Minimal Assist-as-Needed Controller for Upper Limb Robotic Rehabilitation
Robotic rehabilitation of the upper limb following neurological injury is most successful when subjects are engaged in the rehabilitation protocol. Developing assistive control strategies that maximize subject participation is accordingly an active area of research, with aims to promote neural plast...
Saved in:
Published in | IEEE transactions on robotics Vol. 32; no. 1; pp. 113 - 124 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1552-3098 1941-0468 |
DOI | 10.1109/TRO.2015.2503726 |
Cover
Loading…
Abstract | Robotic rehabilitation of the upper limb following neurological injury is most successful when subjects are engaged in the rehabilitation protocol. Developing assistive control strategies that maximize subject participation is accordingly an active area of research, with aims to promote neural plasticity and, in turn, increase the potential for recovery of motor coordination. Unfortunately, state-of-the-art control strategies either ignore more complex subject capabilities or assume underlying patterns govern subject behavior and may therefore intervene suboptimally. In this paper, we present a minimal assist-as-needed (mAAN) controller for upper limb rehabilitation robots. The controller employs sensorless force estimation to dynamically determine subject inputs without any underlying assumptions as to the nature of subject capabilities and computes a corresponding assistance torque with adjustable ultimate bounds on position error. Our adaptive input estimation scheme is shown to yield fast, stable, and accurate measurements regardless of subject interaction and exceeds the performance of current approaches that estimate only position-dependent force inputs from the user. Two additional algorithms are introduced in this paper to further promote active participation of subjects with varying degrees of impairment. First, a bound modification algorithm is described, which alters allowable error. Second, a decayed disturbance rejection algorithm is presented, which encourages subjects who are capable of leading the reference trajectory. The mAAN controller and accompanying algorithms are demonstrated experimentally with healthy subjects in the RiceWrist-S exoskeleton. |
---|---|
AbstractList | Robotic rehabilitation of the upper limb following neurological injury is most successful when subjects are engaged in the rehabilitation protocol. Developing assistive control strategies that maximize subject participation is accordingly an active area of research, with aims to promote neural plasticity and, in turn, increase the potential for recovery of motor coordination. Unfortunately, state-of-the-art control strategies either ignore more complex subject capabilities or assume underlying patterns govern subject behavior and may therefore intervene suboptimally. In this paper, we present a minimal assist-as-needed (mAAN) controller for upper limb rehabilitation robots. The controller employs sensorless force estimation to dynamically determine subject inputs without any underlying assumptions as to the nature of subject capabilities and computes a corresponding assistance torque with adjustable ultimate bounds on position error. Our adaptive input estimation scheme is shown to yield fast, stable, and accurate measurements regardless of subject interaction and exceeds the performance of current approaches that estimate only position-dependent force inputs from the user. Two additional algorithms are introduced in this paper to further promote active participation of subjects with varying degrees of impairment. First, a bound modification algorithm is described, which alters allowable error. Second, a decayed disturbance rejection algorithm is presented, which encourages subjects who are capable of leading the reference trajectory. The mAAN controller and accompanying algorithms are demonstrated experimentally with healthy subjects in the RiceWrist-S exoskeleton. |
Author | Pehlivan, Ali Utku OMalley, Marcia K. Losey, Dylan P. |
Author_xml | – sequence: 1 givenname: Ali Utku surname: Pehlivan fullname: Pehlivan, Ali Utku email: aliutku@rice.edu organization: Mechatronics and Haptic Interfaces Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, USA – sequence: 2 givenname: Dylan P. surname: Losey fullname: Losey, Dylan P. email: dlosey@rice.edu organization: Mechatronics and Haptic Interfaces Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, USA – sequence: 3 givenname: Marcia K. orcidid: 0000-0002-3563-1051 surname: OMalley fullname: OMalley, Marcia K. email: omalleym@rice.edu organization: Mechatronics and Haptic Interfaces Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, USA |
BookMark | eNp9kL1rwzAQxUVJoUnavdDF0NnpSbJkewyhH4G0gZDMQrZPVMGxXEkZ-t_XIaFDh0734N7vHvcmZNS5Dgm5pzCjFMqn7WY9Y0DFjAngOZNXZEzLjKaQyWI0aCFYyqEsbsgkhD0Ay0rgY7J8t5096DaZh2BDTHVIPxAbbJKF66J3bYs-Mc4nu74f1MoeqmTjKhdtnWzwU1e2tVFH67pbcm10G_DuMqdk9_K8Xbylq_XrcjFfpTUXeUzrSlSmLBpdUqxqBI1AyxwqISg0hhutRZZhYaRock6NRGaGTcHKKte0yRifksfz3d67ryOGqPbu6LshUtFcygIkQDa44OyqvQvBo1G9H_7034qCOhWmhsLUqTB1KWxA5B-kvrwWvbbtf-DDGbSI-JuTcwmMFvwHBCp5xQ |
CODEN | ITREAE |
CitedBy_id | crossref_primary_10_1109_TRO_2025_3532510 crossref_primary_10_1109_TMECH_2022_3211671 crossref_primary_10_1109_TRO_2021_3078317 crossref_primary_10_1109_TCDS_2023_3241632 crossref_primary_10_1109_LRA_2024_3398565 crossref_primary_10_1109_TNSRE_2022_3158339 crossref_primary_10_1007_s00170_021_08036_9 crossref_primary_10_1177_1729881420940651 crossref_primary_10_3389_fnbot_2024_1401931 crossref_primary_10_1016_j_bspc_2021_103066 crossref_primary_10_1109_LRA_2017_2737478 crossref_primary_10_1109_ACCESS_2018_2875550 crossref_primary_10_1109_ACCESS_2020_3019450 crossref_primary_10_3389_frobt_2021_742986 crossref_primary_10_1109_TASE_2020_2983225 crossref_primary_10_1177_01423312221124050 crossref_primary_10_3390_s24072082 crossref_primary_10_31436_iiumej_v22i2_1706 crossref_primary_10_3390_app11010340 crossref_primary_10_1016_j_mechmachtheory_2025_105937 crossref_primary_10_1016_j_automatica_2020_109294 crossref_primary_10_3390_s23041885 crossref_primary_10_1177_0020294019866844 crossref_primary_10_1145_3603194 crossref_primary_10_3390_machines13030207 crossref_primary_10_1109_TMRB_2021_3097132 crossref_primary_10_1016_j_ifacol_2020_12_2078 crossref_primary_10_1155_2018_6019381 crossref_primary_10_1186_s12938_023_01133_8 crossref_primary_10_1007_s42235_023_00339_9 crossref_primary_10_1088_1757_899X_260_1_012027 crossref_primary_10_1109_LRA_2018_2885165 crossref_primary_10_3390_app10228090 crossref_primary_10_3390_s23084042 crossref_primary_10_1017_S0263574723000899 crossref_primary_10_1115_1_4067329 crossref_primary_10_1016_j_ifacol_2023_10_557 crossref_primary_10_1109_LRA_2021_3097375 crossref_primary_10_1007_s40747_023_01246_6 crossref_primary_10_3389_fnbot_2017_00026 crossref_primary_10_1109_TCYB_2019_2933019 crossref_primary_10_1109_LRA_2023_3261750 crossref_primary_10_1371_journal_pone_0272813 crossref_primary_10_1109_TRO_2020_2998606 crossref_primary_10_1109_TMECH_2023_3330875 crossref_primary_10_1109_TRO_2023_3335666 crossref_primary_10_1109_OJEMB_2024_3363137 crossref_primary_10_1016_j_mechatronics_2024_103188 crossref_primary_10_1109_LRA_2017_2768124 crossref_primary_10_1109_LRA_2021_3118473 crossref_primary_10_1177_0278364920933654 crossref_primary_10_1109_LRA_2021_3096163 crossref_primary_10_1016_j_mechatronics_2019_102272 crossref_primary_10_1109_RBME_2016_2552201 crossref_primary_10_1186_s12984_021_00856_w crossref_primary_10_3390_app9081711 crossref_primary_10_3390_app9081710 crossref_primary_10_1016_j_mechatronics_2018_03_002 crossref_primary_10_1109_LRA_2019_2894908 crossref_primary_10_9746_sicetr_55_529 crossref_primary_10_1109_TCDS_2021_3072096 crossref_primary_10_1109_TMECH_2023_3239616 crossref_primary_10_1016_j_isatra_2024_06_001 crossref_primary_10_1186_s12984_021_00976_3 crossref_primary_10_3390_s19214681 crossref_primary_10_1109_TSMC_2017_2771227 crossref_primary_10_1016_j_bspc_2021_103474 crossref_primary_10_1109_ACCESS_2021_3083810 crossref_primary_10_1049_ccs_2018_0012 crossref_primary_10_3390_app13148294 crossref_primary_10_1017_wtc_2022_18 crossref_primary_10_3390_machines11050565 crossref_primary_10_1016_j_robot_2017_01_006 crossref_primary_10_1515_auto_2017_0062 crossref_primary_10_1142_S0219843620500188 crossref_primary_10_3389_frobt_2024_1404814 crossref_primary_10_1109_TMRB_2023_3310086 crossref_primary_10_1016_j_asoc_2021_107226 crossref_primary_10_1016_j_conengprac_2018_02_013 crossref_primary_10_1080_01691864_2018_1546617 crossref_primary_10_1109_TNSRE_2019_2953588 crossref_primary_10_3389_fnbot_2019_00030 crossref_primary_10_1016_j_bspc_2024_106896 crossref_primary_10_3389_fnbot_2018_00067 crossref_primary_10_1038_s41598_024_65910_8 crossref_primary_10_1109_TMECH_2022_3224423 crossref_primary_10_1177_2055668319866311 crossref_primary_10_1007_s12555_020_0852_4 crossref_primary_10_1016_j_isatra_2021_10_009 crossref_primary_10_1109_TBME_2020_3012296 crossref_primary_10_1007_s11071_024_09928_7 crossref_primary_10_1109_TNSRE_2019_2946407 crossref_primary_10_1007_s00521_024_09922_5 crossref_primary_10_1109_TCDS_2023_3275217 crossref_primary_10_1109_TIE_2021_3116572 crossref_primary_10_1109_TMRB_2020_2970222 crossref_primary_10_1177_0959651820945814 crossref_primary_10_1016_j_neucom_2018_09_085 crossref_primary_10_1109_TBME_2022_3228070 crossref_primary_10_54644_jte_78A_2023_1419 crossref_primary_10_1177_0142331220934643 crossref_primary_10_1177_0278364917691111 crossref_primary_10_1007_s43154_022_00076_7 crossref_primary_10_1109_TNSRE_2023_3306201 crossref_primary_10_1109_TMECH_2022_3175507 crossref_primary_10_1007_s11431_020_1671_6 crossref_primary_10_1016_j_clinph_2021_09_013 crossref_primary_10_1007_s00521_022_07180_x crossref_primary_10_1016_j_mechmachtheory_2024_105746 crossref_primary_10_12677_MOS_2024_131084 crossref_primary_10_1155_2019_4141269 crossref_primary_10_3390_s18113611 crossref_primary_10_1109_TNSRE_2019_2924208 crossref_primary_10_1109_LRA_2018_2809605 crossref_primary_10_1126_scirobotics_abi8017 crossref_primary_10_1109_TMECH_2020_2992090 crossref_primary_10_1109_LRA_2024_3396369 crossref_primary_10_1109_ACCESS_2019_2949197 crossref_primary_10_1016_j_compeleceng_2018_02_041 crossref_primary_10_1109_TIE_2023_3273270 crossref_primary_10_1016_j_bspc_2021_102475 crossref_primary_10_1109_TASE_2022_3225727 crossref_primary_10_1109_TNNLS_2019_2892157 crossref_primary_10_5194_ms_14_503_2023 crossref_primary_10_1016_j_patrec_2017_04_007 crossref_primary_10_1109_TBME_2021_3111891 crossref_primary_10_3389_frobt_2021_610529 crossref_primary_10_1115_1_4039146 crossref_primary_10_23919_JSEE_2024_000038 crossref_primary_10_3389_fnbot_2021_734130 crossref_primary_10_1115_1_4039145 crossref_primary_10_1016_j_mechatronics_2023_103115 crossref_primary_10_1007_s10846_023_01978_0 crossref_primary_10_1007_s40313_024_01131_8 crossref_primary_10_1177_1687814019875537 crossref_primary_10_1016_j_rcim_2021_102210 crossref_primary_10_1088_2516_1091_ac8193 crossref_primary_10_1109_TCST_2020_3032474 crossref_primary_10_1109_TMECH_2022_3208610 crossref_primary_10_1186_s12984_018_0352_4 crossref_primary_10_1007_s42235_024_00568_6 crossref_primary_10_3389_fnbot_2020_559048 crossref_primary_10_1007_s11517_023_03014_7 crossref_primary_10_1109_TBME_2020_3014861 crossref_primary_10_1109_TRO_2023_3286073 crossref_primary_10_1109_TSMC_2022_3163916 crossref_primary_10_1186_s12984_020_0644_3 crossref_primary_10_3390_app10196684 |
Cites_doi | 10.1023/A:1024494031121 10.1017/S0263574714001490 10.1109/TNSRE.2008.918389 10.1186/1743-0003-10-112 10.1109/TMECH.2004.839034 10.1109/IROS.1995.525827 10.1007/s00221-005-0097-8 10.1109/70.631234 10.1177/027836498700600303 10.1109/ICORR.2013.6650460 10.1126/science.3055293 10.1186/1743-0003-6-20 10.1243/09544062C09005 10.1109/TNSRE.2012.2195202 10.1023/A:1008213814102 10.1109/TRO.2012.2189496 10.1115/1.3140702 10.1109/TIE.2008.2011621 10.1093/ageing/afp020 10.1109/72.165588 10.1109/41.857974 10.1109/NER.2015.7146745 10.1109/TIE.2009.2025294 10.1109/ICRA.2012.6224837 10.1163/156855307780851975 10.1007/BF02345116 10.1109/CDC.1993.325355 10.1109/TMECH.2014.2340697 10.1056/NEJMoa0911341 10.1109/MRA.2008.927689 10.1109/ICORR.2005.1501108 10.1016/0022-510X(95)00003-K 10.1007/s004220050532 10.2340/16501977-0924 10.1109/ACC.2006.1657545 10.1186/1743-0003-11-111 10.1016/j.clinph.2011.10.004 10.1002/mus.20157 10.1007/BF00195855 10.1002/0471221546.ch5 10.1161/CIR.0000000000000152 10.1016/j.pmrj.2010.10.016 10.1109/ICRA.2015.7139888 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TRO.2015.2503726 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0468 |
EndPage | 124 |
ExternalDocumentID | 3957960371 10_1109_TRO_2015_2503726 7360218 |
Genre | orig-research |
GrantInformation_xml | – fundername: GRFP grantid: 0940902 – fundername: NSF grantid: CNS-1135916 funderid: 10.13039/100000001 – fundername: NSF funderid: 10.13039/100000001 – fundername: TIRR Foundation |
GroupedDBID | .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS VJK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c357t-cb5bf98da91ebce0ae01970b5510df3faa544e8f65d731f6e2f510829b7a1d423 |
IEDL.DBID | RIE |
ISSN | 1552-3098 |
IngestDate | Mon Jun 30 06:15:03 EDT 2025 Tue Jul 01 00:42:30 EDT 2025 Thu Apr 24 23:00:37 EDT 2025 Wed Aug 27 02:22:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | sensorless control rehabilitation robotics Adaptive control human–robot interaction nonlinear control systems Lyapunov methods |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-cb5bf98da91ebce0ae01970b5510df3faa544e8f65d731f6e2f510829b7a1d423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3563-1051 |
PQID | 1766806004 |
PQPubID | 27625 |
PageCount | 12 |
ParticipantIDs | ieee_primary_7360218 crossref_citationtrail_10_1109_TRO_2015_2503726 proquest_journals_1766806004 crossref_primary_10_1109_TRO_2015_2503726 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-Feb. 2016-2-00 20160201 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-Feb. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on robotics |
PublicationTitleAbbrev | TRO |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref16 ref19 ref18 (ref2) 2015 choset (ref41) 2005 khalil (ref42) 2002; 3 ref51 ref50 an (ref31) 0 ref46 ref45 ref48 wei (ref17) 0 ref44 (ref6) 0 ref49 ref8 ref7 ref9 ref4 ref5 ref40 ref35 berkowitz (ref3) 1998 ref34 ref37 ref36 ref30 ref33 ref32 spong (ref43) 2006; 3 ref1 ref39 ref38 ref24 ref23 ref26 wolbrecht (ref47) 2007 ref20 ref22 ref21 ref28 ref27 ref29 (ref25) 0 |
References_xml | – ident: ref13 doi: 10.1023/A:1024494031121 – ident: ref29 doi: 10.1017/S0263574714001490 – ident: ref22 doi: 10.1109/TNSRE.2008.918389 – ident: ref52 doi: 10.1186/1743-0003-10-112 – ident: ref46 doi: 10.1109/TMECH.2004.839034 – year: 2007 ident: ref47 article-title: Adaptive, assist-as-needed control of a pneumatic orthosis for optimizing robotic movement therapy following stroke – start-page: 1 year: 0 ident: ref25 article-title: Online learning and adaptation of patient support during ADL training publication-title: Proc IEEE Int Conf Rehabil Robot – ident: ref33 doi: 10.1109/IROS.1995.525827 – ident: ref49 doi: 10.1007/s00221-005-0097-8 – ident: ref32 doi: 10.1109/70.631234 – ident: ref45 doi: 10.1177/027836498700600303 – ident: ref24 doi: 10.1109/ICORR.2013.6650460 – ident: ref50 doi: 10.1126/science.3055293 – ident: ref9 doi: 10.1186/1743-0003-6-20 – ident: ref38 doi: 10.1243/09544062C09005 – start-page: 821 year: 0 ident: ref31 article-title: Dynamic stability issues in force control of manipulators publication-title: Proc Am Control Conf – ident: ref51 doi: 10.1109/TNSRE.2012.2195202 – ident: ref30 doi: 10.1023/A:1008213814102 – ident: ref14 doi: 10.1109/TRO.2012.2189496 – ident: ref12 doi: 10.1115/1.3140702 – ident: ref44 doi: 10.1109/TIE.2008.2011621 – ident: ref26 doi: 10.1093/ageing/afp020 – ident: ref20 doi: 10.1109/72.165588 – ident: ref37 doi: 10.1109/41.857974 – ident: ref18 doi: 10.1109/NER.2015.7146745 – ident: ref39 doi: 10.1109/TIE.2009.2025294 – year: 1998 ident: ref3 publication-title: Spinal Cord Injury An Analysis of Medical and Social Costs – ident: ref34 doi: 10.1109/ICRA.2012.6224837 – ident: ref15 doi: 10.1163/156855307780851975 – year: 2015 ident: ref2 article-title: Spinal cord injury (SCI) facts and figures at a glance – ident: ref4 doi: 10.1007/BF02345116 – ident: ref53 doi: 10.1109/CDC.1993.325355 – ident: ref23 doi: 10.1109/TMECH.2014.2340697 – ident: ref7 doi: 10.1056/NEJMoa0911341 – ident: ref35 doi: 10.1109/MRA.2008.927689 – ident: ref16 doi: 10.1109/ICORR.2005.1501108 – ident: ref5 doi: 10.1016/0022-510X(95)00003-K – ident: ref21 doi: 10.1007/s004220050532 – ident: ref8 doi: 10.2340/16501977-0924 – ident: ref36 doi: 10.1109/ACC.2006.1657545 – ident: ref10 doi: 10.1186/1743-0003-11-111 – ident: ref27 doi: 10.1016/j.clinph.2011.10.004 – volume: 3 year: 2002 ident: ref42 publication-title: Nonlinear Systems – year: 2005 ident: ref41 publication-title: Principles of Robot Motion Theory Algorithms and Implementation – ident: ref28 doi: 10.1002/mus.20157 – volume: 3 year: 2006 ident: ref43 publication-title: Robot Modeling and Control – ident: ref19 doi: 10.1007/BF00195855 – ident: ref40 doi: 10.1002/0471221546.ch5 – ident: ref1 doi: 10.1161/CIR.0000000000000152 – start-page: 647 year: 0 ident: ref17 article-title: Adaptive iterative learning control design for RUPERT IV publication-title: Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron – ident: ref11 doi: 10.1016/j.pmrj.2010.10.016 – start-page: 631 year: 0 ident: ref6 article-title: Arm rehabilitation with a robotic exoskeleleton in virtual reality publication-title: Proc IEEE Int Conf Rehabil Robot – ident: ref48 doi: 10.1109/ICRA.2015.7139888 |
SSID | ssj0024903 |
Score | 2.5587585 |
Snippet | Robotic rehabilitation of the upper limb following neurological injury is most successful when subjects are engaged in the rehabilitation protocol. Developing... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113 |
SubjectTerms | Adaptive control Algorithms Controllers Estimation Force Friction human-robot interaction Lyapunov methods Neurological disorders nonlinear control systems rehabilitation robotics Robot kinematics Robot sensing systems Robotics Robots sensorless control Trajectory |
Title | Minimal Assist-as-Needed Controller for Upper Limb Robotic Rehabilitation |
URI | https://ieeexplore.ieee.org/document/7360218 https://www.proquest.com/docview/1766806004 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ukx58i9Uqe_AimHZf2WyOIoqKVigWvC07uxMo2gft9uKvd7K7rfWBeAtsEkImyXyz-fINwJklPvlehCJFIzlAkShQaU8YrfyYpIx9Klm-nei2F96_yJcVuFi8hSGiknxGLVss7_LzUTazv8raKoisS1qFVQ7cqrdan7p6usyCbBXFRODqeH4l6er2c_fJcrhki919oKyMwpILKnOq_DiIS-9yswWP83FVpJLX1qzAVvb-TbLxvwPfhs0aZjqX1brYgRUa7sLGkvjgHtw99of9ga3E22JaiHQqOuzKKHeuKvr6G00chrRObzzm0kN_gE53hCPu0el-0ffeh97N9fPVragTK4gskKoQGUo0Os5T7RFm5KbEQE-5yOjJzU1g0lSGIcUmkrkKPBORb_hL7GtUqZczADuAteFoSIfgYOZ7lHNMhKFmS4foZxgZpY32yQ2RGtCez3WS1aOyyS_ekjL6cHXC1kmsdZLaOg04X7QYV4obf9Tds5O9qFfPcwOac3Mm9ZacJlYJM3YZ34VHv7c6hnXuu6ZkN2GtmMzohBFHgaflUvsAJQ3RLA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOMAeWJ7asjxy2AsSbvNyHB9XCFSg7UpVK3GLMslYqoC2oumFX884SQsLCHGzFDuxZuzMZ_vzNwB_LPHJ9yIUKRrJCxSJApX2hNHKj0nK2KeS5duL2sPw5k7ercD58i4MEZXkM2raYnmWn0-yud0qa6kgsiFpFdalvYxb3dZ6VdbTZR5kqykmAlfHi0NJV7cG_X-WxSWbHPADZYUU3gShMqvKh19xGV-ufkJ30bOKVnLfnBfYzJ7fiTZ-t-vbsFUDTedvNTJ2YIXGu_DjjfzgHlx3R-PRo63EE2NWiHQmehzMKHcuKgL7Az05DGqd4XTKpc7oEZ3-BCf8Rqf_n8L3PgyvLgcXbVGnVhBZIFUhMpRodJyn2iPMyE2JoZ5ykfGTm5vApKkMQ4pNJHMVeCYi3_CT2NeoUi9nCHYAa-PJmH6Bg5nvUc6rIgw1-zpEP8PIKG20T26I1IDWwtZJVvfKpr94SMr1h6sT9k5ivZPU3mnA2bLFtNLc-KLunjX2sl5t5wYcLdyZ1JNyllgtzNhlhBceft7qFDbag24n6Vz3bn_DJn-nJmgfwVrxNKdjxh8FnpTD7gU3W9R0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimal+Assist-as-Needed+Controller+for+Upper+Limb+Robotic+Rehabilitation&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Pehlivan%2C+Ali+Utku&rft.au=Losey%2C+Dylan+P.&rft.au=OMalley%2C+Marcia+K.&rft.date=2016-02-01&rft.pub=IEEE&rft.issn=1552-3098&rft.volume=32&rft.issue=1&rft.spage=113&rft.epage=124&rft_id=info:doi/10.1109%2FTRO.2015.2503726&rft.externalDocID=7360218 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon |