Molecular epidemiology, in vitro susceptibility and exoenzyme screening of Malassezia clinical isolates
Introduction. Malassezia folliculitis (MF) and pityriasis versicolor (PV) are common dermatoses caused by Malassezia species. Their molecular epidemiology, drug susceptibility and exoenzymes are rarely reported in China. Aim. To investigate the molecular epidemiology, drug susceptibility and enzymat...
Saved in:
Published in | Journal of medical microbiology Vol. 69; no. 3; pp. 436 - 442 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-2615 1473-5644 1473-5644 |
DOI | 10.1099/jmm.0.001161 |
Cover
Loading…
Abstract | Introduction.
Malassezia
folliculitis (MF) and pityriasis versicolor (PV) are common dermatoses caused by
Malassezia
species. Their molecular epidemiology, drug susceptibility and exoenzymes are rarely reported in China.
Aim.
To investigate the molecular epidemiology, drug susceptibility and enzymatic profile of
Malassezia
clinical isolates.
Methodology.
Malassezia
strains were recovered from MF and PV patients and healthy subjects (HS) and identified by sequencing analysis. The minimum inhibitory concentrations (MICs) of nine antifungals (posaconazole, voriconazole, itraconazole, fluconazole, ketoconazole, miconazole, bifonazole, terbinafine and caspofungin) and tacrolimus, the interactions between three antifungals (itraconazole, ketoconazole and terbinafine) and tacrolimus, and the extracellular enzyme profile were evaluated using broth and checkerboard microdilution and the Api-Zym system, respectively.
Results.
Among 392
Malassezia
isolates from 729 subjects (289 MF, 218 PV and 222 HS),
Malassezia furfur
and
Malassezia globosa
accounted for 67.86 and 18.88 %, respectively.
M. furfur
was the major species in MF and PV patients and HS. Among 60
M
.
furfur
and 50
M
.
globosa
strains, the MICs for itraconazole, posaconazole, voriconazole and ketoconazole were <1 μg ml
−1
.
M. furfur
was more susceptible to itraconazole, terbinafine and bifonazole but tolerant to miconazole compared with
M. globosa
(
P
<0.05). Synergistic effects between terbinafine and itraconazole or between tacrolimus and itraconazole, ketoconazole or terbinafine occurred in 6, 7, 6 and 9 out of 37 strains, respectively. Phosphatases, lipases and proteases were mainly secreted in 51 isolates.
Conclusions.
Itraconazole, posaconazole, voriconazole and ketoconazole are theagents against which there is greatest susceptibility. Synergistic effects between terbinafine and itraconazole or tacrolimas and antifungals may be irrelevant to clinical application. Overproduction of lipases could enhance the skin inhabitation of
M. furfur
. |
---|---|
AbstractList | Introduction. Malassezia folliculitis (MF) and pityriasis versicolor (PV) are common dermatoses caused by Malassezia species. Their molecular epidemiology, drug susceptibility and exoenzymes are rarely reported in China.Aim. To investigate the molecular epidemiology, drug susceptibility and enzymatic profile of Malassezia clinical isolates.Methodology. Malassezia strains were recovered from MF and PV patients and healthy subjects (HS) and identified by sequencing analysis. The minimum inhibitory concentrations (MICs) of nine antifungals (posaconazole, voriconazole, itraconazole, fluconazole, ketoconazole, miconazole, bifonazole, terbinafine and caspofungin) and tacrolimus, the interactions between three antifungals (itraconazole, ketoconazole and terbinafine) and tacrolimus, and the extracellular enzyme profile were evaluated using broth and checkerboard microdilution and the Api-Zym system, respectively.Results. Among 392 Malassezia isolates from 729 subjects (289 MF, 218 PV and 222 HS), Malassezia furfur and Malassezia globosa accounted for 67.86 and 18.88 %, respectively. M. furfur was the major species in MF and PV patients and HS. Among 60M. furfur and 50M. globosa strains, the MICs for itraconazole, posaconazole, voriconazole and ketoconazole were <1 μg ml-1. M. furfur was more susceptible to itraconazole, terbinafine and bifonazole but tolerant to miconazole compared with M. globosa (P<0.05). Synergistic effects between terbinafine and itraconazole or between tacrolimus and itraconazole, ketoconazole or terbinafine occurred in 6, 7, 6 and 9 out of 37 strains, respectively. Phosphatases, lipases and proteases were mainly secreted in 51 isolates.Conclusions. Itraconazole, posaconazole, voriconazole and ketoconazole are theagents against which there is greatest susceptibility. Synergistic effects between terbinafine and itraconazole or tacrolimas and antifungals may be irrelevant to clinical application. Overproduction of lipases could enhance the skin inhabitation of M. furfur.Introduction. Malassezia folliculitis (MF) and pityriasis versicolor (PV) are common dermatoses caused by Malassezia species. Their molecular epidemiology, drug susceptibility and exoenzymes are rarely reported in China.Aim. To investigate the molecular epidemiology, drug susceptibility and enzymatic profile of Malassezia clinical isolates.Methodology. Malassezia strains were recovered from MF and PV patients and healthy subjects (HS) and identified by sequencing analysis. The minimum inhibitory concentrations (MICs) of nine antifungals (posaconazole, voriconazole, itraconazole, fluconazole, ketoconazole, miconazole, bifonazole, terbinafine and caspofungin) and tacrolimus, the interactions between three antifungals (itraconazole, ketoconazole and terbinafine) and tacrolimus, and the extracellular enzyme profile were evaluated using broth and checkerboard microdilution and the Api-Zym system, respectively.Results. Among 392 Malassezia isolates from 729 subjects (289 MF, 218 PV and 222 HS), Malassezia furfur and Malassezia globosa accounted for 67.86 and 18.88 %, respectively. M. furfur was the major species in MF and PV patients and HS. Among 60M. furfur and 50M. globosa strains, the MICs for itraconazole, posaconazole, voriconazole and ketoconazole were <1 μg ml-1. M. furfur was more susceptible to itraconazole, terbinafine and bifonazole but tolerant to miconazole compared with M. globosa (P<0.05). Synergistic effects between terbinafine and itraconazole or between tacrolimus and itraconazole, ketoconazole or terbinafine occurred in 6, 7, 6 and 9 out of 37 strains, respectively. Phosphatases, lipases and proteases were mainly secreted in 51 isolates.Conclusions. Itraconazole, posaconazole, voriconazole and ketoconazole are theagents against which there is greatest susceptibility. Synergistic effects between terbinafine and itraconazole or tacrolimas and antifungals may be irrelevant to clinical application. Overproduction of lipases could enhance the skin inhabitation of M. furfur. folliculitis (MF) and pityriasis versicolor (PV) are common dermatoses caused by species. Their molecular epidemiology, drug susceptibility and exoenzymes are rarely reported in China. To investigate the molecular epidemiology, drug susceptibility and enzymatic profile of clinical isolates. strains were recovered from MF and PV patients and healthy subjects (HS) and identified by sequencing analysis. The minimum inhibitory concentrations (MICs) of nine antifungals (posaconazole, voriconazole, itraconazole, fluconazole, ketoconazole, miconazole, bifonazole, terbinafine and caspofungin) and tacrolimus, the interactions between three antifungals (itraconazole, ketoconazole and terbinafine) and tacrolimus, and the extracellular enzyme profile were evaluated using broth and checkerboard microdilution and the Api-Zym system, respectively. Among 392 isolates from 729 subjects (289 MF, 218 PV and 222 HS), and accounted for 67.86 and 18.88 %, respectively. was the major species in MF and PV patients and HS. Among 60 . and 50 . strains, the MICs for itraconazole, posaconazole, voriconazole and ketoconazole were <1 μg ml . was more susceptible to itraconazole, terbinafine and bifonazole but tolerant to miconazole compared with ( <0.05). Synergistic effects between terbinafine and itraconazole or between tacrolimus and itraconazole, ketoconazole or terbinafine occurred in 6, 7, 6 and 9 out of 37 strains, respectively. Phosphatases, lipases and proteases were mainly secreted in 51 isolates. Itraconazole, posaconazole, voriconazole and ketoconazole are theagents against which there is greatest susceptibility. Synergistic effects between terbinafine and itraconazole or tacrolimas and antifungals may be irrelevant to clinical application. Overproduction of lipases could enhance the skin inhabitation of . Introduction. Malassezia folliculitis (MF) and pityriasis versicolor (PV) are common dermatoses caused by Malassezia species. Their molecular epidemiology, drug susceptibility and exoenzymes are rarely reported in China. Aim. To investigate the molecular epidemiology, drug susceptibility and enzymatic profile of Malassezia clinical isolates. Methodology. Malassezia strains were recovered from MF and PV patients and healthy subjects (HS) and identified by sequencing analysis. The minimum inhibitory concentrations (MICs) of nine antifungals (posaconazole, voriconazole, itraconazole, fluconazole, ketoconazole, miconazole, bifonazole, terbinafine and caspofungin) and tacrolimus, the interactions between three antifungals (itraconazole, ketoconazole and terbinafine) and tacrolimus, and the extracellular enzyme profile were evaluated using broth and checkerboard microdilution and the Api-Zym system, respectively. Results. Among 392 Malassezia isolates from 729 subjects (289 MF, 218 PV and 222 HS), Malassezia furfur and Malassezia globosa accounted for 67.86 and 18.88 %, respectively. M. furfur was the major species in MF and PV patients and HS. Among 60 M . furfur and 50 M . globosa strains, the MICs for itraconazole, posaconazole, voriconazole and ketoconazole were <1 μg ml −1 . M. furfur was more susceptible to itraconazole, terbinafine and bifonazole but tolerant to miconazole compared with M. globosa ( P <0.05). Synergistic effects between terbinafine and itraconazole or between tacrolimus and itraconazole, ketoconazole or terbinafine occurred in 6, 7, 6 and 9 out of 37 strains, respectively. Phosphatases, lipases and proteases were mainly secreted in 51 isolates. Conclusions. Itraconazole, posaconazole, voriconazole and ketoconazole are theagents against which there is greatest susceptibility. Synergistic effects between terbinafine and itraconazole or tacrolimas and antifungals may be irrelevant to clinical application. Overproduction of lipases could enhance the skin inhabitation of M. furfur . |
Author | Luo, Yun Li, Wei Liang, Ni Zhang, Zi-Wei Fan, Yi-Ming Pi, Xiao-Xue |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0001-5278-5936 surname: Li fullname: Li, Wei organization: Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China – sequence: 2 givenname: Zi-Wei surname: Zhang fullname: Zhang, Zi-Wei – sequence: 3 givenname: Yun surname: Luo fullname: Luo, Yun – sequence: 4 givenname: Ni surname: Liang fullname: Liang, Ni – sequence: 5 givenname: Xiao-Xue surname: Pi fullname: Pi, Xiao-Xue – sequence: 6 givenname: Yi-Ming surname: Fan fullname: Fan, Yi-Ming |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32068525$$D View this record in MEDLINE/PubMed |
BookMark | eNptkTtPXDEQha0IFBaSLnXkMgV38fM-ygiREAmUBmrLa8-uBvnaG9s3yvLr42ihiahGGn3nzOOck5OYIhDyibM1Z9N09TTPa7ZmjPOevyMrrgbZ6V6pE7JiTIhO9FyfkfNSnhozSDm9J2dSsH7UQq_I7j4FcEuwmcIePcyYQtodLilG-htrTrQsxcG-4gYD1gO10VP4kyA-H2agxWWAiHFH05be22BLgWe01AWM6GygWFKwFcoHcrq1ocDHl3pBHr_dPFzfdnc_v_-4_nrXOamH2oHqwalh9JxPMLktaO-FVG1dbdlm47ngvYZBe6cAxomPvHdSDNa3y1pfygvy5ei7z-nXAqWaGdv-IdgIaSlGtDFKjbqfGvr5BV02M3izzzjbfDCvz2mAOAIup1IybI3DaiumWLPFYDgz_xIwLQHDzDGBJrr8T_Tq-yb-F9E4iQc |
CitedBy_id | crossref_primary_10_1111_jdv_18982 crossref_primary_10_3390_ani13071259 crossref_primary_10_3390_ijms221910428 crossref_primary_10_3390_jof9121153 crossref_primary_10_1016_j_molstruc_2021_132225 crossref_primary_10_3390_ijms24043145 crossref_primary_10_1080_1040841X_2020_1843399 crossref_primary_10_1007_s00105_023_05245_z crossref_primary_10_3390_antibiotics9110812 crossref_primary_10_1080_17460441_2022_2097659 crossref_primary_10_1038_s41598_020_74133_6 crossref_primary_10_3314_mmj_23_003 crossref_primary_10_1016_j_jid_2021_11_038 |
Cites_doi | 10.1023/A:1007237408748 10.1080/02681219680000071 10.1111/j.1439-0507.2005.01091.x 10.1111/myc.12556 10.1111/j.1365-2133.1997.tb01115.x 10.1016/j.mayocp.2014.09.006 10.1007/s11046-019-00330-1 10.4103/0019-5154.156436 10.1111/myc.12598 10.1080/mmy.38.1.73.76 10.1128/JCM.42.8.3589-3593.2004 10.1128/JCM.43.6.2824-2829.2005 10.1128/CMR.18.1.163-194.2005 10.1093/mmy/myu010 10.1590/S1517-838246120120442 10.2165/00044011-199612050-00003 10.1128/AAC.00687-06 10.1016/j.diagmicrobio.2013.04.011 10.5021/ad.2011.23.2.156 10.1128/IAI.73.9.5767-5774.2005 10.1016/j.riam.2009.12.005 10.1155/2014/182596 10.1111/ijd.13116 10.1128/JCM.00989-06 10.1016/j.mycmed.2018.04.007 10.1128/AAC.01070-07 10.1080/13693780500225919 10.1111/myc.12076 10.1080/13693780802398026 10.1016/j.riam.2013.02.001 10.5812/jjm.11561 10.5941/MYCO.2013.41.2.67 10.1007/s11046-017-0113-0 10.3389/fcimb.2018.00346 10.1128/mBio.01752-17 10.1099/00207713-50-3-1351 10.3390/ijms20184636 10.1186/1471-5945-14-5 10.7705/biomedica.v25i2.1341 10.1016/j.jid.2017.11.034 10.3767/persoonia.2018.41.04 10.1080/mmy.38.3.239.247 10.1046/j.1365-2133.2000.03294.x 10.1111/myc.12298 10.5021/ad.2011.23.2.177 10.1371/journal.pgen.1005614 10.1128/JCM.00338-17 10.1016/j.riam.2011.03.001 10.1073/pnas.0706756104 10.1093/mmy/myx134 10.1111/j.1439-0507.2008.01593.x 10.1080/13693780802314825 10.1128/AAC.44.8.2185-2186.2000 10.3390/jof1010013 10.4103/0255-0857.115636 10.2340/00015555-1825 10.5021/ad.2011.23.3.321 10.1186/1471-5945-14-3 10.1128/IAI.71.9.5344-5354.2003 10.1016/j.mycmed.2018.09.007 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1099/jmm.0.001161 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1473-5644 |
EndPage | 442 |
ExternalDocumentID | 32068525 10_1099_jmm_0_001161 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- -~X 18M 2WC 4.4 53G 5GY 5RE 5RS AAYEP AAYXX ABOCM ACGFO ACPEE ADBBV ADCDP AENEX AFOSN AJKYU ALMA_UNASSIGNED_HOLDINGS BAWUL C45 CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 L7B M5~ OBC OBS OEB OFXIZ OK1 OVD OWW P0W P2P RGM TEORI TR2 VVN W8F WOQ YFH YQY .55 .GJ 08G 1KJ 3O- 5VS AAKAS ACBNA ADZCM AFFNX AI. AWKKM CAG CGR COF CUY CVF ECM EIF EX3 NPM NTWIH OHT PKN VH1 WOW X7M YQJ ZE2 ZGI ZXP 7X8 |
ID | FETCH-LOGICAL-c357t-e46ec478d119e9cfe5dd2342065a0bbd12165e75dc4ee891816c327ad1735e733 |
ISSN | 0022-2615 1473-5644 |
IngestDate | Fri Jul 11 16:15:02 EDT 2025 Wed Feb 19 02:31:25 EST 2025 Tue Jul 01 02:55:11 EDT 2025 Thu Apr 24 22:56:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | epidemiology Malassezia folliculitis tacrolimus extracellular enzyme antifungals pityriasis versicolor |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c357t-e46ec478d119e9cfe5dd2342065a0bbd12165e75dc4ee891816c327ad1735e733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5278-5936 |
PMID | 32068525 |
PQID | 2357448569 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2357448569 pubmed_primary_32068525 crossref_citationtrail_10_1099_jmm_0_001161 crossref_primary_10_1099_jmm_0_001161 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-Mar |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-Mar |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of medical microbiology |
PublicationTitleAlternate | J Med Microbiol |
PublicationYear | 2020 |
References | Prohic (R44) 2014; 6 R61 R60 R63 R62 R21 R65 R20 R64 R23 R22 Rincón (R33) 2005; 25 R24 R27 R26 R28 R1 R2 R3 R4 R5 R6 R7 R8 R9 R30 R32 R31 Elshabrawy (R43) 2017; 11 R36 R35 R38 R37 R39 R41 R40 (R25) 2008 R42 R45 R47 R46 R49 R48 Didehdar (R34) 2014; 43 R50 R52 R51 R10 R54 R53 Wu (R59) 2015; 11 R12 R56 R11 R55 R14 R58 R13 R57 R16 R15 Prohic (R29) 2016; 24 R18 R17 R19 |
References_xml | – ident: R63 doi: 10.1023/A:1007237408748 – ident: R64 doi: 10.1080/02681219680000071 – ident: R42 doi: 10.1111/j.1439-0507.2005.01091.x – ident: R9 doi: 10.1111/myc.12556 – ident: R53 doi: 10.1111/j.1365-2133.1997.tb01115.x – ident: R51 doi: 10.1016/j.mayocp.2014.09.006 – ident: R20 doi: 10.1007/s11046-019-00330-1 – ident: R38 doi: 10.4103/0019-5154.156436 – ident: R58 doi: 10.1111/myc.12598 – ident: R60 doi: 10.1080/mmy.38.1.73.76 – ident: R12 doi: 10.1128/JCM.42.8.3589-3593.2004 – ident: R16 doi: 10.1128/JCM.43.6.2824-2829.2005 – volume: 6 start-page: 253 year: 2014 ident: R44 article-title: Distribution of Malassezia species on healthy human skin in Bosnia and Herzegovina: correlation with body part, age and gender publication-title: Iran J Microbiol – ident: R27 doi: 10.1128/CMR.18.1.163-194.2005 – ident: R50 doi: 10.1093/mmy/myu010 – ident: R57 doi: 10.1590/S1517-838246120120442 – ident: R17 doi: 10.2165/00044011-199612050-00003 – ident: R15 doi: 10.1128/AAC.00687-06 – ident: R39 doi: 10.1016/j.diagmicrobio.2013.04.011 – ident: R48 doi: 10.5021/ad.2011.23.2.156 – ident: R55 doi: 10.1128/IAI.73.9.5767-5774.2005 – ident: R32 doi: 10.1016/j.riam.2009.12.005 – ident: R6 doi: 10.1155/2014/182596 – ident: R3 doi: 10.1111/ijd.13116 – ident: R13 doi: 10.1128/JCM.00989-06 – ident: R26 doi: 10.1016/j.mycmed.2018.04.007 – ident: R56 doi: 10.1128/AAC.01070-07 – volume: 43 start-page: 682 year: 2014 ident: R34 article-title: Identification of Malassezia species isolated from patients with pityriasis versicolor using PCR-RFLP method in Markazi Province, Central Iran publication-title: Iran J Public Health – ident: R45 doi: 10.1080/13693780500225919 – ident: R7 doi: 10.1111/myc.12076 – ident: R41 doi: 10.1080/13693780802398026 – ident: R30 doi: 10.1016/j.riam.2013.02.001 – ident: R35 doi: 10.5812/jjm.11561 – ident: R19 doi: 10.5941/MYCO.2013.41.2.67 – ident: R4 doi: 10.1007/s11046-017-0113-0 – ident: R46 doi: 10.3389/fcimb.2018.00346 – ident: R14 doi: 10.1128/mBio.01752-17 – ident: R24 doi: 10.1099/00207713-50-3-1351 – ident: R65 doi: 10.3390/ijms20184636 – ident: R22 doi: 10.1186/1471-5945-14-5 – volume: 25 start-page: 189 year: 2005 ident: R33 article-title: Malassezia yeast species isolated from patients with dermatologic lesions publication-title: Biomedica doi: 10.7705/biomedica.v25i2.1341 – ident: R18 doi: 10.1016/j.jid.2017.11.034 – ident: R2 doi: 10.3767/persoonia.2018.41.04 – ident: R21 doi: 10.1080/mmy.38.3.239.247 – ident: R10 doi: 10.1046/j.1365-2133.2000.03294.x – ident: R5 doi: 10.1111/myc.12298 – ident: R40 doi: 10.5021/ad.2011.23.2.177 – volume: 11 year: 2015 ident: R59 article-title: Genus-wide comparative Genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human Skin publication-title: PLoS Genet doi: 10.1371/journal.pgen.1005614 – ident: R8 doi: 10.1128/JCM.00338-17 – volume: 24 start-page: 274 year: 2016 ident: R29 article-title: Distribution of Malassezia species in patients with different dermatological disorders and healthy individuals publication-title: Acta Dermatovenerol Croat – ident: R31 doi: 10.1016/j.riam.2011.03.001 – ident: R61 doi: 10.1073/pnas.0706756104 – ident: R1 doi: 10.1093/mmy/myx134 – ident: R36 doi: 10.1111/j.1439-0507.2008.01593.x – ident: R62 doi: 10.1080/13693780802314825 – ident: R11 doi: 10.1128/AAC.44.8.2185-2186.2000 – volume-title: Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Third Edition; CLSI Document M27-A3 year: 2008 ident: R25 – ident: R52 doi: 10.3390/jof1010013 – ident: R37 doi: 10.4103/0255-0857.115636 – ident: R23 doi: 10.2340/00015555-1825 – volume: 11 start-page: Dc12-dc7 year: 2017 ident: R43 article-title: Molecular and phenotypic identification and speciation of Malassezia yeasts isolated from Egyptian patients with pityriasis versicolor publication-title: J Clin Diagn Res – ident: R47 doi: 10.5021/ad.2011.23.3.321 – ident: R49 doi: 10.1186/1471-5945-14-3 – ident: R54 doi: 10.1128/IAI.71.9.5344-5354.2003 – ident: R28 doi: 10.1016/j.mycmed.2018.09.007 |
SSID | ssj0017339 |
Score | 2.3525207 |
Snippet | Introduction.
Malassezia
folliculitis (MF) and pityriasis versicolor (PV) are common dermatoses caused by
Malassezia
species. Their molecular epidemiology,... folliculitis (MF) and pityriasis versicolor (PV) are common dermatoses caused by species. Their molecular epidemiology, drug susceptibility and exoenzymes are... Introduction. Malassezia folliculitis (MF) and pityriasis versicolor (PV) are common dermatoses caused by Malassezia species. Their molecular epidemiology,... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 436 |
SubjectTerms | Antifungal Agents - pharmacology Azoles - pharmacology China - epidemiology Dermatomycoses - epidemiology Dermatomycoses - microbiology Folliculitis - epidemiology Folliculitis - microbiology Humans Lipase - metabolism Malassezia - drug effects Malassezia - enzymology Malassezia - isolation & purification Microbial Sensitivity Tests Molecular Epidemiology Skin - microbiology Tacrolimus - pharmacology Terbinafine Tinea Versicolor - epidemiology Tinea Versicolor - microbiology |
Title | Molecular epidemiology, in vitro susceptibility and exoenzyme screening of Malassezia clinical isolates |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32068525 https://www.proquest.com/docview/2357448569 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj5RAEO6Ma9zsxej6Gl9pEz0hI9AP4Gh8ZH3Mnnbj6gWhKUwnApsdMO78eqtpYFjXSdQLmTQ9MFPfl0p191dVhDzNiwK8OCvcjIvA5T6kbsrMblOcMckVDiiT4Lw8lAfH_P2JOJnNvk5US22TLdT6j3kl_4MqjiGuJkv2H5AdH4oD-BnxxSsijNe_wng59LZ1YNPotbOarpwfujmrnVW76oQrnQbW1lqCnzVU6_MSHHQZuIztdc9Lk1G5grWepEtq_P0mGN0Swpb9KU-pN-WcRoVPJxP4BPrS1vQX7U6GP7bdZu3ndqMN0v3EQz3dk8AF6CjKWoD1ozxkrpC2tOPgaG1Plp5QbOI1ua2BcsmbY_RqvHlZLjx7YuRPpyEWp2WHLAs8GQmbQP1b9ezh1hVyNcCFhHHdr999GM-ZQsbiPh0CX_Zi-qo9sjt8-WLMsmUh0gUkRzfI9R4G-tLS4iaZQbVPrtneouf7ZHfZqyZukW8jT-iUJ8-prmjHEnqRJRRZQkeW0JEltC7ohiV0YAkdWHKbHL99c_TqwO0bbLiKibBxgUtQPIxy348hVgWIPA8Yx38tUi_Lcj_wpYBQ5IoDRDEGg1KxIExztBuOM3aH7FR1BfcIDXIRBUWcRSoquPJkFkkPwjxVUgQYD3lz4gwmTFRffd40QfmeWBVEnKDtEy-xtp-TZ-PsU1t1Zcu8JwMaCbpFc9aVVlC3q8RUceI8EjKek7sWpvFJA6z3t955QPY2tH5IdpqzFh5h8Nlkjzv-_AJ7i4gV |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+epidemiology%2C+in+vitro+susceptibility+and+exoenzyme+screening+of+Malassezia+clinical+isolates&rft.jtitle=Journal+of+medical+microbiology&rft.au=Li%2C+Wei&rft.au=Zhang%2C+Zi-Wei&rft.au=Luo%2C+Yun&rft.au=Liang%2C+Ni&rft.date=2020-03-01&rft.eissn=1473-5644&rft.volume=69&rft.issue=3&rft.spage=436&rft_id=info:doi/10.1099%2Fjmm.0.001161&rft_id=info%3Apmid%2F32068525&rft.externalDocID=32068525 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2615&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2615&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2615&client=summon |