UV line-driven disc wind as the origin of UltraFast Outflows in AGN

ABSTRACT UltraFast Outflows (UFOs) are observed in some active galactic nuclei (AGN), with blueshifted and highly ionized Fe-K absorption features. AGN typically have an ultraviolet (UV-) bright accretion flow, so UV line driving is an obvious candidate for launching these winds. However this mechan...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 503; no. 1; pp. 1442 - 1458
Main Authors Mizumoto, Misaki, Nomura, Mariko, Done, Chris, Ohsuga, Ken, Odaka, Hirokazu
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.05.2021
Subjects
Online AccessGet full text
ISSN0035-8711
1365-2966
DOI10.1093/mnras/staa3282

Cover

Abstract ABSTRACT UltraFast Outflows (UFOs) are observed in some active galactic nuclei (AGN), with blueshifted and highly ionized Fe-K absorption features. AGN typically have an ultraviolet (UV-) bright accretion flow, so UV line driving is an obvious candidate for launching these winds. However this mechanism requires material with UV opacity, in apparent conflict with the observed high-ionization state of the wind. In this paper, we synthesize the X-ray energy spectra resulting from different lines of sight through a state of the art radiation hydrodynamics UV line-driven disc wind simulation. We demonstrate that there are some lines of sight that only intercept highly ionized and fast outflowing material. The cooler material required for the UV line driving acceleration is out of the line of sight, close to the disc, shielded from the X-rays by a failed wind. We fit these simulated wind spectra to data from the archetypal UFO source PG 1211+143 and show that they broadly reproduce the depth and velocity of the iron absorption lines seen. This directly demonstrates that UV line driving is a viable mechanism to launch even the fastest UFOs. We simulate microcalorimeter observations of this wind and show that their high-energy resolution can resolve the detailed structure in the wind and recover the wind energetics when combined with models that correctly estimate the line formation radius of the wind. New data from microcalorimeters will pave the way for physical predictions of AGN wind feedback in cosmological simulations.
AbstractList ABSTRACT UltraFast Outflows (UFOs) are observed in some active galactic nuclei (AGN), with blueshifted and highly ionized Fe-K absorption features. AGN typically have an ultraviolet (UV-) bright accretion flow, so UV line driving is an obvious candidate for launching these winds. However this mechanism requires material with UV opacity, in apparent conflict with the observed high-ionization state of the wind. In this paper, we synthesize the X-ray energy spectra resulting from different lines of sight through a state of the art radiation hydrodynamics UV line-driven disc wind simulation. We demonstrate that there are some lines of sight that only intercept highly ionized and fast outflowing material. The cooler material required for the UV line driving acceleration is out of the line of sight, close to the disc, shielded from the X-rays by a failed wind. We fit these simulated wind spectra to data from the archetypal UFO source PG 1211+143 and show that they broadly reproduce the depth and velocity of the iron absorption lines seen. This directly demonstrates that UV line driving is a viable mechanism to launch even the fastest UFOs. We simulate microcalorimeter observations of this wind and show that their high-energy resolution can resolve the detailed structure in the wind and recover the wind energetics when combined with models that correctly estimate the line formation radius of the wind. New data from microcalorimeters will pave the way for physical predictions of AGN wind feedback in cosmological simulations.
UltraFast Outflows (UFOs) are observed in some active galactic nuclei (AGN), with blueshifted and highly ionized Fe-K absorption features. AGN typically have an ultraviolet (UV-) bright accretion flow, so UV line driving is an obvious candidate for launching these winds. However this mechanism requires material with UV opacity, in apparent conflict with the observed high-ionization state of the wind. In this paper, we synthesize the X-ray energy spectra resulting from different lines of sight through a state of the art radiation hydrodynamics UV line-driven disc wind simulation. We demonstrate that there are some lines of sight that only intercept highly ionized and fast outflowing material. The cooler material required for the UV line driving acceleration is out of the line of sight, close to the disc, shielded from the X-rays by a failed wind. We fit these simulated wind spectra to data from the archetypal UFO source PG 1211+143 and show that they broadly reproduce the depth and velocity of the iron absorption lines seen. This directly demonstrates that UV line driving is a viable mechanism to launch even the fastest UFOs. We simulate microcalorimeter observations of this wind and show that their high-energy resolution can resolve the detailed structure in the wind and recover the wind energetics when combined with models that correctly estimate the line formation radius of the wind. New data from microcalorimeters will pave the way for physical predictions of AGN wind feedback in cosmological simulations.
Author Mizumoto, Misaki
Nomura, Mariko
Odaka, Hirokazu
Done, Chris
Ohsuga, Ken
Author_xml – sequence: 1
  givenname: Misaki
  orcidid: 0000-0003-2161-0361
  surname: Mizumoto
  fullname: Mizumoto, Misaki
  email: mizumoto.misaki.n68@kyoto-u.jp
– sequence: 2
  givenname: Mariko
  orcidid: 0000-0002-6236-5270
  surname: Nomura
  fullname: Nomura, Mariko
– sequence: 3
  givenname: Chris
  surname: Done
  fullname: Done, Chris
– sequence: 4
  givenname: Ken
  surname: Ohsuga
  fullname: Ohsuga, Ken
– sequence: 5
  givenname: Hirokazu
  surname: Odaka
  fullname: Odaka, Hirokazu
BookMark eNqFkL9PAjEYhhuDiYCuzl0dDvr72pEQQRMii7heSq_VmqMlbZH433uKLibG6Rve73nz5hmBQYjBAnCN0QQjRae7kHSe5qI1JZKcgSGmgldECTEAQ4Qor2SN8QUY5fyKEGKUiCGYb55g54Ot2uTfbICtzwYefWihzrC8WBiTf_YBRgc3XUl6oXOB60NxXTxm2Aez5cMlOHe6y_bq-47BZnH7OL-rVuvl_Xy2qgzldakcY24rtpIiYzlxSnJGmOZSGVkrbqVgGjvhmCGtMjVrt1xyzltWY8OtqjkdA3bqNSnmnKxrjC-6-Bj6Yb5rMGo-RTRfIpofET02-YXtk9_p9P43cHMC4mH_3-8HCqZyog
CitedBy_id crossref_primary_10_3847_1538_4357_aca58c
crossref_primary_10_1093_mnras_stac1422
crossref_primary_10_3847_1538_4357_acdb78
crossref_primary_10_3847_1538_4365_ad5961
crossref_primary_10_1093_mnras_stac1369
crossref_primary_10_1051_0004_6361_202244270
crossref_primary_10_3847_1538_4357_ad06ac
crossref_primary_10_3390_universe11020069
crossref_primary_10_1093_mnras_stad2329
crossref_primary_10_3847_1538_4357_ad1107
crossref_primary_10_1093_mnras_stab2214
crossref_primary_10_1093_mnras_stab3426
crossref_primary_10_1093_mnras_stac2155
crossref_primary_10_3847_1538_4357_ad0bfa
crossref_primary_10_3847_1538_3881_ad43db
crossref_primary_10_3390_galaxies12020017
crossref_primary_10_3847_1538_4357_ac139d
crossref_primary_10_1051_0004_6361_202245572
crossref_primary_10_1093_mnras_stac1058
crossref_primary_10_1093_mnras_stac2203
crossref_primary_10_1038_s41550_022_01857_y
crossref_primary_10_3847_1538_4357_abedaf
crossref_primary_10_1093_mnras_stac877
crossref_primary_10_1093_mnras_stac3171
crossref_primary_10_1002_asna_20240027
crossref_primary_10_3847_1538_4357_ac99de
crossref_primary_10_3847_1538_4357_ad6b95
crossref_primary_10_1051_0004_6361_202244614
crossref_primary_10_3847_1538_4357_ac3763
crossref_primary_10_3847_1538_4357_acd380
crossref_primary_10_3847_1538_4357_ac9388
crossref_primary_10_1360_TB_2024_0611
Cites_doi 10.1086/167900
10.1093/mnras/staa948
10.1088/0004-637X/728/2/98
10.1088/0004-637X/789/1/19
10.1051/0004-6361/200912579
10.1051/0004-6361/201629178
10.1093/mnrasl/slx129
10.1093/mnras/staa1117
10.1086/300353
10.1051/0004-6361:20000036
10.1093/mnras/sty1697
10.1086/174746
10.1046/j.1365-8711.2003.07006.x
10.1086/192291
10.1088/0004-637X/740/2/103
10.1051/0004-6361/200913440
10.1093/mnras/sty3056
10.1051/0004-6361/201015164
10.1086/378218
10.1051/0004-6361:20000066
10.1093/mnras/staa2321
10.3847/1538-4357/aabf38
10.1093/pasj/65.2.40
10.1088/0004-637X/694/1/1
10.1086/507458
10.1088/0004-637X/701/1/493
10.1051/0004-6361/201322464
10.1093/mnras/stv1207
10.1086/424039
10.1038/nature08007
10.1093/mnras/sts481
10.1086/420973
10.1088/2041-8205/763/1/L18
10.1093/mnrasl/slaa144
10.1086/425117
10.1093/mnras/199.4.883
10.1093/pasj/psv124
10.1086/156922
10.3847/1538-4357/aaf814
10.1086/317016
10.1111/j.1365-2966.2010.17215.x
10.1139/p07-197
10.1086/506911
10.1093/mnras/stw354
10.1086/317154
10.1093/mnras/stw2877
10.1086/176238
10.1093/mnras/sty2398
10.1093/mnras/stt807
10.1088/0004-637X/805/1/17
10.1051/0004-6361:20077947
10.1088/0004-637X/742/1/44
10.1093/mnras/stv2347
10.1051/0004-6361:20066548
10.1111/j.1365-2966.2006.10137.x
10.3847/2041-8213/ab5193
10.1093/mnras/sty1890
10.1111/j.1365-2966.2007.12336.x
10.1111/j.1365-2966.2010.16396.x
10.1086/169486
10.1016/S0168-9002(03)01368-8
10.1038/s41550-018-0406-3
10.1051/0004-6361:200810993
10.1093/mnras/stu2095
10.1086/324534
10.1093/mnras/stw1579
10.1046/j.1365-8711.2003.06980.x
10.1088/0004-637X/697/1/160
10.1038/nature14261
ContentType Journal Article
Copyright 2021 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2021
Copyright_xml – notice: 2021 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2021
DBID AAYXX
CITATION
DOI 10.1093/mnras/staa3282
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 1458
ExternalDocumentID 10_1093_mnras_staa3282
10.1093/mnras/staa3282
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABAZT
ABEJV
ABGNP
ABVLG
ACUXJ
AHGBF
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
ID FETCH-LOGICAL-c357t-f44fb6b830ce52f985424a589c8795e864a1f6f4c2d9c74db58555d471c5e9753
IEDL.DBID TOX
ISSN 0035-8711
IngestDate Thu Apr 24 23:05:38 EDT 2025
Tue Jul 01 01:23:20 EDT 2025
Wed Aug 28 03:19:05 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords galaxies: Seyfert
galaxies: active
galaxies: individual: PG 1211+143
X-rays: galaxies
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-f44fb6b830ce52f985424a589c8795e864a1f6f4c2d9c74db58555d471c5e9753
ORCID 0000-0003-2161-0361
0000-0002-6236-5270
OpenAccessLink http://hdl.handle.net/2433/262707
PageCount 17
ParticipantIDs crossref_citationtrail_10_1093_mnras_staa3282
crossref_primary_10_1093_mnras_staa3282
oup_primary_10_1093_mnras_staa3282
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Schurch (2022031900103863400_bib55) 2007; 381
Davis (2022031900103863400_bib12) 2011; 728
Kubota (2022031900103863400_bib31) 2018; 480
Stevens (2022031900103863400_bib61) 1990; 365
Pounds (2022031900103863400_bib47) 2003; 345
Reeves (2022031900103863400_bib53) 2003; 593
Waters (2022031900103863400_bib70) 2018; 481
Matzeu (2022031900103863400_bib35) 2017; 472
Ueda (2022031900103863400_bib67) 2004; 609
Mizumoto (2022031900103863400_bib38) 2019; 871
Agostinelli (2022031900103863400_bib1) 2003; 506
Magorrian (2022031900103863400_bib32) 1998; 115
Proga (2022031900103863400_bib49) 2004; 616
Miller (2022031900103863400_bib36) 2007; 463
Cicone (2022031900103863400_bib10) 2018; 2
Kriss (2022031900103863400_bib30) 2018; 859
Schurch (2022031900103863400_bib56) 2009; 694
HI4PI Collaboration (2022031900103863400_bib23) 2016; 594
Silk (2022031900103863400_bib58) 1998; 331
Gofford (2022031900103863400_bib19) 2015; 451
Gofford (2022031900103863400_bib18) 2013; 430
Costa (2022031900103863400_bib11) 2020; 497
Quera-Bofarull (2022031900103863400_bib51) 2020; 495
Feruglio (2022031900103863400_bib14) 2010; 518
Watanabe (2022031900103863400_bib69) 2006; 651
Fukumura (2022031900103863400_bib16) 2015; 805
Strüder (2022031900103863400_bib62) 2001; 365
Bentz (2022031900103863400_bib4) 2009; 697
Cardelli (2022031900103863400_bib7) 1989; 345
Proga (2022031900103863400_bib48) 2002; 565
Gallo (2022031900103863400_bib17) 2006; 368
King (2022031900103863400_bib28) 2003; 345
Jansen (2022031900103863400_bib25) 2001; 365
Odaka (2022031900103863400_bib44) 2011; 740
Wagner (2022031900103863400_bib68) 2013; 763
Wilms (2022031900103863400_bib71) 2000; 542
Kallman (2022031900103863400_bib26) 2004; 155
Proga (2022031900103863400_bib50) 2000; 543
Sim (2022031900103863400_bib59) 2010; 404
Matzeu (2022031900103863400_bib34) 2016; 458
Parker (2022031900103863400_bib45) 2020; 498
Pounds (2022031900103863400_bib46) 2013; 433
Cicone (2022031900103863400_bib9) 2014; 562
Reeves (2022031900103863400_bib52) 2009; 701
Sim (2022031900103863400_bib60) 2010; 408
Hagino (2022031900103863400_bib21) 2015; 446
Nomura (2022031900103863400_bib40) 2017; 465
Nomura (2022031900103863400_bib42) 2016; 68
Tombesi (2022031900103863400_bib63) 2010; 521
Mizumoto (2022031900103863400_bib37) 2019; 482
Cash (2022031900103863400_bib8) 1979; 228
Shemmer (2022031900103863400_bib57) 2006; 646
Blandford (2022031900103863400_bib5) 1982; 199
Gu (2022031900103863400_bib20) 2008; 86
Marziani (2022031900103863400_bib33) 1996; 104
Nomura (2022031900103863400_bib43) 2020; 494
Hagino (2022031900103863400_bib22) 2016; 461
Higginbottom (2022031900103863400_bib24) 2014; 789
Risaliti (2022031900103863400_bib54) 2010; 516
Konigl (2022031900103863400_bib29) 1994; 434
Murray (2022031900103863400_bib39) 1995; 451
Nomura (2022031900103863400_bib41) 2013; 65
Fabian (2022031900103863400_bib13) 2009; 459
Tombesi (2022031900103863400_bib64) 2011; 742
Tombesi (2022031900103863400_bib65) 2015; 519
Bachev (2022031900103863400_bib3) 2009; 493
Braito (2022031900103863400_bib6) 2018; 479
King (2022031900103863400_bib27) 2016; 455
Turner (2022031900103863400_bib66) 2007; 475
Fukumura (2022031900103863400_bib15) 2019; 885
Arnaud (2022031900103863400_bib2) 1996
References_xml – volume: 345
  start-page: 245
  year: 1989
  ident: 2022031900103863400_bib7
  publication-title: ApJ
  doi: 10.1086/167900
– volume: 494
  start-page: 3616
  year: 2020
  ident: 2022031900103863400_bib43
  publication-title: MNRAS
  doi: 10.1093/mnras/staa948
– volume: 728
  start-page: 98
  year: 2011
  ident: 2022031900103863400_bib12
  publication-title: ApJ
  doi: 10.1088/0004-637X/728/2/98
– volume: 789
  start-page: 19
  year: 2014
  ident: 2022031900103863400_bib24
  publication-title: ApJ
  doi: 10.1088/0004-637X/789/1/19
– volume: 516
  start-page: A89
  year: 2010
  ident: 2022031900103863400_bib54
  publication-title: A&A
  doi: 10.1051/0004-6361/200912579
– volume: 594
  start-page: A116
  year: 2016
  ident: 2022031900103863400_bib23
  publication-title: A&A
  doi: 10.1051/0004-6361/201629178
– volume: 472
  start-page: L15
  year: 2017
  ident: 2022031900103863400_bib35
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slx129
– volume: 495
  start-page: 402
  year: 2020
  ident: 2022031900103863400_bib51
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1117
– volume: 115
  start-page: 2285
  year: 1998
  ident: 2022031900103863400_bib32
  publication-title: AJ
  doi: 10.1086/300353
– volume: 365
  start-page: L1
  year: 2001
  ident: 2022031900103863400_bib25
  publication-title: A&A
  doi: 10.1051/0004-6361:20000036
– volume: 479
  start-page: 3592
  year: 2018
  ident: 2022031900103863400_bib6
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1697
– start-page: 17
  volume-title: ASP Conf. Ser. Vol. 101
  year: 1996
  ident: 2022031900103863400_bib2
– volume: 434
  start-page: 446
  year: 1994
  ident: 2022031900103863400_bib29
  publication-title: ApJ
  doi: 10.1086/174746
– volume: 345
  start-page: 705
  year: 2003
  ident: 2022031900103863400_bib47
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.07006.x
– volume: 104
  start-page: 37
  year: 1996
  ident: 2022031900103863400_bib33
  publication-title: ApJS
  doi: 10.1086/192291
– volume: 740
  start-page: 103
  year: 2011
  ident: 2022031900103863400_bib44
  publication-title: ApJ
  doi: 10.1088/0004-637X/740/2/103
– volume: 521
  start-page: A57
  year: 2010
  ident: 2022031900103863400_bib63
  publication-title: A&A
  doi: 10.1051/0004-6361/200913440
– volume: 482
  start-page: 5316
  year: 2019
  ident: 2022031900103863400_bib37
  publication-title: MNRAS
  doi: 10.1093/mnras/sty3056
– volume: 518
  start-page: L155
  year: 2010
  ident: 2022031900103863400_bib14
  publication-title: A&A
  doi: 10.1051/0004-6361/201015164
– volume: 593
  start-page: L65
  year: 2003
  ident: 2022031900103863400_bib53
  publication-title: ApJ
  doi: 10.1086/378218
– volume: 365
  start-page: L18
  year: 2001
  ident: 2022031900103863400_bib62
  publication-title: A&A
  doi: 10.1051/0004-6361:20000066
– volume: 497
  start-page: 5229
  year: 2020
  ident: 2022031900103863400_bib11
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2321
– volume: 859
  start-page: 94
  year: 2018
  ident: 2022031900103863400_bib30
  publication-title: ApJ
  doi: 10.3847/1538-4357/aabf38
– volume: 65
  start-page: 40
  year: 2013
  ident: 2022031900103863400_bib41
  publication-title: PASJ
  doi: 10.1093/pasj/65.2.40
– volume: 694
  start-page: 1
  year: 2009
  ident: 2022031900103863400_bib56
  publication-title: ApJ
  doi: 10.1088/0004-637X/694/1/1
– volume: 651
  start-page: 421
  year: 2006
  ident: 2022031900103863400_bib69
  publication-title: ApJ
  doi: 10.1086/507458
– volume: 701
  start-page: 493
  year: 2009
  ident: 2022031900103863400_bib52
  publication-title: ApJ
  doi: 10.1088/0004-637X/701/1/493
– volume: 562
  start-page: A21
  year: 2014
  ident: 2022031900103863400_bib9
  publication-title: A&A
  doi: 10.1051/0004-6361/201322464
– volume: 451
  start-page: 4169
  year: 2015
  ident: 2022031900103863400_bib19
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1207
– volume: 155
  start-page: 675
  year: 2004
  ident: 2022031900103863400_bib26
  publication-title: ApJS
  doi: 10.1086/424039
– volume: 459
  start-page: 540
  year: 2009
  ident: 2022031900103863400_bib13
  publication-title: Nature
  doi: 10.1038/nature08007
– volume: 430
  start-page: 60
  year: 2013
  ident: 2022031900103863400_bib18
  publication-title: MNRAS
  doi: 10.1093/mnras/sts481
– volume: 609
  start-page: 325
  year: 2004
  ident: 2022031900103863400_bib67
  publication-title: ApJ
  doi: 10.1086/420973
– volume: 763
  start-page: L18
  year: 2013
  ident: 2022031900103863400_bib68
  publication-title: ApJ
  doi: 10.1088/2041-8205/763/1/L18
– volume: 498
  start-page: L140
  year: 2020
  ident: 2022031900103863400_bib45
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slaa144
– volume: 331
  start-page: L1
  year: 1998
  ident: 2022031900103863400_bib58
  publication-title: A&A
– volume: 616
  start-page: 688
  year: 2004
  ident: 2022031900103863400_bib49
  publication-title: ApJ
  doi: 10.1086/425117
– volume: 199
  start-page: 883
  year: 1982
  ident: 2022031900103863400_bib5
  publication-title: MNRAS
  doi: 10.1093/mnras/199.4.883
– volume: 68
  start-page: 16
  year: 2016
  ident: 2022031900103863400_bib42
  publication-title: PASJ
  doi: 10.1093/pasj/psv124
– volume: 228
  start-page: 939
  year: 1979
  ident: 2022031900103863400_bib8
  publication-title: ApJ
  doi: 10.1086/156922
– volume: 871
  start-page: 156
  year: 2019
  ident: 2022031900103863400_bib38
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaf814
– volume: 542
  start-page: 914
  year: 2000
  ident: 2022031900103863400_bib71
  publication-title: ApJ
  doi: 10.1086/317016
– volume: 408
  start-page: 1396
  year: 2010
  ident: 2022031900103863400_bib60
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17215.x
– volume: 86
  start-page: 675
  year: 2008
  ident: 2022031900103863400_bib20
  publication-title: Can. J. Phys.
  doi: 10.1139/p07-197
– volume: 646
  start-page: L29
  year: 2006
  ident: 2022031900103863400_bib57
  publication-title: ApJ
  doi: 10.1086/506911
– volume: 458
  start-page: 1311
  year: 2016
  ident: 2022031900103863400_bib34
  publication-title: MNRAS
  doi: 10.1093/mnras/stw354
– volume: 543
  start-page: 686
  year: 2000
  ident: 2022031900103863400_bib50
  publication-title: ApJ
  doi: 10.1086/317154
– volume: 465
  start-page: 2873
  year: 2017
  ident: 2022031900103863400_bib40
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2877
– volume: 451
  start-page: 498
  year: 1995
  ident: 2022031900103863400_bib39
  publication-title: ApJ
  doi: 10.1086/176238
– volume: 481
  start-page: 2628
  year: 2018
  ident: 2022031900103863400_bib70
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2398
– volume: 433
  start-page: 1369
  year: 2013
  ident: 2022031900103863400_bib46
  publication-title: MNRAS
  doi: 10.1093/mnras/stt807
– volume: 805
  start-page: 17
  year: 2015
  ident: 2022031900103863400_bib16
  publication-title: ApJ
  doi: 10.1088/0004-637X/805/1/17
– volume: 475
  start-page: 121
  year: 2007
  ident: 2022031900103863400_bib66
  publication-title: A&A
  doi: 10.1051/0004-6361:20077947
– volume: 742
  start-page: 44
  year: 2011
  ident: 2022031900103863400_bib64
  publication-title: ApJ
  doi: 10.1088/0004-637X/742/1/44
– volume: 455
  start-page: 1211
  year: 2016
  ident: 2022031900103863400_bib27
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2347
– volume: 463
  start-page: 131
  year: 2007
  ident: 2022031900103863400_bib36
  publication-title: A&A
  doi: 10.1051/0004-6361:20066548
– volume: 368
  start-page: 479
  year: 2006
  ident: 2022031900103863400_bib17
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10137.x
– volume: 885
  start-page: L38
  year: 2019
  ident: 2022031900103863400_bib15
  publication-title: ApJ
  doi: 10.3847/2041-8213/ab5193
– volume: 480
  start-page: 1247
  year: 2018
  ident: 2022031900103863400_bib31
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1890
– volume: 381
  start-page: 1413
  year: 2007
  ident: 2022031900103863400_bib55
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12336.x
– volume: 404
  start-page: 1369
  year: 2010
  ident: 2022031900103863400_bib59
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16396.x
– volume: 365
  start-page: 321
  year: 1990
  ident: 2022031900103863400_bib61
  publication-title: ApJ
  doi: 10.1086/169486
– volume: 506
  start-page: 250
  year: 2003
  ident: 2022031900103863400_bib1
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/S0168-9002(03)01368-8
– volume: 2
  start-page: 176
  year: 2018
  ident: 2022031900103863400_bib10
  publication-title: Nat. Astron.
  doi: 10.1038/s41550-018-0406-3
– volume: 493
  start-page: 907
  year: 2009
  ident: 2022031900103863400_bib3
  publication-title: A&A
  doi: 10.1051/0004-6361:200810993
– volume: 446
  start-page: 663
  year: 2015
  ident: 2022031900103863400_bib21
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2095
– volume: 565
  start-page: 455
  year: 2002
  ident: 2022031900103863400_bib48
  publication-title: ApJ
  doi: 10.1086/324534
– volume: 461
  start-page: 3954
  year: 2016
  ident: 2022031900103863400_bib22
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1579
– volume: 345
  start-page: 657
  year: 2003
  ident: 2022031900103863400_bib28
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06980.x
– volume: 697
  start-page: 160
  year: 2009
  ident: 2022031900103863400_bib4
  publication-title: ApJ
  doi: 10.1088/0004-637X/697/1/160
– volume: 519
  start-page: 436
  year: 2015
  ident: 2022031900103863400_bib65
  publication-title: Nature
  doi: 10.1038/nature14261
SSID ssj0004326
Score 2.5736785
Snippet ABSTRACT UltraFast Outflows (UFOs) are observed in some active galactic nuclei (AGN), with blueshifted and highly ionized Fe-K absorption features. AGN...
UltraFast Outflows (UFOs) are observed in some active galactic nuclei (AGN), with blueshifted and highly ionized Fe-K absorption features. AGN typically have...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 1442
Title UV line-driven disc wind as the origin of UltraFast Outflows in AGN
Volume 503
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7EkxfRqrS-WET0tLTJPpIcS7EWoe2lkd7CZpMFIU0kSSn-e2c3aX2g6C3JTnKY3ex8M7PzDUK3QiaaulKRgDOPMN_RJknIwUtxlHaoEAPPFApPZ2ISsqclX7Zk0dUPKfyA9ld5Kas-YCVJwT-A3RYssFnRi_nyowKS2sZqloARXABnR8_4_fUv5seUtH2yJuMjdNjCQDxs5u0Y7aV5B3WHlQlMF6s3fIftdRN3qDqoNwVwW5Q2Bg6Do-wFkKa9O0Gj8BkbsEiS0mxd2BTa4g342lhWGPAdbppf4ULjMKtLOZZVjefrWmfFpsIwMHycnaJw_LAYTUjbG4Eoyr2aaMZ0LGKfDlTKXR34nLlMcj9Qpnt46gsmHS00U24SKI8lMbgFnCdgihRPTTHtGdrPizztIuzBp3waSxkMUhbDP55IQyEZw5MEAJLsIbJVWaRa4nDTvyKLmgQ2jayKo62Ke-h-J__aUGb8KnkDM_CH0Pl_hC7QgWsOm9iTiJdovy7X6RWghTq-tgvlHasdvdc
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UV+line-driven+disc+wind+as+the+origin+of+UltraFast+Outflows+in+AGN&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Mizumoto%2C+Misaki&rft.au=Nomura%2C+Mariko&rft.au=Done%2C+Chris&rft.au=Ohsuga%2C+Ken&rft.date=2021-05-01&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=503&rft.issue=1&rft.spage=1442&rft.epage=1458&rft_id=info:doi/10.1093%2Fmnras%2Fstaa3282&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_staa3282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon