Slime Mould Algorithm-Based Tuning of Cost-Effective Fuzzy Controllers for Servo Systems

This paper suggests five new contributions with respect to the state-of-the-art. First, the optimal tuning of cost-effective fuzzy controllers represented by Takagi–Sugeno–Kang proportional-integral fuzzy controllers (TSK PI-FCs) is carried out using a fresh metaheuristic algorithm, namely the Slime...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computational intelligence systems Vol. 14; no. 1; p. 1042
Main Authors Precup, Radu-Emil, David, Radu-Codrut, Roman, Raul-Cristian, Petriu, Emil M., Szedlak-Stinean, Alexandra-Iulia
Format Journal Article
LanguageEnglish
Published Springer 01.01.2021
Subjects
Online AccessGet full text
ISSN1875-6883
1875-6883
DOI10.2991/ijcis.d.210309.001

Cover

Loading…
Abstract This paper suggests five new contributions with respect to the state-of-the-art. First, the optimal tuning of cost-effective fuzzy controllers represented by Takagi–Sugeno–Kang proportional-integral fuzzy controllers (TSK PI-FCs) is carried out using a fresh metaheuristic algorithm, namely the Slime Mould Algorithm (SMA), and a fuzzy controller tuning approach is offered. Second, a relatively easily understandable formulation of SMA is offered. Third, a real-world application of SMA is given, focusing on the optimal tuning of TSK PI-FCs for nonlinear servo systems in terms of optimization problems that target the minimization of discrete-time cost functions defined as the sum of time multiplied by squared control error. Fourth, using the concept of improving the performance of metaheuristic algorithms with information feedback models, proposed by Wang and Tan, Improving metaheuristic algorithms with information feedback models, IEEE Trans. Cybern. 49 (2019), 542–555, Gu and Wang, Improving NSGA-III algorithms with information feedback models for large-scale many-objective optimization, Fut. Gen. Comput. Syst. 107 (2020), 49–69, and Zhang et al., Enhancing MOEA/D with information feedback models for large-scale many-objective optimization, Inf. Sci. 522 (2020), 1–16, new metaheuristic algorithms are introduced in terms of inserting the model F1 in SMA and other representative algorithms, namely Gravitational Search Algorithm (GSA), Charged System Search (CSS), Grey Wolf Optimizer (GWO) and Whale Optimization Algorithm (WOA). Fifth, the real-time validation of the cost-effective fuzzy controllers and their tuning approach is performed in the framework of angular position control of laboratory servo system. The comparison with other metaheuristic algorithms that solve the same optimization problem for optimal parameter tuning of cost-effective fuzzy controllers suggestively highlights the superiority of SMA. Experimental results are included.
AbstractList This paper suggests five new contributions with respect to the state-of-the-art. First, the optimal tuning of cost-effective fuzzy controllers represented by Takagi–Sugeno–Kang proportional-integral fuzzy controllers (TSK PI-FCs) is carried out using a fresh metaheuristic algorithm, namely the Slime Mould Algorithm (SMA), and a fuzzy controller tuning approach is offered. Second, a relatively easily understandable formulation of SMA is offered. Third, a real-world application of SMA is given, focusing on the optimal tuning of TSK PI-FCs for nonlinear servo systems in terms of optimization problems that target the minimization of discrete-time cost functions defined as the sum of time multiplied by squared control error. Fourth, using the concept of improving the performance of metaheuristic algorithms with information feedback models, proposed by Wang and Tan, Improving metaheuristic algorithms with information feedback models, IEEE Trans. Cybern. 49 (2019), 542–555, Gu and Wang, Improving NSGA-III algorithms with information feedback models for large-scale many-objective optimization, Fut. Gen. Comput. Syst. 107 (2020), 49–69, and Zhang et al., Enhancing MOEA/D with information feedback models for large-scale many-objective optimization, Inf. Sci. 522 (2020), 1–16, new metaheuristic algorithms are introduced in terms of inserting the model F1 in SMA and other representative algorithms, namely Gravitational Search Algorithm (GSA), Charged System Search (CSS), Grey Wolf Optimizer (GWO) and Whale Optimization Algorithm (WOA). Fifth, the real-time validation of the cost-effective fuzzy controllers and their tuning approach is performed in the framework of angular position control of laboratory servo system. The comparison with other metaheuristic algorithms that solve the same optimization problem for optimal parameter tuning of cost-effective fuzzy controllers suggestively highlights the superiority of SMA. Experimental results are included.
Author David, Radu-Codrut
Petriu, Emil M.
Roman, Raul-Cristian
Szedlak-Stinean, Alexandra-Iulia
Precup, Radu-Emil
Author_xml – sequence: 1
  givenname: Radu-Emil
  surname: Precup
  fullname: Precup, Radu-Emil
– sequence: 2
  givenname: Radu-Codrut
  surname: David
  fullname: David, Radu-Codrut
– sequence: 3
  givenname: Raul-Cristian
  surname: Roman
  fullname: Roman, Raul-Cristian
– sequence: 4
  givenname: Emil M.
  surname: Petriu
  fullname: Petriu, Emil M.
– sequence: 5
  givenname: Alexandra-Iulia
  surname: Szedlak-Stinean
  fullname: Szedlak-Stinean, Alexandra-Iulia
BookMark eNp9kM1qGzEUhUVwIGmaF8hKLzDu1c_MaJapidtAQhdOITuhka4cmfGoSLLBfvpO4hBCF12dw4HzLb4vZDbGEQm5YTDnXce-hY0Nee7mnIGAbg7AzsglU21dNUqJ2ad-Qa5z3gAAZxJAykvyvBrCFulj3A2O3g7rmEJ52VbfTUZHn3ZjGNc0erqIuVR33qMtYY90uTseD9M4lhSHAVOmPia6wrSPdHXIBbf5Kzn3Zsh4_Z5X5Pfy7mnxs3r49eN-cftQWVG3pbIemHCqQdeLuvdSKWu8kNaB5NAaobDvVWMRao6MSdl653pnpETAxnkprsj9ieui2eg_KWxNOuhogn4bYlprk0qwA2puZI0N76QzU_O9qZkA2XQt2EZxyyYWP7Fsijkn9B88BvpVtX5TrZ0-qdaT6umk_jnZUEwJr3JMGP53_QvOdojL
CitedBy_id crossref_primary_10_1007_s00521_022_07775_4
crossref_primary_10_1016_j_engappai_2023_106328
crossref_primary_10_1016_j_eswa_2021_115706
crossref_primary_10_1177_01423312211037967
crossref_primary_10_1016_j_ins_2023_03_043
crossref_primary_10_1080_00207721_2022_2153635
crossref_primary_10_1016_j_ins_2021_07_062
crossref_primary_10_1007_s10489_024_05350_z
crossref_primary_10_1109_ACCESS_2021_3111121
crossref_primary_10_1016_j_eswa_2023_120937
crossref_primary_10_3390_su15107949
crossref_primary_10_1155_2022_3991870
crossref_primary_10_1016_j_asoc_2023_110831
crossref_primary_10_1016_j_eswa_2024_126160
crossref_primary_10_1016_j_procs_2022_11_166
crossref_primary_10_1016_j_asoc_2023_110513
crossref_primary_10_1016_j_eswa_2023_121312
crossref_primary_10_1016_j_asoc_2021_108043
crossref_primary_10_1016_j_engappai_2023_106251
crossref_primary_10_1109_TFUZZ_2023_3269786
crossref_primary_10_1016_j_asoc_2021_107632
crossref_primary_10_1109_TFUZZ_2023_3289795
crossref_primary_10_1093_jcde_qwac075
crossref_primary_10_1016_j_asoc_2021_107597
crossref_primary_10_1155_2021_5333278
crossref_primary_10_1016_j_engappai_2022_105082
crossref_primary_10_22399_ijcesen_506
crossref_primary_10_1109_TSMC_2023_3342854
crossref_primary_10_1007_s10462_023_10567_4
crossref_primary_10_37394_232016_2022_17_38
crossref_primary_10_1007_s00521_021_06273_3
crossref_primary_10_1016_j_isatra_2021_04_011
crossref_primary_10_1016_j_engappai_2023_105927
crossref_primary_10_1007_s12530_022_09425_5
crossref_primary_10_1016_j_engappai_2024_109110
crossref_primary_10_1016_j_eswa_2023_123105
crossref_primary_10_3390_sym15030676
crossref_primary_10_1016_j_scs_2023_104508
crossref_primary_10_1155_2021_9922192
crossref_primary_10_1109_TMECH_2023_3279865
crossref_primary_10_1016_j_eswa_2023_121492
crossref_primary_10_1016_j_asoc_2022_109869
crossref_primary_10_3390_s21155026
crossref_primary_10_1016_j_engappai_2022_105738
crossref_primary_10_1109_TFUZZ_2023_3290041
crossref_primary_10_1016_j_est_2024_110791
crossref_primary_10_1016_j_eswa_2021_116301
crossref_primary_10_1002_cpe_7809
crossref_primary_10_3390_sym17010050
crossref_primary_10_59277_ROMJIST_2023_1_04
crossref_primary_10_1016_j_engappai_2023_106353
crossref_primary_10_1155_2021_6379469
crossref_primary_10_1155_2022_4835157
crossref_primary_10_1016_j_ins_2023_119420
crossref_primary_10_1016_j_knosys_2022_110244
crossref_primary_10_3390_biomimetics9010054
crossref_primary_10_1155_2021_6860503
crossref_primary_10_1016_j_eswa_2023_121184
crossref_primary_10_1016_j_isatra_2023_02_001
crossref_primary_10_1109_TCYB_2023_3266241
crossref_primary_10_1016_j_artmed_2024_102886
crossref_primary_10_3390_math9080907
crossref_primary_10_1007_s00521_022_07034_6
crossref_primary_10_1155_2021_9931521
crossref_primary_10_3390_axioms11030095
crossref_primary_10_1080_00207721_2021_1927236
crossref_primary_10_1016_j_istruc_2025_108366
crossref_primary_10_1016_j_aei_2022_101616
crossref_primary_10_1016_j_eswa_2023_119940
crossref_primary_10_1007_s12530_021_09404_2
crossref_primary_10_1016_j_eswa_2023_119941
crossref_primary_10_3233_ICA_220693
crossref_primary_10_1007_s12530_023_09495_z
crossref_primary_10_1007_s12530_023_09497_x
crossref_primary_10_1016_j_eswa_2022_119325
crossref_primary_10_1109_TFUZZ_2023_3252601
crossref_primary_10_1016_j_asoc_2023_110983
crossref_primary_10_1155_2022_1036913
crossref_primary_10_1016_j_eswa_2023_120930
crossref_primary_10_1016_j_ins_2023_119275
crossref_primary_10_1016_j_eswa_2022_117629
crossref_primary_10_1016_j_advengsoft_2022_103158
crossref_primary_10_1016_j_asoc_2023_110628
crossref_primary_10_59277_ROMJIST_2024_1_02
crossref_primary_10_1016_j_engappai_2023_106040
crossref_primary_10_1007_s11042_022_14077_3
crossref_primary_10_59277_ROMJIST_2024_1_04
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.2991/ijcis.d.210309.001
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-6883
ExternalDocumentID oai_doaj_org_article_2a45e6294daa45fba513046970c682c1
10_2991_ijcis_d_210309_001
GroupedDBID 0R~
4.4
5GY
AAFWJ
AAJSJ
AAKKN
AASML
AAYXX
ABEEZ
ABFIM
ACACY
ACGFS
ACULB
ADBBV
ADCVX
ADMSI
AENEX
AFGXO
AFPKN
AHDSZ
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVBZW
BCNDV
C24
C6C
CITATION
CS3
DU5
EBLON
EBS
EJD
GROUPED_DOAJ
GTTXZ
H13
HZ~
IL9
IPNFZ
J~4
M4Z
O9-
OK1
RIG
SOJ
TDBHL
TFL
TFW
TR2
ID FETCH-LOGICAL-c357t-cf013d86edb35bf488caf34cd04207a38ebb86ce052e11447fddbda44e0e6df43
IEDL.DBID DOA
ISSN 1875-6883
IngestDate Wed Aug 27 01:32:05 EDT 2025
Tue Jul 01 01:20:19 EDT 2025
Thu Apr 24 23:05:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-cf013d86edb35bf488caf34cd04207a38ebb86ce052e11447fddbda44e0e6df43
OpenAccessLink https://doaj.org/article/2a45e6294daa45fba513046970c682c1
ParticipantIDs doaj_primary_oai_doaj_org_article_2a45e6294daa45fba513046970c682c1
crossref_primary_10_2991_ijcis_d_210309_001
crossref_citationtrail_10_2991_ijcis_d_210309_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of computational intelligence systems
PublicationYear 2021
Publisher Springer
Publisher_xml – name: Springer
SSID ssj0002140044
Score 2.51646
Snippet This paper suggests five new contributions with respect to the state-of-the-art. First, the optimal tuning of cost-effective fuzzy controllers represented by...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 1042
SubjectTerms Low-cost fuzzy control
Optimal tuning
Position control
Servo systems
Slime Mould Algorithm
Title Slime Mould Algorithm-Based Tuning of Cost-Effective Fuzzy Controllers for Servo Systems
URI https://doaj.org/article/2a45e6294daa45fba513046970c682c1
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JT8JAGJ0YvXhxN-JC5uDNFKaztOVYiMSQ6AVIuDWzKgaoETjIr_ebaTV40Yu3ppk2zcu3Tr95D6Fbp0nHZUxGQSiM05RGSjoR6YyIzBGVxIG--PEpeRjzwURMtqS-_ExYRQ9cAdemkgub0A43Eq6ckiL2P_M6KdFJRnVofCDnbTVTPgbT2Nsmr07JQMSN29NXPV22TIt6Xa3AUfkjE20R9ofM0j9CB3VJiPPqU47Rjl2coMMvuQVce98pmgxn07nFj16UGuez5xL6-pd51IU8ZPBo7Tc4cOlwr1yuooqUGCIZ7q83mw_cqybSZ1DsYShTsQ8RJa7pys_QuH8_6j1EtTBCpJlIV5F2ULiZLLFGMaEc-KCWjnFtwANJKllmlcoSbYmgFvodnjpjlJGcW2IT4zg7R7uLcmEvECZS85RZnUno8wRNFdOMJ4poaaGwYq6B4i-QCl2zhnvxilkB3YMHtgjAFqaogPUzcg109_3MW8WZ8evqrsf-e6Xnuw43wAqK2gqKv6zg8j9ecoX2qZ9YCRss12h39b62N1ByrFQT7eX5YDhoBiv7BEY_1V8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Slime+Mould+Algorithm-Based+Tuning+of+Cost-Effective+Fuzzy+Controllers+for+Servo+Systems&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Precup%2C+Radu-Emil&rft.au=David%2C+Radu-Codrut&rft.au=Roman%2C+Raul-Cristian&rft.au=Petriu%2C+Emil+M.&rft.date=2021-01-01&rft.issn=1875-6883&rft.eissn=1875-6883&rft.volume=14&rft.issue=1&rft.spage=1042&rft_id=info:doi/10.2991%2Fijcis.d.210309.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_2991_ijcis_d_210309_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon