2Fstaa3282&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_staa3282 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |