FuseGAN: Learning to Fuse Multi-Focus Image via Conditional Generative Adversarial Network
We study the problem of multi-focus image fusion, where the key challenge is detecting the focused regions accurately among multiple partially focused source images. Inspired by the conditional generative adversarial network (cGAN) to image-to-image task, we propose a novel FuseGAN to fulfill the im...
Saved in:
Published in | IEEE transactions on multimedia Vol. 21; no. 8; pp. 1982 - 1996 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study the problem of multi-focus image fusion, where the key challenge is detecting the focused regions accurately among multiple partially focused source images. Inspired by the conditional generative adversarial network (cGAN) to image-to-image task, we propose a novel FuseGAN to fulfill the images-to-image for multi-focus image fusion. To satisfy the requirement of dual input-to-one output, the encoder of the generator in FuseGAN is designed as a Siamese network. The least square GAN objective is employed to enhance the training stability of FuseGAN, resulting in an accurate confidence map for focus region detection. Also, we exploit the convolutional conditional random fields technique on the confidence map to reach a refined final decision map for better focus region detection. Moreover, due to the lack of a large-scale standard dataset, we synthesize a large enough multi-focus image dataset based on a public natural image dataset PASCAL VOC 2012, where we utilize a normalized disk point spread function to simulate the defocus and separate the background and foreground in the synthesis for each image. We conduct extensive experiments on two public datasets to verify the effectiveness of the proposed method. Results demonstrate that the proposed method presents accurate decision maps for focus regions in multi-focus images, such that the fused images are superior to 11 recent state-of-the-art algorithms, not only in visual perception, but also in quantitative analysis in terms of five metrics. |
---|---|
AbstractList | We study the problem of multi-focus image fusion, where the key challenge is detecting the focused regions accurately among multiple partially focused source images. Inspired by the conditional generative adversarial network (cGAN) to image-to-image task, we propose a novel FuseGAN to fulfill the images-to-image for multi-focus image fusion. To satisfy the requirement of dual input-to-one output, the encoder of the generator in FuseGAN is designed as a Siamese network. The least square GAN objective is employed to enhance the training stability of FuseGAN, resulting in an accurate confidence map for focus region detection. Also, we exploit the convolutional conditional random fields technique on the confidence map to reach a refined final decision map for better focus region detection. Moreover, due to the lack of a large-scale standard dataset, we synthesize a large enough multi-focus image dataset based on a public natural image dataset PASCAL VOC 2012, where we utilize a normalized disk point spread function to simulate the defocus and separate the background and foreground in the synthesis for each image. We conduct extensive experiments on two public datasets to verify the effectiveness of the proposed method. Results demonstrate that the proposed method presents accurate decision maps for focus regions in multi-focus images, such that the fused images are superior to 11 recent state-of-the-art algorithms, not only in visual perception, but also in quantitative analysis in terms of five metrics. |
Author | Guo, Xiaopeng Mei, Liye Cao, Jinde He, Kangjian Nie, Rencan Zhou, Dongming |
Author_xml | – sequence: 1 givenname: Xiaopeng orcidid: 0000-0003-1111-2035 surname: Guo fullname: Guo, Xiaopeng email: xiaopengguo@mail.ynu.edu.cn organization: School of Information Science and Engineering, Yunnan University, Kunming, China – sequence: 2 givenname: Rencan orcidid: 0000-0003-0568-1231 surname: Nie fullname: Nie, Rencan email: rcnie@ynu.edu.cn organization: School of Information Science and Engineering, Yunnan University, Kunming, China – sequence: 3 givenname: Jinde orcidid: 0000-0003-3133-7119 surname: Cao fullname: Cao, Jinde email: jdcao@seu.edu.cn organization: School of Mathematics, Southeast University, Nanjing, China – sequence: 4 givenname: Dongming orcidid: 0000-0003-0139-9415 surname: Zhou fullname: Zhou, Dongming email: zhoudm@ynu.edu.cn organization: School of Information Science and Engineering, Yunnan University, Kunming, China – sequence: 5 givenname: Liye surname: Mei fullname: Mei, Liye email: liyemei@mail.ynu.edu.cn organization: School of Information Science and Engineering, Yunnan University, Kunming, China – sequence: 6 givenname: Kangjian surname: He fullname: He, Kangjian email: Hekangjian92@126.com organization: School of Information Science and Engineering, Yunnan University, Kunming, China |
BookMark | eNp9kEFPAjEQhRuDiYjeTbw08bzYdre7W2-ECJIAXvDipSm7U1KELbZdjP_ebiAePHiayct7k3nfNeo1tgGE7igZUkrE42qxGDJCxZCVgjPBLlCfiowmhBRFL-6ckUQwSq7QtfdbQmjGSdFH75PWw3S0fMJzUK4xzQYHizsRL9pdMMnEVq3Hs73aAD4ahce2qU0wtlE7PIUGnArmCHhUH8F55UyUlxC-rPu4QZda7TzcnucAvU2eV-OXZP46nY1H86RKeRESzdJKiKxQNYeMrVmpBRdC1aSMr-tMEKJ5namSFus0VksFkJornWmuBdPA0gF6ON09OPvZgg9ya1sX__OSsZyyXFAqois_uSpnvXegZWWC6ooEp8xOUiI7jjJylB1HeeYYg-RP8ODMXrnv_yL3p4gBgF97mTOelSz9AV6EftA |
CODEN | ITMUF8 |
CitedBy_id | crossref_primary_10_1016_j_infrared_2022_104383 crossref_primary_10_1155_2021_5439935 crossref_primary_10_1109_ACCESS_2023_3335307 crossref_primary_10_1016_j_cviu_2024_104029 crossref_primary_10_1007_s10489_022_04406_2 crossref_primary_10_1109_TMM_2022_3162474 crossref_primary_10_1016_j_image_2021_116599 crossref_primary_10_1016_j_sigpro_2025_109955 crossref_primary_10_1016_j_imavis_2024_105399 crossref_primary_10_1016_j_bspc_2022_104545 crossref_primary_10_1016_j_patrec_2020_08_002 crossref_primary_10_1016_j_image_2023_117058 crossref_primary_10_1016_j_ijleo_2024_171937 crossref_primary_10_1007_s11042_022_12031_x crossref_primary_10_1016_j_eswa_2023_121156 crossref_primary_10_1016_j_compeleceng_2025_110236 crossref_primary_10_1109_TMM_2022_3185887 crossref_primary_10_1016_j_inffus_2021_02_012 crossref_primary_10_3390_app132312798 crossref_primary_10_1007_s00521_020_04863_1 crossref_primary_10_1016_j_inffus_2022_09_005 crossref_primary_10_1109_TMM_2020_2985541 crossref_primary_10_3390_jimaging6070060 crossref_primary_10_1016_j_compeleceng_2024_109629 crossref_primary_10_1109_TMM_2021_3089019 crossref_primary_10_1007_s00521_023_08916_z crossref_primary_10_1016_j_cose_2023_103455 crossref_primary_10_1016_j_compbiomed_2023_106769 crossref_primary_10_1016_j_engappai_2024_107967 crossref_primary_10_7736_JKSPE_022_151 crossref_primary_10_1109_TMM_2022_3194991 crossref_primary_10_1016_j_infrared_2021_103975 crossref_primary_10_1109_TMM_2021_3057493 crossref_primary_10_1016_j_neucom_2020_04_002 crossref_primary_10_1109_TMM_2021_3091859 crossref_primary_10_1109_TCSVT_2022_3190057 crossref_primary_10_1109_ACCESS_2020_2971137 crossref_primary_10_1016_j_inffus_2022_10_017 crossref_primary_10_3390_s24227298 crossref_primary_10_1007_s10489_022_03194_z crossref_primary_10_1016_j_infrared_2021_103947 crossref_primary_10_3390_app12126281 crossref_primary_10_1109_TIM_2022_3159978 crossref_primary_10_1109_TMM_2022_3169055 crossref_primary_10_1016_j_compeleceng_2024_109299 crossref_primary_10_3390_electronics13142856 crossref_primary_10_2139_ssrn_4001587 crossref_primary_10_1007_s11548_025_03333_0 crossref_primary_10_1109_ACCESS_2019_2963741 crossref_primary_10_1364_OE_470037 crossref_primary_10_1109_ACCESS_2020_3010542 crossref_primary_10_23919_cje_2021_00_084 crossref_primary_10_3390_s22145149 crossref_primary_10_1016_j_displa_2024_102837 crossref_primary_10_1137_20M1334103 crossref_primary_10_3390_rs14102430 crossref_primary_10_1109_TIP_2024_3409940 crossref_primary_10_1049_ipr2_12363 crossref_primary_10_1016_j_ijleo_2022_168914 crossref_primary_10_1016_j_image_2023_116982 crossref_primary_10_1109_TITS_2022_3171433 crossref_primary_10_1109_TMM_2021_3109419 crossref_primary_10_1016_j_eswa_2023_121389 crossref_primary_10_1016_j_eswa_2023_121664 crossref_primary_10_1109_TMM_2022_3203220 crossref_primary_10_1007_s10489_022_03819_3 crossref_primary_10_1117_1_JEI_33_2_023005 crossref_primary_10_1109_TMM_2020_2997184 crossref_primary_10_1016_j_imavis_2023_104814 crossref_primary_10_1109_TIP_2022_3184250 crossref_primary_10_1109_TPAMI_2020_3012548 crossref_primary_10_1016_j_image_2021_116554 crossref_primary_10_1016_j_compbiomed_2023_106959 crossref_primary_10_3390_e24040522 crossref_primary_10_1016_j_infrared_2022_104466 crossref_primary_10_1007_s11042_023_16991_6 crossref_primary_10_1109_TMM_2021_3087034 crossref_primary_10_1109_JSEN_2021_3106063 crossref_primary_10_1049_ipr2_12805 crossref_primary_10_1109_TMM_2021_3064273 crossref_primary_10_1016_j_image_2024_117131 crossref_primary_10_1016_j_inffus_2021_06_008 crossref_primary_10_1109_TGRS_2024_3500036 crossref_primary_10_1587_transinf_2024EDP7046 crossref_primary_10_1016_j_inffus_2022_06_001 crossref_primary_10_1016_j_inffus_2020_08_012 crossref_primary_10_1016_j_eswa_2024_125665 crossref_primary_10_1007_s11831_022_09833_5 crossref_primary_10_1049_ipr2_12383 crossref_primary_10_1016_j_dsp_2024_104592 crossref_primary_10_3390_computers9040098 crossref_primary_10_1109_TIM_2021_3124058 crossref_primary_10_1016_j_inffus_2022_11_014 crossref_primary_10_1007_s11063_020_10215_w crossref_primary_10_1016_j_inffus_2020_06_013 crossref_primary_10_1016_j_image_2021_116295 crossref_primary_10_1016_j_neucom_2024_128116 crossref_primary_10_1109_ACCESS_2024_3402965 crossref_primary_10_1109_TIM_2020_3022438 crossref_primary_10_1109_TIP_2020_3018261 crossref_primary_10_1016_j_ins_2021_06_083 crossref_primary_10_1049_ipr2_12430 crossref_primary_10_1109_TMM_2024_3521817 crossref_primary_10_3390_electronics9091531 crossref_primary_10_1016_j_inffus_2025_102974 crossref_primary_10_1109_JAS_2022_105815 crossref_primary_10_3390_s20143901 crossref_primary_10_1109_TMM_2021_3096088 crossref_primary_10_1007_s11042_023_15342_9 crossref_primary_10_1177_00405175231179516 crossref_primary_10_1109_TMM_2023_3347099 crossref_primary_10_1109_TCDS_2021_3126330 crossref_primary_10_1109_TCSVT_2021_3064035 crossref_primary_10_1016_j_infrared_2024_105410 crossref_primary_10_1109_TMM_2020_3020695 crossref_primary_10_1016_j_imavis_2024_105410 crossref_primary_10_1155_2020_9821715 crossref_primary_10_1007_s11042_023_16071_9 crossref_primary_10_1016_j_asoc_2024_112114 crossref_primary_10_1016_j_sigpro_2021_108282 crossref_primary_10_1109_TMM_2020_2997127 crossref_primary_10_1007_s11042_021_11278_0 crossref_primary_10_1007_s11760_024_03294_y crossref_primary_10_1109_TPAMI_2024_3367905 crossref_primary_10_1109_JIOT_2023_3342638 crossref_primary_10_1007_s00371_024_03637_3 crossref_primary_10_1109_TMM_2021_3050053 crossref_primary_10_1016_j_cviu_2021_103228 crossref_primary_10_1016_j_knosys_2024_111658 crossref_primary_10_1371_journal_pone_0302545 crossref_primary_10_1109_TMM_2020_3008053 crossref_primary_10_1109_TMM_2021_3065496 crossref_primary_10_1109_TIM_2023_3282300 crossref_primary_10_1109_TPAMI_2021_3078906 crossref_primary_10_1007_s10462_023_10487_3 crossref_primary_10_1109_TCSVT_2022_3229691 crossref_primary_10_1007_s11042_022_12046_4 crossref_primary_10_1007_s00138_022_01345_3 crossref_primary_10_1109_TGRS_2020_3011429 crossref_primary_10_3390_e24050582 crossref_primary_10_3390_e23101362 crossref_primary_10_1016_j_inffus_2020_08_022 crossref_primary_10_1109_TCI_2021_3063872 crossref_primary_10_1109_TMM_2020_3015015 |
Cites_doi | 10.1016/j.inffus.2006.09.001 10.1016/j.inffus.2016.09.006 10.1016/j.inffus.2016.12.001 10.1109/CVPR.2015.7299064 10.1016/j.inffus.2005.09.006 10.1109/TMI.2004.825627 10.1016/j.inffus.2017.10.007 10.1109/ICCV.2017.304 10.1007/s11263-014-0733-5 10.1109/CVPR.2016.90 10.1109/LSP.2016.2618776 10.1007/s11760-013-0556-9 10.1109/ACCESS.2017.2735019 10.1109/TMM.2017.2760100 10.1007/s10044-011-0235-9 10.1109/TIP.2013.2286328 10.1049/el:20000267 10.1016/j.patrec.2007.01.013 10.1007/s11760-012-0361-x 10.1016/j.sigpro.2012.01.027 10.1109/TCSVT.2018.2821177 10.1109/CVPR.2017.632 10.1016/S1566-2535(01)00038-0 10.1109/TMM.2017.2743988 10.1109/TMM.2013.2244870 10.1109/TIP.2013.2244222 10.1109/TMM.2013.2244871 10.1016/S0167-8655(01)00047-2 10.1109/ICCV.2017.505 10.1109/TPAMI.2011.109 10.1109/CVPR.2016.350 10.1016/j.sigpro.2009.01.012 10.1887/0750304359 10.1109/CVPR.2017.728 10.1016/j.imavis.2007.12.002 10.1016/j.inffus.2006.04.001 10.1109/TMM.2015.2403612 10.1016/j.inffus.2011.07.001 10.1016/j.inffus.2014.10.004 10.1016/j.inffus.2014.05.004 10.1016/j.inffus.2005.04.003 10.1049/el:20081754 10.1016/j.imavis.2007.10.012 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TMM.2019.2895292 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0077 |
EndPage | 1996 |
ExternalDocumentID | 10_1109_TMM_2019_2895292 8625482 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61463052; 61365001 funderid: 10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 171740 funderid: 10.13039/501100002858 – fundername: Yunnan University grantid: YDY17111 funderid: 10.13039/501100007839 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 VH1 ZY4 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c357t-f23c9947ad5e42b28f9599ad08007f4900f5d4a817b389539e0d5af4f5f92fe23 |
IEDL.DBID | RIE |
ISSN | 1520-9210 |
IngestDate | Mon Jun 30 04:58:45 EDT 2025 Thu Apr 24 23:03:23 EDT 2025 Tue Jul 01 01:54:32 EDT 2025 Wed Aug 27 02:40:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-f23c9947ad5e42b28f9599ad08007f4900f5d4a817b389539e0d5af4f5f92fe23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1111-2035 0000-0003-0139-9415 0000-0003-3133-7119 0000-0003-0568-1231 |
PQID | 2261269119 |
PQPubID | 75737 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1109_TMM_2019_2895292 ieee_primary_8625482 proquest_journals_2261269119 crossref_primary_10_1109_TMM_2019_2895292 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on multimedia |
PublicationTitleAbbrev | TMM |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 ref12 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 arjovsky (ref43) 2017 paszke (ref49) 0 ref51 ref50 zhang (ref35) 2017 ref46 yan (ref23) 2018 ref45 ref47 nowozin (ref39) 0 ref42 ref44 goodfellow (ref24) 0 ratt (ref6) 2007; 8 kingma (ref48) 2014 ref8 ref7 teichmann (ref29) 2018 ref9 ref4 ref3 ref5 ref40 ref37 ref36 ref31 ref30 ref33 ref32 son (ref34) 2017 ref2 ref1 reed (ref26) 0 dumoulin (ref41) 2016 ref25 ref20 ref22 ref21 salimans (ref38) 0 ref27 mirza (ref28) 0 |
References_xml | – ident: ref55 doi: 10.1016/j.inffus.2006.09.001 – ident: ref19 doi: 10.1016/j.inffus.2016.09.006 – year: 2017 ident: ref35 article-title: Image de-raining using a conditional generative adversarial network – ident: ref20 doi: 10.1016/j.inffus.2016.12.001 – ident: ref33 doi: 10.1109/CVPR.2015.7299064 – ident: ref9 doi: 10.1016/j.inffus.2005.09.006 – ident: ref37 doi: 10.1109/TMI.2004.825627 – ident: ref44 doi: 10.1016/j.inffus.2017.10.007 – ident: ref31 doi: 10.1109/ICCV.2017.304 – ident: ref45 doi: 10.1007/s11263-014-0733-5 – ident: ref42 doi: 10.1109/CVPR.2016.90 – ident: ref32 doi: 10.1109/LSP.2016.2618776 – start-page: 2672 year: 0 ident: ref24 article-title: Generative Adversarial Networks publication-title: Proc Conf Neural Inf Process Syst – ident: ref12 doi: 10.1007/s11760-013-0556-9 – ident: ref21 doi: 10.1109/ACCESS.2017.2735019 – ident: ref4 doi: 10.1109/TMM.2017.2760100 – ident: ref30 doi: 10.1007/s10044-011-0235-9 – ident: ref47 doi: 10.1109/TIP.2013.2286328 – year: 0 ident: ref28 article-title: Conditional generative adversarial nets – ident: ref53 doi: 10.1049/el:20000267 – start-page: 271 year: 0 ident: ref39 article-title: f-GAN: Training generative neural samplers using variational divergence minimization publication-title: Proc Conf Neural Inf Process Syst – ident: ref16 doi: 10.1016/j.patrec.2007.01.013 – ident: ref10 doi: 10.1007/s11760-012-0361-x – ident: ref8 doi: 10.1016/j.sigpro.2012.01.027 – ident: ref22 doi: 10.1109/TCSVT.2018.2821177 – year: 2017 ident: ref43 article-title: Towards principled methods for training generative adversarial networks – ident: ref27 doi: 10.1109/CVPR.2017.632 – ident: ref15 doi: 10.1016/S1566-2535(01)00038-0 – ident: ref3 doi: 10.1109/TMM.2017.2743988 – ident: ref1 doi: 10.1109/TMM.2013.2244870 – ident: ref13 doi: 10.1109/TIP.2013.2244222 – ident: ref5 doi: 10.1109/TMM.2013.2244871 – ident: ref7 doi: 10.1016/S0167-8655(01)00047-2 – year: 2018 ident: ref29 article-title: Convolutional CRFs for semantic segmentation – ident: ref40 doi: 10.1109/ICCV.2017.505 – ident: ref51 doi: 10.1109/TPAMI.2011.109 – ident: ref36 doi: 10.1109/CVPR.2016.350 – ident: ref11 doi: 10.1016/j.sigpro.2009.01.012 – ident: ref46 doi: 10.1887/0750304359 – ident: ref25 doi: 10.1109/CVPR.2017.728 – year: 2017 ident: ref34 article-title: Retinal vessel segmentation in fundoscopic images with generative adversarial networks – ident: ref56 doi: 10.1016/j.imavis.2007.12.002 – volume: 8 start-page: 114 year: 2007 ident: ref6 article-title: Image fusion: Advances in the state of the art publication-title: Inf Fusion doi: 10.1016/j.inffus.2006.04.001 – ident: ref2 doi: 10.1109/TMM.2015.2403612 – ident: ref18 doi: 10.1016/j.inffus.2011.07.001 – ident: ref50 doi: 10.1016/j.inffus.2014.10.004 – year: 2018 ident: ref23 article-title: Unsupervised deep multi-focus image fusion publication-title: arXiv 1806 07272 – start-page: 2234 year: 0 ident: ref38 article-title: Improved techniques for training GANs publication-title: Proc Conf Neural Inf Process Syst – ident: ref14 doi: 10.1016/j.inffus.2014.05.004 – start-page: 1 year: 0 ident: ref49 article-title: Automatic differentiation in pytorch publication-title: Proc Conf Neural Inf Process Syst Workshops – ident: ref54 doi: 10.1016/j.inffus.2005.04.003 – year: 2014 ident: ref48 article-title: Adam: A method for stochastic optimization – ident: ref52 doi: 10.1049/el:20081754 – year: 2016 ident: ref41 article-title: A guide to convolution arithmetic for deep learning – ident: ref17 doi: 10.1016/j.imavis.2007.10.012 – start-page: 1060 year: 0 ident: ref26 article-title: Generative adversarial text to image synthesis publication-title: Proc 33rd Int Conf Mach Learn |
SSID | ssj0014507 |
Score | 2.6071727 |
Snippet | We study the problem of multi-focus image fusion, where the key challenge is detecting the focused regions accurately among multiple partially focused source... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1982 |
SubjectTerms | Algorithms Coders Computer simulation Computer vision Conditional generative adversarial network Conditional random fields convolutional conditional random fields Datasets Gallium nitride Generative adversarial networks Generators Image fusion Image processing images-to-image multi-focus image fusion Point spread functions Quantitative analysis synthesize dataset Task analysis Training Transforms Visual perception driven algorithms |
Title | FuseGAN: Learning to Fuse Multi-Focus Image via Conditional Generative Adversarial Network |
URI | https://ieeexplore.ieee.org/document/8625482 https://www.proquest.com/docview/2261269119 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLaAExwYTzFeyoELEtm6NFkbbhNiDKTtBBLiUiWNgxCwIdZx4NeTpO3ES4hbVSVtpM9x7Nj-DHAkurFGrROKvIOUizymUqiUGm4UKnQ2SO4jusNRd3DDr27F7QKczGthEDEkn2HLP4ZYvpnkM39V1nbWtzOwncJddI5bWas1jxhwEUqj3XEUUen8mDokGcn29XDoc7hkyzkXgkn25QgKPVV-KOJwuvQbMKzXVSaVPLZmhW7l798oG_-78DVYrcxM0ivlYh0WcLwBjbqFA6l29AasfOIj3IS7_myKF73RKaloV-9JMSH-JQmFurTvfjUll89OCZG3B0XOJj7iHW4TSUlg7bUnCV2ep8rLNhmVeeZbcNM_vz4b0Kr5As1jkRTUsjiXkifKCORMs9RKIaUy3sJMLJdRZIXhKu0k2tk8IpYYGaEst8JKZpHF27A0noxxBwhTItHMzeQ65taJgBFpjrYToYxMajtNaNd4ZHnFTO4bZDxlwUOJZOYQzDyCWYVgE47nM15KVo4_xm56QObjKiyasF9DnlXbdpoxT6jWdfpf7v4-aw-W_bfLDMB9WCpeZ3jgrJJCHwZx_AAUl94V |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5CcAAOFMoQHTB82AVpblPHbmJuCFHajfRUJMQlsuNnNA3aaU134K_HdpKKMTTtFkW2bOl7fu-z3y-Az2IQa9Q6ocj7SLkoYiqFSqnhRqFCx0EK79HNJoPRLf96J-7W4MsqFwYRQ_AZdv1n8OWbebH0T2U9x74dwXYKd8PZfcGqbK2Vz4CLkBztDFJEpbvJNE7JSPamWeajuGTXXS8Ek-wPIxS6qvylioN9GbYga3ZWhZX86C5L3S2e3xRt_N-t78JOTTTJRSUZe7CGsza0miYOpD7Tbdh-VZFwH-6HywVeX0zOSV149YGUc-J_kpCqS4duqQUZPzk1RH5_V-Ry7n3e4T2RVCWsvf4koc_zQnnpJpMq0vwD3A6vppcjWrdfoEUskpJaFhdS8kQZgZxplloppFTGc8zEchlFVhiu0n6iHesRscTICGW5FVYyiyw-gPXZfIaHQJgSiWZuJtcxt04IjEgLtP0IZWRS2-9Ar8EjL-ra5L5FxmMe7iiRzB2CuUcwrxHswNlqxs-qLsc_xu57QFbjaiw6cNxAntcHd5EzX1Jt4CyA_Pj-rFPYHE2zm_xmPPl2BFt-nSoe8BjWy19LPHEcpdSfgmi-ANYT4V8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FuseGAN%3A+Learning+to+Fuse+Multi-Focus+Image+via+Conditional+Generative+Adversarial+Network&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Guo%2C+Xiaopeng&rft.au=Nie%2C+Rencan&rft.au=Cao%2C+Jinde&rft.au=Zhou%2C+Dongming&rft.date=2019-08-01&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=21&rft.issue=8&rft.spage=1982&rft.epage=1996&rft_id=info:doi/10.1109%2FTMM.2019.2895292&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2019_2895292 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon |