Comparative analysis of neural network models performance on low-power devices for a real-time object detection task
A computer vision based real-time object detection on low-power devices is economically attractive, yet a technically challenging task. The paper presents results of benchmarks on popular deep neural network models, which are often used for this task. The results of experiments provide insights into...
Saved in:
Published in | Kompʹûternaâ optika Vol. 48; no. 2; pp. 242 - 252 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Samara National Research University
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A computer vision based real-time object detection on low-power devices is economically attractive, yet a technically challenging task. The paper presents results of benchmarks on popular deep neural network models, which are often used for this task. The results of experiments provide insights into trade-offs between accuracy, speed, and computational efficiency of MobileNetV2 SSD, CenterNet MobileNetV2 FPN, EfficientDet, YoloV5, YoloV7, YoloV7 Tiny and YoloV8 neural network models on Raspberry Pi 4B, Raspberry Pi 3B and NVIDIA Jetson Nano with TensorFlow Lite. We fine-tuned the models on our custom dataset prior to benchmarking and used post-training quantization (PTQ) and quantization-aware training (QAT) to optimize the models’ size and speed. The experiments demonstrated that an appropriate algorithm selection depends on task requirements. We recommend EfficientDet Lite 512×512 quantized or YoloV7 Tiny for tasks that require around 2 FPS, EfficientDet Lite 320×320 quantized or SSD Mobilenet V2 320×320 for tasks with over 10 FPS, and EfficientDet Lite 320×320 or YoloV5 320×320 with QAT for tasks with intermediate FPS requirements. |
---|---|
AbstractList | A computer vision based real-time object detection on low-power devices is economically attractive, yet a technically challenging task. The paper presents results of benchmarks on popular deep neural network models, which are often used for this task. The results of experiments provide insights into trade-offs between accuracy, speed, and computational efficiency of MobileNetV2 SSD, CenterNet MobileNetV2 FPN, EfficientDet, YoloV5, YoloV7, YoloV7 Tiny and YoloV8 neural network models on Raspberry Pi 4B, Raspberry Pi 3B and NVIDIA Jetson Nano with TensorFlow Lite. We fine-tuned the models on our custom dataset prior to benchmarking and used post-training quantization (PTQ) and quantization-aware training (QAT) to optimize the models’ size and speed. The experiments demonstrated that an appropriate algorithm selection depends on task requirements. We recommend EfficientDet Lite 512×512 quantized or YoloV7 Tiny for tasks that require around 2 FPS, EfficientDet Lite 320×320 quantized or SSD Mobilenet V2 320×320 for tasks with over 10 FPS, and EfficientDet Lite 320×320 or YoloV5 320×320 with QAT for tasks with intermediate FPS requirements. |
Author | Magid, E. Zagitov, A. Toschev, A. Chebotareva, E. |
Author_xml | – sequence: 1 givenname: A. surname: Zagitov fullname: Zagitov, A. – sequence: 2 givenname: E. surname: Chebotareva fullname: Chebotareva, E. – sequence: 3 givenname: A. surname: Toschev fullname: Toschev, A. – sequence: 4 givenname: E. surname: Magid fullname: Magid, E. |
BookMark | eNp9kctOHDEQRS0EUibAD2TlH3DiV7-WqJUAEtJs2Ftldxl56G6PbMOIv4-H14IFqyvdqnNVj5_kdI0rEvJL8N-il333R2ohWSu6gY1bJpRWJ2Tz6Z2SDa8ek7qRP8hlzjvOeaVaocWGlDEue0hQwjNSWGF-ySHT6OmKTwnmKuUQ0yNd4oRzpntMPqYFVoc0rnSOB7aPB0x0wufgMNNapUATwsxKWGqT3aErtVyqhIoUyI8X5MzDnPHyXc_J_b-_9-MNu9te345Xd8yppivMDRIVDK3nUg0oW26hlcq3alBoLYDunfPaO40ORYvNNAkrGutl79UkhTont2-xU4Sd2aewQHoxEYJ5NWJ6MJBKcDMa13rtLGI36V6rXgyCW4Wu6aZOC2t5zerfslyKOSf0xoUCx41KgjAbwc3rL8zx7uZ4dzNuzfEXFZVf0I9RvoH-AzmRkRE |
CitedBy_id | crossref_primary_10_3103_S1060992X24700553 |
ContentType | Journal Article |
CorporateAuthor | Institute of Information Technology and Intelligent Systems, Kazan Federal Universit School of Electronic Engineering, Tikhonov Moscow Institute of Electronics and Mathematics, HSE University |
CorporateAuthor_xml | – name: School of Electronic Engineering, Tikhonov Moscow Institute of Electronics and Mathematics, HSE University – name: Institute of Information Technology and Intelligent Systems, Kazan Federal Universit |
DBID | AAYXX CITATION DOA |
DOI | 10.18287/2412-6179-CO-1343 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2412-6179 |
EndPage | 252 |
ExternalDocumentID | oai_doaj_org_article_c6f4cbee7d484381910b3ec57d741bb0 10_18287_2412_6179_CO_1343 |
GroupedDBID | 642 AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ |
ID | FETCH-LOGICAL-c357t-c92e3a96f0239e260ba623f6393ebbaa48ccf4fc4ece16e5dd1b15bf28f3d213 |
IEDL.DBID | DOA |
ISSN | 0134-2452 |
IngestDate | Wed Aug 27 01:29:10 EDT 2025 Tue Jul 01 03:11:57 EDT 2025 Thu Apr 24 23:12:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-c92e3a96f0239e260ba623f6393ebbaa48ccf4fc4ece16e5dd1b15bf28f3d213 |
OpenAccessLink | https://doaj.org/article/c6f4cbee7d484381910b3ec57d741bb0 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c6f4cbee7d484381910b3ec57d741bb0 crossref_citationtrail_10_18287_2412_6179_CO_1343 crossref_primary_10_18287_2412_6179_CO_1343 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Kompʹûternaâ optika |
PublicationYear | 2024 |
Publisher | Samara National Research University |
Publisher_xml | – name: Samara National Research University |
SSID | ssj0002876141 |
Score | 2.3429065 |
Snippet | A computer vision based real-time object detection on low-power devices is economically attractive, yet a technically challenging task. The paper presents... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 242 |
SubjectTerms | benchmarking computer vision deep learning image analysis object detection optimization techniques |
Title | Comparative analysis of neural network models performance on low-power devices for a real-time object detection task |
URI | https://doaj.org/article/c6f4cbee7d484381910b3ec57d741bb0 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbeiPKSBzZkNY6dpBmhoqqQoEuRulm2Yw9QJRUN4u9z55i2LLCwxg9Fl3PuvuTu-wi5SXnuUbiaSecrACiCszIvBZPWQPDI4HhZbE5-es4nL_Jxns23pL6wJqyjB-4MN7C5h3XOFZUcygAvEiOczYoKYqExAa1DzNsCU6_hkxHAc9mJEQrJ8Pdi7JhBgvcBhK0Um-NKNpoymCB-RKUt8v4QZcYHZC-mh_Suu61DsuPqI7IfU0UaD-LqmLSjDWs31ZFYhDaeIj8lbFB31d00CN2s6HLTHkCbmi6aT7ZEeTRaufCmoDBKNYUEcsFQbZ42Br_PwHAbSrVq2urV2wmZjR9mowmLAgrMiqxomS1TJ3SZe-xgdYBcjIZsx0NSIpwxWsuhtV56K511PHdZVXHDM-PToRdVysUp6dVN7c4ITQpjcgCcqckKWfJKp4mwWQlbOJ4InfQJ_7afspFcHDUuFgpBBtpcoc0V2lyNpgpt3ie36zXLjlrj19n3-FjWM5EWO1wAZ1HRWdRfznL-H5tckN0UMpuufOeS9Nr3D3cFmUlrroMTfgG9r96B |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+of+neural+network+models+performance+on+low-power+devices+for+a+real-time+object+detection+task&rft.jtitle=Komp%CA%B9%C3%BBterna%C3%A2+optika&rft.au=Zagitov%2C+A.&rft.au=Chebotareva%2C+E.&rft.au=Toschev%2C+A.&rft.au=Magid%2C+E.&rft.date=2024-04-01&rft.issn=0134-2452&rft.eissn=2412-6179&rft.volume=48&rft.issue=2&rft.spage=242&rft.epage=252&rft_id=info:doi/10.18287%2F2412-6179-CO-1343&rft.externalDBID=n%2Fa&rft.externalDocID=10_18287_2412_6179_CO_1343 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0134-2452&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0134-2452&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0134-2452&client=summon |