Safety Verification and Robustness Analysis of Neural Networks via Quadratic Constraints and Semidefinite Programming

Certifying the safety or robustness of neural networks against input uncertainties and adversarial attacks is an emerging challenge in the area of safe machine learning and control. To provide such a guarantee, one must be able to bound the output of neural networks when their input changes within a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 67; no. 1; pp. 1 - 15
Main Authors Fazlyab, Mahyar, Morari, Manfred, Pappas, George J.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Certifying the safety or robustness of neural networks against input uncertainties and adversarial attacks is an emerging challenge in the area of safe machine learning and control. To provide such a guarantee, one must be able to bound the output of neural networks when their input changes within a bounded set. In this article, we propose a semidefinite programming (SDP) framework to address this problem for feed-forward neural networks with general activation functions and input uncertainty sets. Our main idea is to abstract various properties of activation functions (e.g., monotonicity, bounded slope, bounded values, and repetition across layers) with the formalism of quadratic constraints. We then analyze the safety properties of the abstracted network via the S -procedure and SDP. Our framework spans the tradeoff between conservatism and computational efficiency and applies to problems beyond safety verification. We evaluate the performance of our approach via numerical problem instances of various sizes.
AbstractList Certifying the safety or robustness of neural networks against input uncertainties and adversarial attacks is an emerging challenge in the area of safe machine learning and control. To provide such a guarantee, one must be able to bound the output of neural networks when their input changes within a bounded set. In this article, we propose a semidefinite programming (SDP) framework to address this problem for feed-forward neural networks with general activation functions and input uncertainty sets. Our main idea is to abstract various properties of activation functions (e.g., monotonicity, bounded slope, bounded values, and repetition across layers) with the formalism of quadratic constraints. We then analyze the safety properties of the abstracted network via the S -procedure and SDP. Our framework spans the tradeoff between conservatism and computational efficiency and applies to problems beyond safety verification. We evaluate the performance of our approach via numerical problem instances of various sizes.
Author Morari, Manfred
Fazlyab, Mahyar
Pappas, George J.
Author_xml – sequence: 1
  givenname: Mahyar
  orcidid: 0000-0001-9695-6178
  surname: Fazlyab
  fullname: Fazlyab, Mahyar
  email: mahyarfazlyab@jhu.edu
  organization: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 2
  givenname: Manfred
  surname: Morari
  fullname: Morari, Manfred
  email: morari@control.ee.ethz.ch
  organization: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 3
  givenname: George J.
  orcidid: 0000-0001-9081-0637
  surname: Pappas
  fullname: Pappas, George J.
  email: pappasg@seas.upenn.edu
  organization: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
BookMark eNp9kEtrGzEUhUVJoE7SfSEbQdbj6j2apTFtUgjNs90O15qroMSWEknT4n-fcRy66KKrw4XzHbjfETmIKSIhnzmbc866L_eL5VwwweaSKcM7-YHMuNa2EVrIAzJjjNumE9Z8JEelPE6nUYrPyHgHHuuW_sIcfHBQQ4oU4kBv02osNWIpdBFhvS2h0OTpDxwzrKeof1J-KvR3AHozwpAn0tFliqVmCLGWt5E73IQBfYihIr3O6SHDZhPiwwk59LAu-Ok9j8nPb1_vlxfN5dX59-XisnFSt7UZGLQC9co6J9BIMJ1pWyGVbyXzneccmXLOKQuWW6vlqgWADvWgNBcGpDwmZ_vd55xeRiy1f0xjnt4pvTBc89Ywq6aW2bdcTqVk9L0L9c3E7pd1z1m_U9xPivud4v5d8QSyf8DnHDaQt_9DTvdIQMS_9U4yroSQr98aigA
CODEN IETAA9
CitedBy_id crossref_primary_10_1109_LCSYS_2024_3487504
crossref_primary_10_1109_LCSYS_2022_3150719
crossref_primary_10_1109_TAC_2021_3069388
crossref_primary_10_1109_TAC_2024_3420968
crossref_primary_10_1016_j_neunet_2025_107261
crossref_primary_10_1016_j_automatica_2024_111549
crossref_primary_10_1109_LCSYS_2023_3289572
crossref_primary_10_1109_TAC_2023_3303489
crossref_primary_10_1016_j_cnsns_2023_107592
crossref_primary_10_1007_s11432_023_4146_6
crossref_primary_10_1007_s00521_023_08647_1
crossref_primary_10_1109_TAC_2022_3216978
crossref_primary_10_1109_TASE_2024_3456782
crossref_primary_10_1007_s11590_022_01958_7
crossref_primary_10_1109_LCSYS_2023_3242835
crossref_primary_10_1109_OJSP_2024_3396635
crossref_primary_10_1109_TAC_2024_3422217
crossref_primary_10_1109_TCSI_2024_3386506
crossref_primary_10_1109_OJCSYS_2022_3187429
crossref_primary_10_1016_j_ifacol_2023_10_1218
crossref_primary_10_1016_j_ifacol_2024_10_160
crossref_primary_10_1016_j_neucom_2024_127936
crossref_primary_10_1109_LCSYS_2024_3406609
crossref_primary_10_1109_JIOT_2024_3389458
crossref_primary_10_1016_j_neucom_2023_126995
crossref_primary_10_1109_LCSYS_2022_3181806
crossref_primary_10_1007_s10994_024_06666_0
crossref_primary_10_1002_rnc_7315
crossref_primary_10_1146_annurev_control_091819_074326
crossref_primary_10_1109_TITS_2024_3388390
crossref_primary_10_1109_LCSYS_2023_3337851
crossref_primary_10_1016_j_ifacol_2023_10_079
crossref_primary_10_3390_electronics12244903
crossref_primary_10_1016_j_arcontrol_2022_07_004
crossref_primary_10_1109_TCAD_2023_3331215
crossref_primary_10_1016_j_compchemeng_2024_108681
crossref_primary_10_1109_LCSYS_2023_3287494
crossref_primary_10_1109_TAC_2021_3097285
crossref_primary_10_1115_1_4063607
crossref_primary_10_1109_TSMC_2024_3368026
crossref_primary_10_1109_JSYST_2023_3253041
crossref_primary_10_1080_00207179_2023_2274924
crossref_primary_10_1016_j_jai_2023_10_002
crossref_primary_10_1109_MIE_2023_3292988
crossref_primary_10_1109_TAC_2023_3283213
crossref_primary_10_1109_LCSYS_2024_3416475
crossref_primary_10_1109_TNNLS_2023_3262820
crossref_primary_10_1109_TAC_2024_3454528
crossref_primary_10_1016_j_ifacol_2022_07_306
crossref_primary_10_1137_22M1512600
crossref_primary_10_1145_3648351
crossref_primary_10_1109_TAC_2023_3294101
crossref_primary_10_1109_TCST_2023_3337588
Cites_doi 10.1109/CVPR.2016.282
10.1109/DASC.2016.7778091
10.1109/CVPR.2016.485
10.1007/978-3-319-77935-5_9
10.1109/CDC40024.2019.9029310
10.1007/978-1-4419-8853-9
10.1109/9.587335
10.1201/9781351251389-8
10.1109/TNNLS.2018.2808470
10.1109/EuroSP.2016.36
10.1007/978-3-319-68167-2_18
10.1109/CVPR.2017.17
10.1007/978-3-319-63387-9_5
10.1109/TAC.2002.800642
10.1007/978-3-319-68167-2_19
10.1145/3313151.3313164
10.1016/S0005-1098(01)00009-7
10.3233/AIC-2012-0525
10.1137/1.9781611970777
10.1515/9781400831050
10.1109/SP.2018.00058
10.1007/978-3-319-63387-9_1
10.1137/0306007
10.1109/TEVC.2019.2890858
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2020.3046193
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 15
ExternalDocumentID 10_1109_TAC_2020_3046193
9301422
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CPS 1837210
  funderid: 10.13039/501100008982
– fundername: DARPA Assured Autonomy
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-d0a72e5b8cc2e63a69677234f730f9f11e04ccc48a818853b7aaa9e5d45126a33
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Mon Jun 30 10:10:25 EDT 2025
Tue Jul 01 03:36:37 EDT 2025
Thu Apr 24 22:56:13 EDT 2025
Wed Aug 27 05:00:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-d0a72e5b8cc2e63a69677234f730f9f11e04ccc48a818853b7aaa9e5d45126a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9081-0637
0000-0001-9695-6178
PQID 2615176084
PQPubID 85475
PageCount 15
ParticipantIDs ieee_primary_9301422
crossref_citationtrail_10_1109_TAC_2020_3046193
crossref_primary_10_1109_TAC_2020_3046193
proquest_journals_2615176084
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref37
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref39
Lomuscio (ref14)
ref19
Dvijotham (ref17) 2018; 1
Weng (ref24) 2018
Szegedy (ref3) 2014
Research (ref47) 2012
ref23
ref45
Bastani (ref12) 2016
Mirman (ref22) 2018
ApS (ref46) 2017
ref20
ref41
ref44
ref21
ref43
Salman (ref18) 2019
Bojarski (ref5) 2016
Wong (ref16) 2018
Raghunathan (ref34) 2018
Wang (ref28) 2018
Khalil (ref38) 2002; 3
ref9
Raghunathan (ref33) 2018
ref4
Wang (ref27) 2018
Xiang (ref7) 2018
Goodfellow (ref8) 2015
Tjeng (ref15) 2019
ref6
Gowal (ref42) 2018
Hein (ref26) 2017
Yakubovich (ref29) 1997; 4
ref40
Zhang (ref25) 2018
References_xml – start-page: 5286
  year: 2018
  ident: ref16
  article-title: Provable defenses against adversarial examples via the convex outer adversarial polytope
  publication-title: Int. Conf. Machine Learn.
– volume: 3
  volume-title: Nonlinear Systems
  year: 2002
  ident: ref38
– ident: ref11
  doi: 10.1109/CVPR.2016.282
– ident: ref6
  doi: 10.1109/DASC.2016.7778091
– start-page: 2613
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2016
  ident: ref12
  article-title: Measuring neural net robustness with constraints
– start-page: 2266
  volume-title: Proc. Adv, Neural Info. Process. Syst.
  year: 2017
  ident: ref26
  article-title: Formal guarantees on the robustness of a classifier against adversarial manipulation
– ident: ref4
  doi: 10.1109/CVPR.2016.485
– ident: ref13
  doi: 10.1007/978-3-319-77935-5_9
– ident: ref35
  doi: 10.1109/CDC40024.2019.9029310
– ident: ref36
  doi: 10.1007/978-1-4419-8853-9
– ident: ref37
  doi: 10.1109/9.587335
– year: 2015
  ident: ref8
  article-title: Explaining and harnessing adversarial examples
  publication-title: Int. Conf. Learn. Representations
– ident: ref14
  article-title: An approach to reachability analysis for feed-forward relu neural networks
– year: 2018
  ident: ref33
  article-title: Certified defenses against adversarial examples
  publication-title: Int. Conf. Learn. Representations
– ident: ref9
  doi: 10.1201/9781351251389-8
– ident: ref21
  doi: 10.1109/TNNLS.2018.2808470
– ident: ref10
  doi: 10.1109/EuroSP.2016.36
– ident: ref43
  doi: 10.1007/978-3-319-68167-2_18
– start-page: 4939
  volume-title: Adv. Neural Inf. Process. Syst.
  year: 2018
  ident: ref25
  article-title: Efficient neural network robustness certification with general activation functions
– year: 2018
  ident: ref42
  article-title: On the effectiveness of interval bound propagation for training verifiably robust models
– start-page: 9832
  volume-title: Adv. Neural Inf. Process. Syst.
  year: 2019
  ident: ref18
  article-title: A convex relaxation barrier to tight robustness verification of neural networks
– year: 2014
  ident: ref3
  article-title: Intriguing properties of neural networks
  publication-title: Int. Conf. Learn. Representations
– ident: ref2
  doi: 10.1109/CVPR.2017.17
– year: 2019
  ident: ref15
  article-title: Evaluating robustness of neural networks with mixed integer programming
  publication-title: Int. Conf. Learn. Representations
– ident: ref32
  doi: 10.1007/978-3-319-63387-9_5
– start-page: 5273
  year: 2018
  ident: ref24
  article-title: Towards fast computation of certified robustness for RELU networks
  publication-title: ICML
– ident: ref41
  doi: 10.1109/TAC.2002.800642
– start-page: 3575
  volume-title: Int. Conf. Mach. Learn.
  year: 2018
  ident: ref22
  article-title: Differentiable abstract interpretation for provably robust neural networks
– ident: ref30
  doi: 10.1007/978-3-319-68167-2_19
– ident: ref20
  doi: 10.1145/3313151.3313164
– ident: ref40
  doi: 10.1016/S0005-1098(01)00009-7
– volume: 1
  start-page: 2
  volume-title: UAI
  year: 2018
  ident: ref17
  article-title: A Dual Approach to scalable verification of deep networks
– start-page: 6367
  volume-title: Adv. Neural Info. Process. Syst.
  year: 2018
  ident: ref27
  article-title: Efficient formal safety analysis of neural networks
– year: 2018
  ident: ref7
  article-title: Verification for machine learning, autonomy, and neural networks survey
– year: 2012
  ident: ref47
  article-title: CVX: Matlab Software for Disciplined Convex Programming, Version 2.0.
– year: 2016
  ident: ref5
  article-title: End to end learning for self-driving cars
– ident: ref19
  doi: 10.3233/AIC-2012-0525
– ident: ref44
  doi: 10.1137/1.9781611970777
– ident: ref45
  doi: 10.1515/9781400831050
– start-page: 10900
  volume-title: Proc. Adv. Neural Info. Process. Syst.
  year: 2018
  ident: ref34
  article-title: Semidefinite relaxations for certifying robustness to adversarial examples
– ident: ref23
  doi: 10.1109/SP.2018.00058
– volume: 4
  start-page: 73
  year: 1997
  ident: ref29
  article-title: S-procedure in nonlinear control theory
  publication-title: Vestnick Leningrad Univ. Math.
– year: 2017
  ident: ref46
  article-title: MOSEK Optimization Toolbox for MATLAB Manual. Version 8.1
– start-page: 1599
  volume-title: 27th USENIX Secur. Symp.
  year: 2018
  ident: ref28
  article-title: Formal security analysis of neural networks using symbolic intervals
– ident: ref31
  doi: 10.1007/978-3-319-63387-9_1
– ident: ref39
  doi: 10.1137/0306007
– ident: ref1
  doi: 10.1109/TEVC.2019.2890858
SSID ssj0016441
Score 2.6612089
Snippet Certifying the safety or robustness of neural networks against input uncertainties and adversarial attacks is an emerging challenge in the area of safe machine...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Biological neural networks
Convex optimization
deep neural networks
Machine learning
Neural networks
Perturbation methods
Programming
Robustness
Robustness (mathematics)
robustness analysis
Safety
safety verification
Semidefinite programming
semidefinite programming (SDP)
Uncertainty
Verification
Title Safety Verification and Robustness Analysis of Neural Networks via Quadratic Constraints and Semidefinite Programming
URI https://ieeexplore.ieee.org/document/9301422
https://www.proquest.com/docview/2615176084
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7qSQ--VnF1lRy8CHa326ZpexRRRFB87MreSp6w6G7FbQX99c6k3eIL8ZZCkgYmmfkmmfmGkMM4soC6wS1hwmqPych4kgfaE8jdxrhloo-5w1fX_GLILkfRaIEcN7kwxhgXfGa62HRv-TpXJV6V9VLE_wEo3EVw3KpcrebFAO16pXXhAAdJ8yTpp73BySk4ggH4p8gunoZfTJCrqfJDETvrcr5GrubrqoJKHrtlIbvq_Rtl438Xvk5Wa5hJT6p9sUEWzHSTrHwiH2yR8l5YU7zRB_i29c0dFVNN73JZzgpUgXROWUJzS5HGA6a8ruLGZ_R1LOhtKTRuIUWx8KcrN1HM3CT3ZjLWxo4R0tKbKghsAv_dIsPzs8HphVcXYfBUGMWFp30RByaSiVKB4aHgKQdAHjILqsGmtt83PlNKsUSA6QfbL2MhRGoizQBKcBGG22Rpmk_NDqEa3RvfKs64YjCrTCw0eQiKTvV1JNukN5dLpmqGclz5U-Y8FT_NQJIZSjKrJdkmR82I54qd44--LRRM06-WSZt05qLP6uM7ywLEeTH3E7b7-6g9shxgHoS7i-mQpeKlNPuATgp54LblB7wt4UQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N2wPwsAEFrdsAP_CCRNrUcZzkcZpWFVgrYB3aW-RPqYK105pM2v763TlpxJcQb45kO5bOvvudffc7gLdZ6hF1o1silLeR0KmLtOQ2UsTdJqQXakS5w9OZnFyIj5fp5Ra873JhnHMh-MwNqBne8u3K1HRVNiwI_3NUuDto91PeZGt1bwZk2Ru9i0eY592jZFwM58cn6Apy9FCJX7xIfjFCoarKH6o42JfxHkw3K2vCSr4P6koPzP1vpI3_u_SnsNsCTXbc7IxnsOWWz-HJT_SDPajPlXfVHfuG3769u2NqadnXla7XFSlBtiEtYSvPiMgDp5w1keNrdrtQ7EutLG0iw6j0Zyg4Ua3DJOfuamGdXxCoZZ-bMLAr_O8LuBifzk8mUVuGITJJmlWRjVXGXapzY7iTiZKFREieCI_KwRd-NHKxMMaIXKHxR-uvM6VU4VIrEExIlSQvYXu5Wrp9YJYcnNgbKaQROKvOPTZlgqrOjGyq-zDcyKU0LUc5rfxHGXyVuChRkiVJsmwl2Yd33Yjrhp_jH317JJiuXyuTPhxtRF-2B3hdckJ6mYxzcfD3UW_g0WQ-PSvPPsw-HcJjTlkR4WbmCLarm9q9QqxS6ddhiz4ApkLkjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safety+Verification+and+Robustness+Analysis+of+Neural+Networks+via+Quadratic+Constraints+and+Semidefinite+Programming&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Fazlyab%2C+Mahyar&rft.au=Morari%2C+Manfred&rft.au=Pappas%2C+George+J.&rft.date=2022-01-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=67&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTAC.2020.3046193&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2020_3046193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon