Application of artificial intelligence in ophthalmology for solving the problem of semantic segmentation of fundus images
The paper presents main aspects of the application of artificial intelligence in ophthalmology for the diagnosis and treatment of eye diseases, considering the problem of semantic segmentation of fundus images as an example. The classic approach to semantic segmentation on the basis of textural feat...
Saved in:
Published in | Kompʹûternaâ optika Vol. 47; no. 5; pp. 824 - 831 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Samara National Research University
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0134-2452 2412-6179 |
DOI | 10.18287/2412-6179-CO-1283 |
Cover
Abstract | The paper presents main aspects of the application of artificial intelligence in ophthalmology for the diagnosis and treatment of eye diseases, considering the problem of semantic segmentation of fundus images as an example. The classic approach to semantic segmentation on the basis of textural features is compared to the proposed approach based on neural networks. Basic problems of using the neural network approach in biomedicine are formulated. We propose a new method for selecting an optimal zone of laser exposure for laser coagulation based on two neural networks. The first network is used for detecting anatomical objects in the fundus and the second one is used for selecting the area of macular edema. The region of interest is formed from the edema area while taking into account the location of anatomical objects in it. A comparative analysis of sev-eral architectures of neural networks for solving the problem of selecting the edema area is carried out. The best results in the selection of the edema area are shown by the neural network architecture of Unet++. |
---|---|
AbstractList | The paper presents main aspects of the application of artificial intelligence in ophthalmology for the diagnosis and treatment of eye diseases, considering the problem of semantic segmentation of fundus images as an example. The classic approach to semantic segmentation on the basis of textural features is compared to the proposed approach based on neural networks. Basic problems of using the neural network approach in biomedicine are formulated. We propose a new method for selecting an optimal zone of laser exposure for laser coagulation based on two neural networks. The first network is used for detecting anatomical objects in the fundus and the second one is used for selecting the area of macular edema. The region of interest is formed from the edema area while taking into account the location of anatomical objects in it. A comparative analysis of sev-eral architectures of neural networks for solving the problem of selecting the edema area is carried out. The best results in the selection of the edema area are shown by the neural network architecture of Unet++. |
Author | Demin, N.S. Ilyasova, N.Y. Paringer, R.A. Kirsh, D.V. |
Author_xml | – sequence: 1 givenname: N.S. surname: Demin fullname: Demin, N.S. – sequence: 2 givenname: N.Y. surname: Ilyasova fullname: Ilyasova, N.Y. – sequence: 3 givenname: R.A. surname: Paringer fullname: Paringer, R.A. – sequence: 4 givenname: D.V. surname: Kirsh fullname: Kirsh, D.V. |
BookMark | eNp9kctqHDEQRUWwwRPbP-CVfqATlaR-Lc2Qh8Ewm2Qt1OpSj4xaaiQ5MH-fbo-ZhRdeVdWFe4q69ZVchRiQkAdg36DjXfudS-BVA21f7Q8V8E58IbuLdkV2DISsuKz5DbnP-YUxtroakLAjp8dl8c7o4mKg0VKdirPOOO2pCwW9dxMGg-tA43IsR-3n6ON0ojYmmqP_58JEyxHpkuLgcd4YGWcdijNrM80YygVuX8P4mqmb9YT5jlxb7TPev9db8vfnjz_739Xz4dfT_vG5MqJuSzVqQCvrWmAPsh8Ga7VhttdNzXBsZcPWrmkHjQwAxwYGUxsLLQg9jtDpTtySpzN3jPpFLWndnk4qaqfehJgmtR1tPCrLemk7y8TAQQrdrpPteyEYb8yIol5Z_MwyKeac0F54wNTbL9SWu9pyV_uD2n6xmroPJuPOmZSknf_M-h9b_JM2 |
CitedBy_id | crossref_primary_10_3103_S1060992X24700565 crossref_primary_10_3103_S1060992X24700589 |
ContentType | Journal Article |
CorporateAuthor | IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS Samara National Research University |
CorporateAuthor_xml | – name: Samara National Research University – name: IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS |
DBID | AAYXX CITATION DOA |
DOI | 10.18287/2412-6179-CO-1283 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2412-6179 |
EndPage | 831 |
ExternalDocumentID | oai_doaj_org_article_f094f8f03b2143a794ff9933026cde35 10_18287_2412_6179_CO_1283 |
GroupedDBID | 642 AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ |
ID | FETCH-LOGICAL-c357t-da1ef4553e9149bbffac0f9a650ed7460a6567bae011ed61bc5cf1713add18a83 |
IEDL.DBID | DOA |
ISSN | 0134-2452 |
IngestDate | Wed Aug 27 01:26:12 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 Tue Jul 01 03:11:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-da1ef4553e9149bbffac0f9a650ed7460a6567bae011ed61bc5cf1713add18a83 |
OpenAccessLink | https://doaj.org/article/f094f8f03b2143a794ff9933026cde35 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f094f8f03b2143a794ff9933026cde35 crossref_primary_10_18287_2412_6179_CO_1283 crossref_citationtrail_10_18287_2412_6179_CO_1283 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Kompʹûternaâ optika |
PublicationYear | 2023 |
Publisher | Samara National Research University |
Publisher_xml | – name: Samara National Research University |
SSID | ssj0002876141 |
Score | 2.2959104 |
Snippet | The paper presents main aspects of the application of artificial intelligence in ophthalmology for the diagnosis and treatment of eye diseases, considering the... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 824 |
SubjectTerms | artificial intelligence diabetic retinopathy fundus image image processing laser coagulation neural network segmentation |
Title | Application of artificial intelligence in ophthalmology for solving the problem of semantic segmentation of fundus images |
URI | https://doaj.org/article/f094f8f03b2143a794ff9933026cde35 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbeiPKSBzZkNYnzHEsFqpCgC5W6WbZj06K-RNKBf8-dY0pYYGFzIsdKvpx99_nxHSE32thI8jhlKP_FYq05U-DIWK5krjgmnnYirk_P6XAcP06SSSvVF-4Ja-SBG-B6FviHzW3AVQSuXYL5WFsgC49SXRru1EuDImiRqTc3ZQT0PG6SEfKY4fKiPzGDAu89cFsRHo4r2GDEYITmP7xSS7zfeZmHA7Lnw0Pab17rkOyY5RHZ96Ei9R2xOiYf_e-FZ7qyFL-j0YKgs5bIJlzQ1XpaT-V84ebPKcSoFMwNpxEoxH7UJ5TBNiqzAJhnGgqvC38kyTUOvq_cVHS2gLGnOiHjh_uXwZD5LApM8ySrWSlDY-Mk4aYANqSUtVIHtpAQmpkyi9MASmmmpIGebso0VDrRNgTuCiNfmMucn5LOcrU0Z4RaCA6iXBdBqkrgnSpPtIzCNMsCGSpT8i4Jv1AU2kuMY6aLuUCqgcgLRF4g8mIwEoh8l9xun1k3Ahu_1r7Dn7OtieLY7gaYjPAmI_4ymfP_aOSC7GLm-WZf3yXp1O8bcwXxSa2unSl-AvKR4B0 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+artificial+intelligence+in+ophthalmology+for+solving+the+problem+of+semantic+segmentation+of+fundus+images&rft.jtitle=Komp%CA%B9%C3%BBterna%C3%A2+optika&rft.au=Demin%2C+N.S.&rft.au=Ilyasova%2C+N.Y.&rft.au=Paringer%2C+R.A.&rft.au=Kirsh%2C+D.V.&rft.date=2023-10-01&rft.issn=0134-2452&rft.eissn=2412-6179&rft.volume=47&rft.issue=5&rft.spage=824&rft.epage=831&rft_id=info:doi/10.18287%2F2412-6179-CO-1283&rft.externalDBID=n%2Fa&rft.externalDocID=10_18287_2412_6179_CO_1283 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0134-2452&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0134-2452&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0134-2452&client=summon |