Application of artificial intelligence in ophthalmology for solving the problem of semantic segmentation of fundus images

The paper presents main aspects of the application of artificial intelligence in ophthalmology for the diagnosis and treatment of eye diseases, considering the problem of semantic segmentation of fundus images as an example. The classic approach to semantic segmentation on the basis of textural feat...

Full description

Saved in:
Bibliographic Details
Published inKompʹûternaâ optika Vol. 47; no. 5; pp. 824 - 831
Main Authors Demin, N.S., Ilyasova, N.Y., Paringer, R.A., Kirsh, D.V.
Format Journal Article
LanguageEnglish
Published Samara National Research University 01.10.2023
Subjects
Online AccessGet full text
ISSN0134-2452
2412-6179
DOI10.18287/2412-6179-CO-1283

Cover

Abstract The paper presents main aspects of the application of artificial intelligence in ophthalmology for the diagnosis and treatment of eye diseases, considering the problem of semantic segmentation of fundus images as an example. The classic approach to semantic segmentation on the basis of textural features is compared to the proposed approach based on neural networks. Basic problems of using the neural network approach in biomedicine are formulated. We propose a new method for selecting an optimal zone of laser exposure for laser coagulation based on two neural networks. The first network is used for detecting anatomical objects in the fundus and the second one is used for selecting the area of macular edema. The region of interest is formed from the edema area while taking into account the location of anatomical objects in it. A comparative analysis of sev-eral architectures of neural networks for solving the problem of selecting the edema area is carried out. The best results in the selection of the edema area are shown by the neural network architecture of Unet++.
AbstractList The paper presents main aspects of the application of artificial intelligence in ophthalmology for the diagnosis and treatment of eye diseases, considering the problem of semantic segmentation of fundus images as an example. The classic approach to semantic segmentation on the basis of textural features is compared to the proposed approach based on neural networks. Basic problems of using the neural network approach in biomedicine are formulated. We propose a new method for selecting an optimal zone of laser exposure for laser coagulation based on two neural networks. The first network is used for detecting anatomical objects in the fundus and the second one is used for selecting the area of macular edema. The region of interest is formed from the edema area while taking into account the location of anatomical objects in it. A comparative analysis of sev-eral architectures of neural networks for solving the problem of selecting the edema area is carried out. The best results in the selection of the edema area are shown by the neural network architecture of Unet++.
Author Demin, N.S.
Ilyasova, N.Y.
Paringer, R.A.
Kirsh, D.V.
Author_xml – sequence: 1
  givenname: N.S.
  surname: Demin
  fullname: Demin, N.S.
– sequence: 2
  givenname: N.Y.
  surname: Ilyasova
  fullname: Ilyasova, N.Y.
– sequence: 3
  givenname: R.A.
  surname: Paringer
  fullname: Paringer, R.A.
– sequence: 4
  givenname: D.V.
  surname: Kirsh
  fullname: Kirsh, D.V.
BookMark eNp9kctqHDEQRUWwwRPbP-CVfqATlaR-Lc2Qh8Ewm2Qt1OpSj4xaaiQ5MH-fbo-ZhRdeVdWFe4q69ZVchRiQkAdg36DjXfudS-BVA21f7Q8V8E58IbuLdkV2DISsuKz5DbnP-YUxtroakLAjp8dl8c7o4mKg0VKdirPOOO2pCwW9dxMGg-tA43IsR-3n6ON0ojYmmqP_58JEyxHpkuLgcd4YGWcdijNrM80YygVuX8P4mqmb9YT5jlxb7TPev9db8vfnjz_739Xz4dfT_vG5MqJuSzVqQCvrWmAPsh8Ga7VhttdNzXBsZcPWrmkHjQwAxwYGUxsLLQg9jtDpTtySpzN3jPpFLWndnk4qaqfehJgmtR1tPCrLemk7y8TAQQrdrpPteyEYb8yIol5Z_MwyKeac0F54wNTbL9SWu9pyV_uD2n6xmroPJuPOmZSknf_M-h9b_JM2
CitedBy_id crossref_primary_10_3103_S1060992X24700565
crossref_primary_10_3103_S1060992X24700589
ContentType Journal Article
CorporateAuthor IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS
Samara National Research University
CorporateAuthor_xml – name: Samara National Research University
– name: IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS
DBID AAYXX
CITATION
DOA
DOI 10.18287/2412-6179-CO-1283
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2412-6179
EndPage 831
ExternalDocumentID oai_doaj_org_article_f094f8f03b2143a794ff9933026cde35
10_18287_2412_6179_CO_1283
GroupedDBID 642
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c357t-da1ef4553e9149bbffac0f9a650ed7460a6567bae011ed61bc5cf1713add18a83
IEDL.DBID DOA
ISSN 0134-2452
IngestDate Wed Aug 27 01:26:12 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
Tue Jul 01 03:11:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-da1ef4553e9149bbffac0f9a650ed7460a6567bae011ed61bc5cf1713add18a83
OpenAccessLink https://doaj.org/article/f094f8f03b2143a794ff9933026cde35
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_f094f8f03b2143a794ff9933026cde35
crossref_primary_10_18287_2412_6179_CO_1283
crossref_citationtrail_10_18287_2412_6179_CO_1283
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Kompʹûternaâ optika
PublicationYear 2023
Publisher Samara National Research University
Publisher_xml – name: Samara National Research University
SSID ssj0002876141
Score 2.2959104
Snippet The paper presents main aspects of the application of artificial intelligence in ophthalmology for the diagnosis and treatment of eye diseases, considering the...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 824
SubjectTerms artificial intelligence
diabetic retinopathy
fundus image
image processing
laser coagulation
neural network
segmentation
Title Application of artificial intelligence in ophthalmology for solving the problem of semantic segmentation of fundus images
URI https://doaj.org/article/f094f8f03b2143a794ff9933026cde35
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbeiPKSBzZkNYnzHEsFqpCgC5W6WbZj06K-RNKBf8-dY0pYYGFzIsdKvpx99_nxHSE32thI8jhlKP_FYq05U-DIWK5krjgmnnYirk_P6XAcP06SSSvVF-4Ja-SBG-B6FviHzW3AVQSuXYL5WFsgC49SXRru1EuDImiRqTc3ZQT0PG6SEfKY4fKiPzGDAu89cFsRHo4r2GDEYITmP7xSS7zfeZmHA7Lnw0Pab17rkOyY5RHZ96Ei9R2xOiYf_e-FZ7qyFL-j0YKgs5bIJlzQ1XpaT-V84ebPKcSoFMwNpxEoxH7UJ5TBNiqzAJhnGgqvC38kyTUOvq_cVHS2gLGnOiHjh_uXwZD5LApM8ySrWSlDY-Mk4aYANqSUtVIHtpAQmpkyi9MASmmmpIGebso0VDrRNgTuCiNfmMucn5LOcrU0Z4RaCA6iXBdBqkrgnSpPtIzCNMsCGSpT8i4Jv1AU2kuMY6aLuUCqgcgLRF4g8mIwEoh8l9xun1k3Ahu_1r7Dn7OtieLY7gaYjPAmI_4ymfP_aOSC7GLm-WZf3yXp1O8bcwXxSa2unSl-AvKR4B0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+artificial+intelligence+in+ophthalmology+for+solving+the+problem+of+semantic+segmentation+of+fundus+images&rft.jtitle=Komp%CA%B9%C3%BBterna%C3%A2+optika&rft.au=Demin%2C+N.S.&rft.au=Ilyasova%2C+N.Y.&rft.au=Paringer%2C+R.A.&rft.au=Kirsh%2C+D.V.&rft.date=2023-10-01&rft.issn=0134-2452&rft.eissn=2412-6179&rft.volume=47&rft.issue=5&rft.spage=824&rft.epage=831&rft_id=info:doi/10.18287%2F2412-6179-CO-1283&rft.externalDBID=n%2Fa&rft.externalDocID=10_18287_2412_6179_CO_1283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0134-2452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0134-2452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0134-2452&client=summon