Slime Mould Algorithm-Based Tuning of Cost-Effective Fuzzy Controllers for Servo Systems
This paper suggests five new contributions with respect to the state-of-the-art. First, the optimal tuning of cost-effective fuzzy controllers represented by Takagi–Sugeno–Kang proportional-integral fuzzy controllers (TSK PI-FCs) is carried out using a fresh metaheuristic algorithm, namely the Slime...
Saved in:
Published in | International journal of computational intelligence systems Vol. 14; no. 1; p. 1042 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Springer
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1875-6883 1875-6883 |
DOI | 10.2991/ijcis.d.210309.001 |
Cover
Loading…
Abstract | This paper suggests five new contributions with respect to the state-of-the-art. First, the optimal tuning of cost-effective fuzzy controllers represented by Takagi–Sugeno–Kang proportional-integral fuzzy controllers (TSK PI-FCs) is carried out using a fresh metaheuristic algorithm, namely the Slime Mould Algorithm (SMA), and a fuzzy controller tuning approach is offered. Second, a relatively easily understandable formulation of SMA is offered. Third, a real-world application of SMA is given, focusing on the optimal tuning of TSK PI-FCs for nonlinear servo systems in terms of optimization problems that target the minimization of discrete-time cost functions defined as the sum of time multiplied by squared control error. Fourth, using the concept of improving the performance of metaheuristic algorithms with information feedback models, proposed by Wang and Tan, Improving metaheuristic algorithms with information feedback models, IEEE Trans. Cybern. 49 (2019), 542–555, Gu and Wang, Improving NSGA-III algorithms with information feedback models for large-scale many-objective optimization, Fut. Gen. Comput. Syst. 107 (2020), 49–69, and Zhang et al., Enhancing MOEA/D with information feedback models for large-scale many-objective optimization, Inf. Sci. 522 (2020), 1–16, new metaheuristic algorithms are introduced in terms of inserting the model F1 in SMA and other representative algorithms, namely Gravitational Search Algorithm (GSA), Charged System Search (CSS), Grey Wolf Optimizer (GWO) and Whale Optimization Algorithm (WOA). Fifth, the real-time validation of the cost-effective fuzzy controllers and their tuning approach is performed in the framework of angular position control of laboratory servo system. The comparison with other metaheuristic algorithms that solve the same optimization problem for optimal parameter tuning of cost-effective fuzzy controllers suggestively highlights the superiority of SMA. Experimental results are included. |
---|---|
AbstractList | This paper suggests five new contributions with respect to the state-of-the-art. First, the optimal tuning of cost-effective fuzzy controllers represented by Takagi–Sugeno–Kang proportional-integral fuzzy controllers (TSK PI-FCs) is carried out using a fresh metaheuristic algorithm, namely the Slime Mould Algorithm (SMA), and a fuzzy controller tuning approach is offered. Second, a relatively easily understandable formulation of SMA is offered. Third, a real-world application of SMA is given, focusing on the optimal tuning of TSK PI-FCs for nonlinear servo systems in terms of optimization problems that target the minimization of discrete-time cost functions defined as the sum of time multiplied by squared control error. Fourth, using the concept of improving the performance of metaheuristic algorithms with information feedback models, proposed by Wang and Tan, Improving metaheuristic algorithms with information feedback models, IEEE Trans. Cybern. 49 (2019), 542–555, Gu and Wang, Improving NSGA-III algorithms with information feedback models for large-scale many-objective optimization, Fut. Gen. Comput. Syst. 107 (2020), 49–69, and Zhang et al., Enhancing MOEA/D with information feedback models for large-scale many-objective optimization, Inf. Sci. 522 (2020), 1–16, new metaheuristic algorithms are introduced in terms of inserting the model F1 in SMA and other representative algorithms, namely Gravitational Search Algorithm (GSA), Charged System Search (CSS), Grey Wolf Optimizer (GWO) and Whale Optimization Algorithm (WOA). Fifth, the real-time validation of the cost-effective fuzzy controllers and their tuning approach is performed in the framework of angular position control of laboratory servo system. The comparison with other metaheuristic algorithms that solve the same optimization problem for optimal parameter tuning of cost-effective fuzzy controllers suggestively highlights the superiority of SMA. Experimental results are included. |
Author | David, Radu-Codrut Petriu, Emil M. Roman, Raul-Cristian Szedlak-Stinean, Alexandra-Iulia Precup, Radu-Emil |
Author_xml | – sequence: 1 givenname: Radu-Emil surname: Precup fullname: Precup, Radu-Emil – sequence: 2 givenname: Radu-Codrut surname: David fullname: David, Radu-Codrut – sequence: 3 givenname: Raul-Cristian surname: Roman fullname: Roman, Raul-Cristian – sequence: 4 givenname: Emil M. surname: Petriu fullname: Petriu, Emil M. – sequence: 5 givenname: Alexandra-Iulia surname: Szedlak-Stinean fullname: Szedlak-Stinean, Alexandra-Iulia |
BookMark | eNp9kM1qGzEUhUVwIGmaF8hKLzDu1c_MaJapidtAQhdOITuhka4cmfGoSLLBfvpO4hBCF12dw4HzLb4vZDbGEQm5YTDnXce-hY0Nee7mnIGAbg7AzsglU21dNUqJ2ad-Qa5z3gAAZxJAykvyvBrCFulj3A2O3g7rmEJ52VbfTUZHn3ZjGNc0erqIuVR33qMtYY90uTseD9M4lhSHAVOmPia6wrSPdHXIBbf5Kzn3Zsh4_Z5X5Pfy7mnxs3r49eN-cftQWVG3pbIemHCqQdeLuvdSKWu8kNaB5NAaobDvVWMRao6MSdl653pnpETAxnkprsj9ieui2eg_KWxNOuhogn4bYlprk0qwA2puZI0N76QzU_O9qZkA2XQt2EZxyyYWP7Fsijkn9B88BvpVtX5TrZ0-qdaT6umk_jnZUEwJr3JMGP53_QvOdojL |
CitedBy_id | crossref_primary_10_1007_s00521_022_07775_4 crossref_primary_10_1016_j_engappai_2023_106328 crossref_primary_10_1016_j_eswa_2021_115706 crossref_primary_10_1177_01423312211037967 crossref_primary_10_1016_j_ins_2023_03_043 crossref_primary_10_1080_00207721_2022_2153635 crossref_primary_10_1016_j_ins_2021_07_062 crossref_primary_10_1007_s10489_024_05350_z crossref_primary_10_1109_ACCESS_2021_3111121 crossref_primary_10_1016_j_eswa_2023_120937 crossref_primary_10_3390_su15107949 crossref_primary_10_1155_2022_3991870 crossref_primary_10_1016_j_asoc_2023_110831 crossref_primary_10_1016_j_eswa_2024_126160 crossref_primary_10_1016_j_procs_2022_11_166 crossref_primary_10_1016_j_asoc_2023_110513 crossref_primary_10_1016_j_eswa_2023_121312 crossref_primary_10_1016_j_asoc_2021_108043 crossref_primary_10_1016_j_engappai_2023_106251 crossref_primary_10_1109_TFUZZ_2023_3269786 crossref_primary_10_1016_j_asoc_2021_107632 crossref_primary_10_1109_TFUZZ_2023_3289795 crossref_primary_10_1093_jcde_qwac075 crossref_primary_10_1016_j_asoc_2021_107597 crossref_primary_10_1155_2021_5333278 crossref_primary_10_1016_j_engappai_2022_105082 crossref_primary_10_22399_ijcesen_506 crossref_primary_10_1109_TSMC_2023_3342854 crossref_primary_10_1007_s10462_023_10567_4 crossref_primary_10_37394_232016_2022_17_38 crossref_primary_10_1007_s00521_021_06273_3 crossref_primary_10_1016_j_isatra_2021_04_011 crossref_primary_10_1016_j_engappai_2023_105927 crossref_primary_10_1007_s12530_022_09425_5 crossref_primary_10_1016_j_engappai_2024_109110 crossref_primary_10_1016_j_eswa_2023_123105 crossref_primary_10_3390_sym15030676 crossref_primary_10_1016_j_scs_2023_104508 crossref_primary_10_1155_2021_9922192 crossref_primary_10_1109_TMECH_2023_3279865 crossref_primary_10_1016_j_eswa_2023_121492 crossref_primary_10_1016_j_asoc_2022_109869 crossref_primary_10_3390_s21155026 crossref_primary_10_1016_j_engappai_2022_105738 crossref_primary_10_1109_TFUZZ_2023_3290041 crossref_primary_10_1016_j_est_2024_110791 crossref_primary_10_1016_j_eswa_2021_116301 crossref_primary_10_1002_cpe_7809 crossref_primary_10_3390_sym17010050 crossref_primary_10_59277_ROMJIST_2023_1_04 crossref_primary_10_1016_j_engappai_2023_106353 crossref_primary_10_1155_2021_6379469 crossref_primary_10_1155_2022_4835157 crossref_primary_10_1016_j_ins_2023_119420 crossref_primary_10_1016_j_knosys_2022_110244 crossref_primary_10_3390_biomimetics9010054 crossref_primary_10_1155_2021_6860503 crossref_primary_10_1016_j_eswa_2023_121184 crossref_primary_10_1016_j_isatra_2023_02_001 crossref_primary_10_1109_TCYB_2023_3266241 crossref_primary_10_1016_j_artmed_2024_102886 crossref_primary_10_3390_math9080907 crossref_primary_10_1007_s00521_022_07034_6 crossref_primary_10_1155_2021_9931521 crossref_primary_10_3390_axioms11030095 crossref_primary_10_1080_00207721_2021_1927236 crossref_primary_10_1016_j_istruc_2025_108366 crossref_primary_10_1016_j_aei_2022_101616 crossref_primary_10_1016_j_eswa_2023_119940 crossref_primary_10_1007_s12530_021_09404_2 crossref_primary_10_1016_j_eswa_2023_119941 crossref_primary_10_3233_ICA_220693 crossref_primary_10_1007_s12530_023_09495_z crossref_primary_10_1007_s12530_023_09497_x crossref_primary_10_1016_j_eswa_2022_119325 crossref_primary_10_1109_TFUZZ_2023_3252601 crossref_primary_10_1016_j_asoc_2023_110983 crossref_primary_10_1155_2022_1036913 crossref_primary_10_1016_j_eswa_2023_120930 crossref_primary_10_1016_j_ins_2023_119275 crossref_primary_10_1016_j_eswa_2022_117629 crossref_primary_10_1016_j_advengsoft_2022_103158 crossref_primary_10_1016_j_asoc_2023_110628 crossref_primary_10_59277_ROMJIST_2024_1_02 crossref_primary_10_1016_j_engappai_2023_106040 crossref_primary_10_1007_s11042_022_14077_3 crossref_primary_10_59277_ROMJIST_2024_1_04 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.2991/ijcis.d.210309.001 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1875-6883 |
ExternalDocumentID | oai_doaj_org_article_2a45e6294daa45fba513046970c682c1 10_2991_ijcis_d_210309_001 |
GroupedDBID | 0R~ 4.4 5GY AAFWJ AAJSJ AAKKN AASML AAYXX ABEEZ ABFIM ACACY ACGFS ACULB ADBBV ADCVX ADMSI AENEX AFGXO AFPKN AHDSZ ALMA_UNASSIGNED_HOLDINGS ARCSS AVBZW BCNDV C24 C6C CITATION CS3 DU5 EBLON EBS EJD GROUPED_DOAJ GTTXZ H13 HZ~ IL9 IPNFZ J~4 M4Z O9- OK1 RIG SOJ TDBHL TFL TFW TR2 |
ID | FETCH-LOGICAL-c357t-cf013d86edb35bf488caf34cd04207a38ebb86ce052e11447fddbda44e0e6df43 |
IEDL.DBID | DOA |
ISSN | 1875-6883 |
IngestDate | Wed Aug 27 01:32:05 EDT 2025 Tue Jul 01 01:20:19 EDT 2025 Thu Apr 24 23:05:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-cf013d86edb35bf488caf34cd04207a38ebb86ce052e11447fddbda44e0e6df43 |
OpenAccessLink | https://doaj.org/article/2a45e6294daa45fba513046970c682c1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2a45e6294daa45fba513046970c682c1 crossref_primary_10_2991_ijcis_d_210309_001 crossref_citationtrail_10_2991_ijcis_d_210309_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | International journal of computational intelligence systems |
PublicationYear | 2021 |
Publisher | Springer |
Publisher_xml | – name: Springer |
SSID | ssj0002140044 |
Score | 2.51646 |
Snippet | This paper suggests five new contributions with respect to the state-of-the-art. First, the optimal tuning of cost-effective fuzzy controllers represented by... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 1042 |
SubjectTerms | Low-cost fuzzy control Optimal tuning Position control Servo systems Slime Mould Algorithm |
Title | Slime Mould Algorithm-Based Tuning of Cost-Effective Fuzzy Controllers for Servo Systems |
URI | https://doaj.org/article/2a45e6294daa45fba513046970c682c1 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JT8JAGJ0YvXhxN-JC5uDNFKaztOVYiMSQ6AVIuDWzKgaoETjIr_ebaTV40Yu3ppk2zcu3Tr95D6Fbp0nHZUxGQSiM05RGSjoR6YyIzBGVxIG--PEpeRjzwURMtqS-_ExYRQ9cAdemkgub0A43Eq6ckiL2P_M6KdFJRnVofCDnbTVTPgbT2Nsmr07JQMSN29NXPV22TIt6Xa3AUfkjE20R9ofM0j9CB3VJiPPqU47Rjl2coMMvuQVce98pmgxn07nFj16UGuez5xL6-pd51IU8ZPBo7Tc4cOlwr1yuooqUGCIZ7q83mw_cqybSZ1DsYShTsQ8RJa7pys_QuH8_6j1EtTBCpJlIV5F2ULiZLLFGMaEc-KCWjnFtwANJKllmlcoSbYmgFvodnjpjlJGcW2IT4zg7R7uLcmEvECZS85RZnUno8wRNFdOMJ4poaaGwYq6B4i-QCl2zhnvxilkB3YMHtgjAFqaogPUzcg109_3MW8WZ8evqrsf-e6Xnuw43wAqK2gqKv6zg8j9ecoX2qZ9YCRss12h39b62N1ByrFQT7eX5YDhoBiv7BEY_1V8 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Slime+Mould+Algorithm-Based+Tuning+of+Cost-Effective+Fuzzy+Controllers+for+Servo+Systems&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Precup%2C+Radu-Emil&rft.au=David%2C+Radu-Codrut&rft.au=Roman%2C+Raul-Cristian&rft.au=Petriu%2C+Emil+M.&rft.date=2021-01-01&rft.issn=1875-6883&rft.eissn=1875-6883&rft.volume=14&rft.issue=1&rft.spage=1042&rft_id=info:doi/10.2991%2Fijcis.d.210309.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_2991_ijcis_d_210309_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon |