Safety Verification and Robustness Analysis of Neural Networks via Quadratic Constraints and Semidefinite Programming
Certifying the safety or robustness of neural networks against input uncertainties and adversarial attacks is an emerging challenge in the area of safe machine learning and control. To provide such a guarantee, one must be able to bound the output of neural networks when their input changes within a...
Saved in:
Published in | IEEE transactions on automatic control Vol. 67; no. 1; pp. 1 - 15 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Certifying the safety or robustness of neural networks against input uncertainties and adversarial attacks is an emerging challenge in the area of safe machine learning and control. To provide such a guarantee, one must be able to bound the output of neural networks when their input changes within a bounded set. In this article, we propose a semidefinite programming (SDP) framework to address this problem for feed-forward neural networks with general activation functions and input uncertainty sets. Our main idea is to abstract various properties of activation functions (e.g., monotonicity, bounded slope, bounded values, and repetition across layers) with the formalism of quadratic constraints. We then analyze the safety properties of the abstracted network via the S -procedure and SDP. Our framework spans the tradeoff between conservatism and computational efficiency and applies to problems beyond safety verification. We evaluate the performance of our approach via numerical problem instances of various sizes. |
---|---|
AbstractList | Certifying the safety or robustness of neural networks against input uncertainties and adversarial attacks is an emerging challenge in the area of safe machine learning and control. To provide such a guarantee, one must be able to bound the output of neural networks when their input changes within a bounded set. In this article, we propose a semidefinite programming (SDP) framework to address this problem for feed-forward neural networks with general activation functions and input uncertainty sets. Our main idea is to abstract various properties of activation functions (e.g., monotonicity, bounded slope, bounded values, and repetition across layers) with the formalism of quadratic constraints. We then analyze the safety properties of the abstracted network via the S -procedure and SDP. Our framework spans the tradeoff between conservatism and computational efficiency and applies to problems beyond safety verification. We evaluate the performance of our approach via numerical problem instances of various sizes. |
Author | Morari, Manfred Fazlyab, Mahyar Pappas, George J. |
Author_xml | – sequence: 1 givenname: Mahyar orcidid: 0000-0001-9695-6178 surname: Fazlyab fullname: Fazlyab, Mahyar email: mahyarfazlyab@jhu.edu organization: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA – sequence: 2 givenname: Manfred surname: Morari fullname: Morari, Manfred email: morari@control.ee.ethz.ch organization: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA – sequence: 3 givenname: George J. orcidid: 0000-0001-9081-0637 surname: Pappas fullname: Pappas, George J. email: pappasg@seas.upenn.edu organization: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA |
BookMark | eNp9kEtrGzEUhUVJoE7SfSEbQdbj6j2apTFtUgjNs90O15qroMSWEknT4n-fcRy66KKrw4XzHbjfETmIKSIhnzmbc866L_eL5VwwweaSKcM7-YHMuNa2EVrIAzJjjNumE9Z8JEelPE6nUYrPyHgHHuuW_sIcfHBQQ4oU4kBv02osNWIpdBFhvS2h0OTpDxwzrKeof1J-KvR3AHozwpAn0tFliqVmCLGWt5E73IQBfYihIr3O6SHDZhPiwwk59LAu-Ok9j8nPb1_vlxfN5dX59-XisnFSt7UZGLQC9co6J9BIMJ1pWyGVbyXzneccmXLOKQuWW6vlqgWADvWgNBcGpDwmZ_vd55xeRiy1f0xjnt4pvTBc89Ywq6aW2bdcTqVk9L0L9c3E7pd1z1m_U9xPivud4v5d8QSyf8DnHDaQt_9DTvdIQMS_9U4yroSQr98aigA |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1109_LCSYS_2024_3487504 crossref_primary_10_1109_LCSYS_2022_3150719 crossref_primary_10_1109_TAC_2021_3069388 crossref_primary_10_1109_TAC_2024_3420968 crossref_primary_10_1016_j_neunet_2025_107261 crossref_primary_10_1016_j_automatica_2024_111549 crossref_primary_10_1109_LCSYS_2023_3289572 crossref_primary_10_1109_TAC_2023_3303489 crossref_primary_10_1016_j_cnsns_2023_107592 crossref_primary_10_1007_s11432_023_4146_6 crossref_primary_10_1007_s00521_023_08647_1 crossref_primary_10_1109_TAC_2022_3216978 crossref_primary_10_1109_TASE_2024_3456782 crossref_primary_10_1007_s11590_022_01958_7 crossref_primary_10_1109_LCSYS_2023_3242835 crossref_primary_10_1109_OJSP_2024_3396635 crossref_primary_10_1109_TAC_2024_3422217 crossref_primary_10_1109_TCSI_2024_3386506 crossref_primary_10_1109_OJCSYS_2022_3187429 crossref_primary_10_1016_j_ifacol_2023_10_1218 crossref_primary_10_1016_j_ifacol_2024_10_160 crossref_primary_10_1016_j_neucom_2024_127936 crossref_primary_10_1109_LCSYS_2024_3406609 crossref_primary_10_1109_JIOT_2024_3389458 crossref_primary_10_1016_j_neucom_2023_126995 crossref_primary_10_1109_LCSYS_2022_3181806 crossref_primary_10_1007_s10994_024_06666_0 crossref_primary_10_1002_rnc_7315 crossref_primary_10_1146_annurev_control_091819_074326 crossref_primary_10_1109_TITS_2024_3388390 crossref_primary_10_1109_LCSYS_2023_3337851 crossref_primary_10_1016_j_ifacol_2023_10_079 crossref_primary_10_3390_electronics12244903 crossref_primary_10_1016_j_arcontrol_2022_07_004 crossref_primary_10_1109_TCAD_2023_3331215 crossref_primary_10_1016_j_compchemeng_2024_108681 crossref_primary_10_1109_LCSYS_2023_3287494 crossref_primary_10_1109_TAC_2021_3097285 crossref_primary_10_1115_1_4063607 crossref_primary_10_1109_TSMC_2024_3368026 crossref_primary_10_1109_JSYST_2023_3253041 crossref_primary_10_1080_00207179_2023_2274924 crossref_primary_10_1016_j_jai_2023_10_002 crossref_primary_10_1109_MIE_2023_3292988 crossref_primary_10_1109_TAC_2023_3283213 crossref_primary_10_1109_LCSYS_2024_3416475 crossref_primary_10_1109_TNNLS_2023_3262820 crossref_primary_10_1109_TAC_2024_3454528 crossref_primary_10_1016_j_ifacol_2022_07_306 crossref_primary_10_1137_22M1512600 crossref_primary_10_1145_3648351 crossref_primary_10_1109_TAC_2023_3294101 crossref_primary_10_1109_TCST_2023_3337588 |
Cites_doi | 10.1109/CVPR.2016.282 10.1109/DASC.2016.7778091 10.1109/CVPR.2016.485 10.1007/978-3-319-77935-5_9 10.1109/CDC40024.2019.9029310 10.1007/978-1-4419-8853-9 10.1109/9.587335 10.1201/9781351251389-8 10.1109/TNNLS.2018.2808470 10.1109/EuroSP.2016.36 10.1007/978-3-319-68167-2_18 10.1109/CVPR.2017.17 10.1007/978-3-319-63387-9_5 10.1109/TAC.2002.800642 10.1007/978-3-319-68167-2_19 10.1145/3313151.3313164 10.1016/S0005-1098(01)00009-7 10.3233/AIC-2012-0525 10.1137/1.9781611970777 10.1515/9781400831050 10.1109/SP.2018.00058 10.1007/978-3-319-63387-9_1 10.1137/0306007 10.1109/TEVC.2019.2890858 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TAC.2020.3046193 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 15 |
ExternalDocumentID | 10_1109_TAC_2020_3046193 9301422 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation grantid: CPS 1837210 funderid: 10.13039/501100008982 – fundername: DARPA Assured Autonomy |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c357t-d0a72e5b8cc2e63a69677234f730f9f11e04ccc48a818853b7aaa9e5d45126a33 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Mon Jun 30 10:10:25 EDT 2025 Tue Jul 01 03:36:37 EDT 2025 Thu Apr 24 22:56:13 EDT 2025 Wed Aug 27 05:00:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-d0a72e5b8cc2e63a69677234f730f9f11e04ccc48a818853b7aaa9e5d45126a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9081-0637 0000-0001-9695-6178 |
PQID | 2615176084 |
PQPubID | 85475 |
PageCount | 15 |
ParticipantIDs | ieee_primary_9301422 crossref_citationtrail_10_1109_TAC_2020_3046193 crossref_primary_10_1109_TAC_2020_3046193 proquest_journals_2615176084 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-Jan. 2022-1-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref37 ref36 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref39 Lomuscio (ref14) ref19 Dvijotham (ref17) 2018; 1 Weng (ref24) 2018 Szegedy (ref3) 2014 Research (ref47) 2012 ref23 ref45 Bastani (ref12) 2016 Mirman (ref22) 2018 ApS (ref46) 2017 ref20 ref41 ref44 ref21 ref43 Salman (ref18) 2019 Bojarski (ref5) 2016 Wong (ref16) 2018 Raghunathan (ref34) 2018 Wang (ref28) 2018 Khalil (ref38) 2002; 3 ref9 Raghunathan (ref33) 2018 ref4 Wang (ref27) 2018 Xiang (ref7) 2018 Goodfellow (ref8) 2015 Tjeng (ref15) 2019 ref6 Gowal (ref42) 2018 Hein (ref26) 2017 Yakubovich (ref29) 1997; 4 ref40 Zhang (ref25) 2018 |
References_xml | – start-page: 5286 year: 2018 ident: ref16 article-title: Provable defenses against adversarial examples via the convex outer adversarial polytope publication-title: Int. Conf. Machine Learn. – volume: 3 volume-title: Nonlinear Systems year: 2002 ident: ref38 – ident: ref11 doi: 10.1109/CVPR.2016.282 – ident: ref6 doi: 10.1109/DASC.2016.7778091 – start-page: 2613 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2016 ident: ref12 article-title: Measuring neural net robustness with constraints – start-page: 2266 volume-title: Proc. Adv, Neural Info. Process. Syst. year: 2017 ident: ref26 article-title: Formal guarantees on the robustness of a classifier against adversarial manipulation – ident: ref4 doi: 10.1109/CVPR.2016.485 – ident: ref13 doi: 10.1007/978-3-319-77935-5_9 – ident: ref35 doi: 10.1109/CDC40024.2019.9029310 – ident: ref36 doi: 10.1007/978-1-4419-8853-9 – ident: ref37 doi: 10.1109/9.587335 – year: 2015 ident: ref8 article-title: Explaining and harnessing adversarial examples publication-title: Int. Conf. Learn. Representations – ident: ref14 article-title: An approach to reachability analysis for feed-forward relu neural networks – year: 2018 ident: ref33 article-title: Certified defenses against adversarial examples publication-title: Int. Conf. Learn. Representations – ident: ref9 doi: 10.1201/9781351251389-8 – ident: ref21 doi: 10.1109/TNNLS.2018.2808470 – ident: ref10 doi: 10.1109/EuroSP.2016.36 – ident: ref43 doi: 10.1007/978-3-319-68167-2_18 – start-page: 4939 volume-title: Adv. Neural Inf. Process. Syst. year: 2018 ident: ref25 article-title: Efficient neural network robustness certification with general activation functions – year: 2018 ident: ref42 article-title: On the effectiveness of interval bound propagation for training verifiably robust models – start-page: 9832 volume-title: Adv. Neural Inf. Process. Syst. year: 2019 ident: ref18 article-title: A convex relaxation barrier to tight robustness verification of neural networks – year: 2014 ident: ref3 article-title: Intriguing properties of neural networks publication-title: Int. Conf. Learn. Representations – ident: ref2 doi: 10.1109/CVPR.2017.17 – year: 2019 ident: ref15 article-title: Evaluating robustness of neural networks with mixed integer programming publication-title: Int. Conf. Learn. Representations – ident: ref32 doi: 10.1007/978-3-319-63387-9_5 – start-page: 5273 year: 2018 ident: ref24 article-title: Towards fast computation of certified robustness for RELU networks publication-title: ICML – ident: ref41 doi: 10.1109/TAC.2002.800642 – start-page: 3575 volume-title: Int. Conf. Mach. Learn. year: 2018 ident: ref22 article-title: Differentiable abstract interpretation for provably robust neural networks – ident: ref30 doi: 10.1007/978-3-319-68167-2_19 – ident: ref20 doi: 10.1145/3313151.3313164 – ident: ref40 doi: 10.1016/S0005-1098(01)00009-7 – volume: 1 start-page: 2 volume-title: UAI year: 2018 ident: ref17 article-title: A Dual Approach to scalable verification of deep networks – start-page: 6367 volume-title: Adv. Neural Info. Process. Syst. year: 2018 ident: ref27 article-title: Efficient formal safety analysis of neural networks – year: 2018 ident: ref7 article-title: Verification for machine learning, autonomy, and neural networks survey – year: 2012 ident: ref47 article-title: CVX: Matlab Software for Disciplined Convex Programming, Version 2.0. – year: 2016 ident: ref5 article-title: End to end learning for self-driving cars – ident: ref19 doi: 10.3233/AIC-2012-0525 – ident: ref44 doi: 10.1137/1.9781611970777 – ident: ref45 doi: 10.1515/9781400831050 – start-page: 10900 volume-title: Proc. Adv. Neural Info. Process. Syst. year: 2018 ident: ref34 article-title: Semidefinite relaxations for certifying robustness to adversarial examples – ident: ref23 doi: 10.1109/SP.2018.00058 – volume: 4 start-page: 73 year: 1997 ident: ref29 article-title: S-procedure in nonlinear control theory publication-title: Vestnick Leningrad Univ. Math. – year: 2017 ident: ref46 article-title: MOSEK Optimization Toolbox for MATLAB Manual. Version 8.1 – start-page: 1599 volume-title: 27th USENIX Secur. Symp. year: 2018 ident: ref28 article-title: Formal security analysis of neural networks using symbolic intervals – ident: ref31 doi: 10.1007/978-3-319-63387-9_1 – ident: ref39 doi: 10.1137/0306007 – ident: ref1 doi: 10.1109/TEVC.2019.2890858 |
SSID | ssj0016441 |
Score | 2.6612089 |
Snippet | Certifying the safety or robustness of neural networks against input uncertainties and adversarial attacks is an emerging challenge in the area of safe machine... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Biological neural networks Convex optimization deep neural networks Machine learning Neural networks Perturbation methods Programming Robustness Robustness (mathematics) robustness analysis Safety safety verification Semidefinite programming semidefinite programming (SDP) Uncertainty Verification |
Title | Safety Verification and Robustness Analysis of Neural Networks via Quadratic Constraints and Semidefinite Programming |
URI | https://ieeexplore.ieee.org/document/9301422 https://www.proquest.com/docview/2615176084 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7qSQ--VnF1lRy8CHa326ZpexRRRFB87MreSp6w6G7FbQX99c6k3eIL8ZZCkgYmmfkmmfmGkMM4soC6wS1hwmqPych4kgfaE8jdxrhloo-5w1fX_GLILkfRaIEcN7kwxhgXfGa62HRv-TpXJV6V9VLE_wEo3EVw3KpcrebFAO16pXXhAAdJ8yTpp73BySk4ggH4p8gunoZfTJCrqfJDETvrcr5GrubrqoJKHrtlIbvq_Rtl438Xvk5Wa5hJT6p9sUEWzHSTrHwiH2yR8l5YU7zRB_i29c0dFVNN73JZzgpUgXROWUJzS5HGA6a8ruLGZ_R1LOhtKTRuIUWx8KcrN1HM3CT3ZjLWxo4R0tKbKghsAv_dIsPzs8HphVcXYfBUGMWFp30RByaSiVKB4aHgKQdAHjILqsGmtt83PlNKsUSA6QfbL2MhRGoizQBKcBGG22Rpmk_NDqEa3RvfKs64YjCrTCw0eQiKTvV1JNukN5dLpmqGclz5U-Y8FT_NQJIZSjKrJdkmR82I54qd44--LRRM06-WSZt05qLP6uM7ywLEeTH3E7b7-6g9shxgHoS7i-mQpeKlNPuATgp54LblB7wt4UQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N2wPwsAEFrdsAP_CCRNrUcZzkcZpWFVgrYB3aW-RPqYK105pM2v763TlpxJcQb45kO5bOvvudffc7gLdZ6hF1o1silLeR0KmLtOQ2UsTdJqQXakS5w9OZnFyIj5fp5Ra873JhnHMh-MwNqBne8u3K1HRVNiwI_3NUuDto91PeZGt1bwZk2Ru9i0eY592jZFwM58cn6Apy9FCJX7xIfjFCoarKH6o42JfxHkw3K2vCSr4P6koPzP1vpI3_u_SnsNsCTXbc7IxnsOWWz-HJT_SDPajPlXfVHfuG3769u2NqadnXla7XFSlBtiEtYSvPiMgDp5w1keNrdrtQ7EutLG0iw6j0Zyg4Ua3DJOfuamGdXxCoZZ-bMLAr_O8LuBifzk8mUVuGITJJmlWRjVXGXapzY7iTiZKFREieCI_KwRd-NHKxMMaIXKHxR-uvM6VU4VIrEExIlSQvYXu5Wrp9YJYcnNgbKaQROKvOPTZlgqrOjGyq-zDcyKU0LUc5rfxHGXyVuChRkiVJsmwl2Yd33Yjrhp_jH317JJiuXyuTPhxtRF-2B3hdckJ6mYxzcfD3UW_g0WQ-PSvPPsw-HcJjTlkR4WbmCLarm9q9QqxS6ddhiz4ApkLkjg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safety+Verification+and+Robustness+Analysis+of+Neural+Networks+via+Quadratic+Constraints+and+Semidefinite+Programming&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Fazlyab%2C+Mahyar&rft.au=Morari%2C+Manfred&rft.au=Pappas%2C+George+J.&rft.date=2022-01-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=67&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTAC.2020.3046193&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2020_3046193 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |