Molecular epidemiology, in vitro susceptibility and exoenzyme screening of Malassezia clinical isolates

Introduction. Malassezia folliculitis (MF) and pityriasis versicolor (PV) are common dermatoses caused by Malassezia species. Their molecular epidemiology, drug susceptibility and exoenzymes are rarely reported in China. Aim. To investigate the molecular epidemiology, drug susceptibility and enzymat...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical microbiology Vol. 69; no. 3; pp. 436 - 442
Main Authors Li, Wei, Zhang, Zi-Wei, Luo, Yun, Liang, Ni, Pi, Xiao-Xue, Fan, Yi-Ming
Format Journal Article
LanguageEnglish
Published England 01.03.2020
Subjects
Online AccessGet full text
ISSN0022-2615
1473-5644
1473-5644
DOI10.1099/jmm.0.001161

Cover

Loading…
Abstract Introduction. Malassezia folliculitis (MF) and pityriasis versicolor (PV) are common dermatoses caused by Malassezia species. Their molecular epidemiology, drug susceptibility and exoenzymes are rarely reported in China. Aim. To investigate the molecular epidemiology, drug susceptibility and enzymatic profile of Malassezia clinical isolates. Methodology. Malassezia strains were recovered from MF and PV patients and healthy subjects (HS) and identified by sequencing analysis. The minimum inhibitory concentrations (MICs) of nine antifungals (posaconazole, voriconazole, itraconazole, fluconazole, ketoconazole, miconazole, bifonazole, terbinafine and caspofungin) and tacrolimus, the interactions between three antifungals (itraconazole, ketoconazole and terbinafine) and tacrolimus, and the extracellular enzyme profile were evaluated using broth and checkerboard microdilution and the Api-Zym system, respectively. Results. Among 392 Malassezia isolates from 729 subjects (289 MF, 218 PV and 222 HS), Malassezia furfur and Malassezia globosa accounted for 67.86 and 18.88 %, respectively. M. furfur was the major species in MF and PV patients and HS. Among 60 M . furfur and 50 M . globosa strains, the MICs for itraconazole, posaconazole, voriconazole and ketoconazole were <1 μg ml −1 . M. furfur was more susceptible to itraconazole, terbinafine and bifonazole but tolerant to miconazole compared with M. globosa ( P <0.05). Synergistic effects between terbinafine and itraconazole or between tacrolimus and itraconazole, ketoconazole or terbinafine occurred in 6, 7, 6 and 9 out of 37 strains, respectively. Phosphatases, lipases and proteases were mainly secreted in 51 isolates. Conclusions. Itraconazole, posaconazole, voriconazole and ketoconazole are theagents against which there is greatest susceptibility. Synergistic effects between terbinafine and itraconazole or tacrolimas and antifungals may be irrelevant to clinical application. Overproduction of lipases could enhance the skin inhabitation of M. furfur .
AbstractList Introduction. Malassezia folliculitis (MF) and pityriasis versicolor (PV) are common dermatoses caused by Malassezia species. Their molecular epidemiology, drug susceptibility and exoenzymes are rarely reported in China.Aim. To investigate the molecular epidemiology, drug susceptibility and enzymatic profile of Malassezia clinical isolates.Methodology. Malassezia strains were recovered from MF and PV patients and healthy subjects (HS) and identified by sequencing analysis. The minimum inhibitory concentrations (MICs) of nine antifungals (posaconazole, voriconazole, itraconazole, fluconazole, ketoconazole, miconazole, bifonazole, terbinafine and caspofungin) and tacrolimus, the interactions between three antifungals (itraconazole, ketoconazole and terbinafine) and tacrolimus, and the extracellular enzyme profile were evaluated using broth and checkerboard microdilution and the Api-Zym system, respectively.Results. Among 392 Malassezia isolates from 729 subjects (289 MF, 218 PV and 222 HS), Malassezia furfur and Malassezia globosa accounted for 67.86 and 18.88 %, respectively. M. furfur was the major species in MF and PV patients and HS. Among 60M. furfur and 50M. globosa strains, the MICs for itraconazole, posaconazole, voriconazole and ketoconazole were <1 μg ml-1. M. furfur was more susceptible to itraconazole, terbinafine and bifonazole but tolerant to miconazole compared with M. globosa (P<0.05). Synergistic effects between terbinafine and itraconazole or between tacrolimus and itraconazole, ketoconazole or terbinafine occurred in 6, 7, 6 and 9 out of 37 strains, respectively. Phosphatases, lipases and proteases were mainly secreted in 51 isolates.Conclusions. Itraconazole, posaconazole, voriconazole and ketoconazole are theagents against which there is greatest susceptibility. Synergistic effects between terbinafine and itraconazole or tacrolimas and antifungals may be irrelevant to clinical application. Overproduction of lipases could enhance the skin inhabitation of M. furfur.Introduction. Malassezia folliculitis (MF) and pityriasis versicolor (PV) are common dermatoses caused by Malassezia species. Their molecular epidemiology, drug susceptibility and exoenzymes are rarely reported in China.Aim. To investigate the molecular epidemiology, drug susceptibility and enzymatic profile of Malassezia clinical isolates.Methodology. Malassezia strains were recovered from MF and PV patients and healthy subjects (HS) and identified by sequencing analysis. The minimum inhibitory concentrations (MICs) of nine antifungals (posaconazole, voriconazole, itraconazole, fluconazole, ketoconazole, miconazole, bifonazole, terbinafine and caspofungin) and tacrolimus, the interactions between three antifungals (itraconazole, ketoconazole and terbinafine) and tacrolimus, and the extracellular enzyme profile were evaluated using broth and checkerboard microdilution and the Api-Zym system, respectively.Results. Among 392 Malassezia isolates from 729 subjects (289 MF, 218 PV and 222 HS), Malassezia furfur and Malassezia globosa accounted for 67.86 and 18.88 %, respectively. M. furfur was the major species in MF and PV patients and HS. Among 60M. furfur and 50M. globosa strains, the MICs for itraconazole, posaconazole, voriconazole and ketoconazole were <1 μg ml-1. M. furfur was more susceptible to itraconazole, terbinafine and bifonazole but tolerant to miconazole compared with M. globosa (P<0.05). Synergistic effects between terbinafine and itraconazole or between tacrolimus and itraconazole, ketoconazole or terbinafine occurred in 6, 7, 6 and 9 out of 37 strains, respectively. Phosphatases, lipases and proteases were mainly secreted in 51 isolates.Conclusions. Itraconazole, posaconazole, voriconazole and ketoconazole are theagents against which there is greatest susceptibility. Synergistic effects between terbinafine and itraconazole or tacrolimas and antifungals may be irrelevant to clinical application. Overproduction of lipases could enhance the skin inhabitation of M. furfur.
folliculitis (MF) and pityriasis versicolor (PV) are common dermatoses caused by species. Their molecular epidemiology, drug susceptibility and exoenzymes are rarely reported in China. To investigate the molecular epidemiology, drug susceptibility and enzymatic profile of clinical isolates. strains were recovered from MF and PV patients and healthy subjects (HS) and identified by sequencing analysis. The minimum inhibitory concentrations (MICs) of nine antifungals (posaconazole, voriconazole, itraconazole, fluconazole, ketoconazole, miconazole, bifonazole, terbinafine and caspofungin) and tacrolimus, the interactions between three antifungals (itraconazole, ketoconazole and terbinafine) and tacrolimus, and the extracellular enzyme profile were evaluated using broth and checkerboard microdilution and the Api-Zym system, respectively. Among 392 isolates from 729 subjects (289 MF, 218 PV and 222 HS), and accounted for 67.86 and 18.88 %, respectively. was the major species in MF and PV patients and HS. Among 60 . and 50 . strains, the MICs for itraconazole, posaconazole, voriconazole and ketoconazole were <1 μg ml . was more susceptible to itraconazole, terbinafine and bifonazole but tolerant to miconazole compared with ( <0.05). Synergistic effects between terbinafine and itraconazole or between tacrolimus and itraconazole, ketoconazole or terbinafine occurred in 6, 7, 6 and 9 out of 37 strains, respectively. Phosphatases, lipases and proteases were mainly secreted in 51 isolates. Itraconazole, posaconazole, voriconazole and ketoconazole are theagents against which there is greatest susceptibility. Synergistic effects between terbinafine and itraconazole or tacrolimas and antifungals may be irrelevant to clinical application. Overproduction of lipases could enhance the skin inhabitation of .
Introduction. Malassezia folliculitis (MF) and pityriasis versicolor (PV) are common dermatoses caused by Malassezia species. Their molecular epidemiology, drug susceptibility and exoenzymes are rarely reported in China. Aim. To investigate the molecular epidemiology, drug susceptibility and enzymatic profile of Malassezia clinical isolates. Methodology. Malassezia strains were recovered from MF and PV patients and healthy subjects (HS) and identified by sequencing analysis. The minimum inhibitory concentrations (MICs) of nine antifungals (posaconazole, voriconazole, itraconazole, fluconazole, ketoconazole, miconazole, bifonazole, terbinafine and caspofungin) and tacrolimus, the interactions between three antifungals (itraconazole, ketoconazole and terbinafine) and tacrolimus, and the extracellular enzyme profile were evaluated using broth and checkerboard microdilution and the Api-Zym system, respectively. Results. Among 392 Malassezia isolates from 729 subjects (289 MF, 218 PV and 222 HS), Malassezia furfur and Malassezia globosa accounted for 67.86 and 18.88 %, respectively. M. furfur was the major species in MF and PV patients and HS. Among 60 M . furfur and 50 M . globosa strains, the MICs for itraconazole, posaconazole, voriconazole and ketoconazole were <1 μg ml −1 . M. furfur was more susceptible to itraconazole, terbinafine and bifonazole but tolerant to miconazole compared with M. globosa ( P <0.05). Synergistic effects between terbinafine and itraconazole or between tacrolimus and itraconazole, ketoconazole or terbinafine occurred in 6, 7, 6 and 9 out of 37 strains, respectively. Phosphatases, lipases and proteases were mainly secreted in 51 isolates. Conclusions. Itraconazole, posaconazole, voriconazole and ketoconazole are theagents against which there is greatest susceptibility. Synergistic effects between terbinafine and itraconazole or tacrolimas and antifungals may be irrelevant to clinical application. Overproduction of lipases could enhance the skin inhabitation of M. furfur .
Author Luo, Yun
Li, Wei
Liang, Ni
Zhang, Zi-Wei
Fan, Yi-Ming
Pi, Xiao-Xue
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0001-5278-5936
  surname: Li
  fullname: Li, Wei
  organization: Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
– sequence: 2
  givenname: Zi-Wei
  surname: Zhang
  fullname: Zhang, Zi-Wei
– sequence: 3
  givenname: Yun
  surname: Luo
  fullname: Luo, Yun
– sequence: 4
  givenname: Ni
  surname: Liang
  fullname: Liang, Ni
– sequence: 5
  givenname: Xiao-Xue
  surname: Pi
  fullname: Pi, Xiao-Xue
– sequence: 6
  givenname: Yi-Ming
  surname: Fan
  fullname: Fan, Yi-Ming
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32068525$$D View this record in MEDLINE/PubMed
BookMark eNptkTtPXDEQha0IFBaSLnXkMgV38fM-ygiREAmUBmrLa8-uBvnaG9s3yvLr42ihiahGGn3nzOOck5OYIhDyibM1Z9N09TTPa7ZmjPOevyMrrgbZ6V6pE7JiTIhO9FyfkfNSnhozSDm9J2dSsH7UQq_I7j4FcEuwmcIePcyYQtodLilG-htrTrQsxcG-4gYD1gO10VP4kyA-H2agxWWAiHFH05be22BLgWe01AWM6GygWFKwFcoHcrq1ocDHl3pBHr_dPFzfdnc_v_-4_nrXOamH2oHqwalh9JxPMLktaO-FVG1dbdlm47ngvYZBe6cAxomPvHdSDNa3y1pfygvy5ei7z-nXAqWaGdv-IdgIaSlGtDFKjbqfGvr5BV02M3izzzjbfDCvz2mAOAIup1IybI3DaiumWLPFYDgz_xIwLQHDzDGBJrr8T_Tq-yb-F9E4iQc
CitedBy_id crossref_primary_10_1111_jdv_18982
crossref_primary_10_3390_ani13071259
crossref_primary_10_3390_ijms221910428
crossref_primary_10_3390_jof9121153
crossref_primary_10_1016_j_molstruc_2021_132225
crossref_primary_10_3390_ijms24043145
crossref_primary_10_1080_1040841X_2020_1843399
crossref_primary_10_1007_s00105_023_05245_z
crossref_primary_10_3390_antibiotics9110812
crossref_primary_10_1080_17460441_2022_2097659
crossref_primary_10_1038_s41598_020_74133_6
crossref_primary_10_3314_mmj_23_003
crossref_primary_10_1016_j_jid_2021_11_038
Cites_doi 10.1023/A:1007237408748
10.1080/02681219680000071
10.1111/j.1439-0507.2005.01091.x
10.1111/myc.12556
10.1111/j.1365-2133.1997.tb01115.x
10.1016/j.mayocp.2014.09.006
10.1007/s11046-019-00330-1
10.4103/0019-5154.156436
10.1111/myc.12598
10.1080/mmy.38.1.73.76
10.1128/JCM.42.8.3589-3593.2004
10.1128/JCM.43.6.2824-2829.2005
10.1128/CMR.18.1.163-194.2005
10.1093/mmy/myu010
10.1590/S1517-838246120120442
10.2165/00044011-199612050-00003
10.1128/AAC.00687-06
10.1016/j.diagmicrobio.2013.04.011
10.5021/ad.2011.23.2.156
10.1128/IAI.73.9.5767-5774.2005
10.1016/j.riam.2009.12.005
10.1155/2014/182596
10.1111/ijd.13116
10.1128/JCM.00989-06
10.1016/j.mycmed.2018.04.007
10.1128/AAC.01070-07
10.1080/13693780500225919
10.1111/myc.12076
10.1080/13693780802398026
10.1016/j.riam.2013.02.001
10.5812/jjm.11561
10.5941/MYCO.2013.41.2.67
10.1007/s11046-017-0113-0
10.3389/fcimb.2018.00346
10.1128/mBio.01752-17
10.1099/00207713-50-3-1351
10.3390/ijms20184636
10.1186/1471-5945-14-5
10.7705/biomedica.v25i2.1341
10.1016/j.jid.2017.11.034
10.3767/persoonia.2018.41.04
10.1080/mmy.38.3.239.247
10.1046/j.1365-2133.2000.03294.x
10.1111/myc.12298
10.5021/ad.2011.23.2.177
10.1371/journal.pgen.1005614
10.1128/JCM.00338-17
10.1016/j.riam.2011.03.001
10.1073/pnas.0706756104
10.1093/mmy/myx134
10.1111/j.1439-0507.2008.01593.x
10.1080/13693780802314825
10.1128/AAC.44.8.2185-2186.2000
10.3390/jof1010013
10.4103/0255-0857.115636
10.2340/00015555-1825
10.5021/ad.2011.23.3.321
10.1186/1471-5945-14-3
10.1128/IAI.71.9.5344-5354.2003
10.1016/j.mycmed.2018.09.007
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1099/jmm.0.001161
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1473-5644
EndPage 442
ExternalDocumentID 32068525
10_1099_jmm_0_001161
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
-~X
18M
2WC
4.4
53G
5GY
5RE
5RS
AAYEP
AAYXX
ABOCM
ACGFO
ACPEE
ADBBV
ADCDP
AENEX
AFOSN
AJKYU
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C45
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
L7B
M5~
OBC
OBS
OEB
OFXIZ
OK1
OVD
OWW
P0W
P2P
RGM
TEORI
TR2
VVN
W8F
WOQ
YFH
YQY
.55
.GJ
08G
1KJ
3O-
5VS
AAKAS
ACBNA
ADZCM
AFFNX
AI.
AWKKM
CAG
CGR
COF
CUY
CVF
ECM
EIF
EX3
NPM
NTWIH
OHT
PKN
VH1
WOW
X7M
YQJ
ZE2
ZGI
ZXP
7X8
ID FETCH-LOGICAL-c357t-e46ec478d119e9cfe5dd2342065a0bbd12165e75dc4ee891816c327ad1735e733
ISSN 0022-2615
1473-5644
IngestDate Fri Jul 11 16:15:02 EDT 2025
Wed Feb 19 02:31:25 EST 2025
Tue Jul 01 02:55:11 EDT 2025
Thu Apr 24 22:56:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords epidemiology
Malassezia
folliculitis
tacrolimus
extracellular enzyme
antifungals
pityriasis versicolor
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c357t-e46ec478d119e9cfe5dd2342065a0bbd12165e75dc4ee891816c327ad1735e733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5278-5936
PMID 32068525
PQID 2357448569
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2357448569
pubmed_primary_32068525
crossref_citationtrail_10_1099_jmm_0_001161
crossref_primary_10_1099_jmm_0_001161
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-Mar
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-Mar
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of medical microbiology
PublicationTitleAlternate J Med Microbiol
PublicationYear 2020
References Prohic (R44) 2014; 6
R61
R60
R63
R62
R21
R65
R20
R64
R23
R22
Rincón (R33) 2005; 25
R24
R27
R26
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R30
R32
R31
Elshabrawy (R43) 2017; 11
R36
R35
R38
R37
R39
R41
R40
(R25) 2008
R42
R45
R47
R46
R49
R48
Didehdar (R34) 2014; 43
R50
R52
R51
R10
R54
R53
Wu (R59) 2015; 11
R12
R56
R11
R55
R14
R58
R13
R57
R16
R15
Prohic (R29) 2016; 24
R18
R17
R19
References_xml – ident: R63
  doi: 10.1023/A:1007237408748
– ident: R64
  doi: 10.1080/02681219680000071
– ident: R42
  doi: 10.1111/j.1439-0507.2005.01091.x
– ident: R9
  doi: 10.1111/myc.12556
– ident: R53
  doi: 10.1111/j.1365-2133.1997.tb01115.x
– ident: R51
  doi: 10.1016/j.mayocp.2014.09.006
– ident: R20
  doi: 10.1007/s11046-019-00330-1
– ident: R38
  doi: 10.4103/0019-5154.156436
– ident: R58
  doi: 10.1111/myc.12598
– ident: R60
  doi: 10.1080/mmy.38.1.73.76
– ident: R12
  doi: 10.1128/JCM.42.8.3589-3593.2004
– ident: R16
  doi: 10.1128/JCM.43.6.2824-2829.2005
– volume: 6
  start-page: 253
  year: 2014
  ident: R44
  article-title: Distribution of Malassezia species on healthy human skin in Bosnia and Herzegovina: correlation with body part, age and gender
  publication-title: Iran J Microbiol
– ident: R27
  doi: 10.1128/CMR.18.1.163-194.2005
– ident: R50
  doi: 10.1093/mmy/myu010
– ident: R57
  doi: 10.1590/S1517-838246120120442
– ident: R17
  doi: 10.2165/00044011-199612050-00003
– ident: R15
  doi: 10.1128/AAC.00687-06
– ident: R39
  doi: 10.1016/j.diagmicrobio.2013.04.011
– ident: R48
  doi: 10.5021/ad.2011.23.2.156
– ident: R55
  doi: 10.1128/IAI.73.9.5767-5774.2005
– ident: R32
  doi: 10.1016/j.riam.2009.12.005
– ident: R6
  doi: 10.1155/2014/182596
– ident: R3
  doi: 10.1111/ijd.13116
– ident: R13
  doi: 10.1128/JCM.00989-06
– ident: R26
  doi: 10.1016/j.mycmed.2018.04.007
– ident: R56
  doi: 10.1128/AAC.01070-07
– volume: 43
  start-page: 682
  year: 2014
  ident: R34
  article-title: Identification of Malassezia species isolated from patients with pityriasis versicolor using PCR-RFLP method in Markazi Province, Central Iran
  publication-title: Iran J Public Health
– ident: R45
  doi: 10.1080/13693780500225919
– ident: R7
  doi: 10.1111/myc.12076
– ident: R41
  doi: 10.1080/13693780802398026
– ident: R30
  doi: 10.1016/j.riam.2013.02.001
– ident: R35
  doi: 10.5812/jjm.11561
– ident: R19
  doi: 10.5941/MYCO.2013.41.2.67
– ident: R4
  doi: 10.1007/s11046-017-0113-0
– ident: R46
  doi: 10.3389/fcimb.2018.00346
– ident: R14
  doi: 10.1128/mBio.01752-17
– ident: R24
  doi: 10.1099/00207713-50-3-1351
– ident: R65
  doi: 10.3390/ijms20184636
– ident: R22
  doi: 10.1186/1471-5945-14-5
– volume: 25
  start-page: 189
  year: 2005
  ident: R33
  article-title: Malassezia yeast species isolated from patients with dermatologic lesions
  publication-title: Biomedica
  doi: 10.7705/biomedica.v25i2.1341
– ident: R18
  doi: 10.1016/j.jid.2017.11.034
– ident: R2
  doi: 10.3767/persoonia.2018.41.04
– ident: R21
  doi: 10.1080/mmy.38.3.239.247
– ident: R10
  doi: 10.1046/j.1365-2133.2000.03294.x
– ident: R5
  doi: 10.1111/myc.12298
– ident: R40
  doi: 10.5021/ad.2011.23.2.177
– volume: 11
  year: 2015
  ident: R59
  article-title: Genus-wide comparative Genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human Skin
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1005614
– ident: R8
  doi: 10.1128/JCM.00338-17
– volume: 24
  start-page: 274
  year: 2016
  ident: R29
  article-title: Distribution of Malassezia species in patients with different dermatological disorders and healthy individuals
  publication-title: Acta Dermatovenerol Croat
– ident: R31
  doi: 10.1016/j.riam.2011.03.001
– ident: R61
  doi: 10.1073/pnas.0706756104
– ident: R1
  doi: 10.1093/mmy/myx134
– ident: R36
  doi: 10.1111/j.1439-0507.2008.01593.x
– ident: R62
  doi: 10.1080/13693780802314825
– ident: R11
  doi: 10.1128/AAC.44.8.2185-2186.2000
– volume-title: Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Third Edition; CLSI Document M27-A3
  year: 2008
  ident: R25
– ident: R52
  doi: 10.3390/jof1010013
– ident: R37
  doi: 10.4103/0255-0857.115636
– ident: R23
  doi: 10.2340/00015555-1825
– volume: 11
  start-page: Dc12-dc7
  year: 2017
  ident: R43
  article-title: Molecular and phenotypic identification and speciation of Malassezia yeasts isolated from Egyptian patients with pityriasis versicolor
  publication-title: J Clin Diagn Res
– ident: R47
  doi: 10.5021/ad.2011.23.3.321
– ident: R49
  doi: 10.1186/1471-5945-14-3
– ident: R54
  doi: 10.1128/IAI.71.9.5344-5354.2003
– ident: R28
  doi: 10.1016/j.mycmed.2018.09.007
SSID ssj0017339
Score 2.3525207
Snippet Introduction. Malassezia folliculitis (MF) and pityriasis versicolor (PV) are common dermatoses caused by Malassezia species. Their molecular epidemiology,...
folliculitis (MF) and pityriasis versicolor (PV) are common dermatoses caused by species. Their molecular epidemiology, drug susceptibility and exoenzymes are...
Introduction. Malassezia folliculitis (MF) and pityriasis versicolor (PV) are common dermatoses caused by Malassezia species. Their molecular epidemiology,...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 436
SubjectTerms Antifungal Agents - pharmacology
Azoles - pharmacology
China - epidemiology
Dermatomycoses - epidemiology
Dermatomycoses - microbiology
Folliculitis - epidemiology
Folliculitis - microbiology
Humans
Lipase - metabolism
Malassezia - drug effects
Malassezia - enzymology
Malassezia - isolation & purification
Microbial Sensitivity Tests
Molecular Epidemiology
Skin - microbiology
Tacrolimus - pharmacology
Terbinafine
Tinea Versicolor - epidemiology
Tinea Versicolor - microbiology
Title Molecular epidemiology, in vitro susceptibility and exoenzyme screening of Malassezia clinical isolates
URI https://www.ncbi.nlm.nih.gov/pubmed/32068525
https://www.proquest.com/docview/2357448569
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj5RAEO6Ma9zsxej6Gl9pEz0hI9AP4Gh8ZH3Mnnbj6gWhKUwnApsdMO78eqtpYFjXSdQLmTQ9MFPfl0p191dVhDzNiwK8OCvcjIvA5T6kbsrMblOcMckVDiiT4Lw8lAfH_P2JOJnNvk5US22TLdT6j3kl_4MqjiGuJkv2H5AdH4oD-BnxxSsijNe_wng59LZ1YNPotbOarpwfujmrnVW76oQrnQbW1lqCnzVU6_MSHHQZuIztdc9Lk1G5grWepEtq_P0mGN0Swpb9KU-pN-WcRoVPJxP4BPrS1vQX7U6GP7bdZu3ndqMN0v3EQz3dk8AF6CjKWoD1ozxkrpC2tOPgaG1Plp5QbOI1ua2BcsmbY_RqvHlZLjx7YuRPpyEWp2WHLAs8GQmbQP1b9ezh1hVyNcCFhHHdr999GM-ZQsbiPh0CX_Zi-qo9sjt8-WLMsmUh0gUkRzfI9R4G-tLS4iaZQbVPrtneouf7ZHfZqyZukW8jT-iUJ8-prmjHEnqRJRRZQkeW0JEltC7ohiV0YAkdWHKbHL99c_TqwO0bbLiKibBxgUtQPIxy348hVgWIPA8Yx38tUi_Lcj_wpYBQ5IoDRDEGg1KxIExztBuOM3aH7FR1BfcIDXIRBUWcRSoquPJkFkkPwjxVUgQYD3lz4gwmTFRffd40QfmeWBVEnKDtEy-xtp-TZ-PsU1t1Zcu8JwMaCbpFc9aVVlC3q8RUceI8EjKek7sWpvFJA6z3t955QPY2tH5IdpqzFh5h8Nlkjzv-_AJ7i4gV
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+epidemiology%2C+in+vitro+susceptibility+and+exoenzyme+screening+of+Malassezia+clinical+isolates&rft.jtitle=Journal+of+medical+microbiology&rft.au=Li%2C+Wei&rft.au=Zhang%2C+Zi-Wei&rft.au=Luo%2C+Yun&rft.au=Liang%2C+Ni&rft.date=2020-03-01&rft.eissn=1473-5644&rft.volume=69&rft.issue=3&rft.spage=436&rft_id=info:doi/10.1099%2Fjmm.0.001161&rft_id=info%3Apmid%2F32068525&rft.externalDocID=32068525
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2615&client=summon