Comparative analysis of neural network models performance on low-power devices for a real-time object detection task

A computer vision based real-time object detection on low-power devices is economically attractive, yet a technically challenging task. The paper presents results of benchmarks on popular deep neural network models, which are often used for this task. The results of experiments provide insights into...

Full description

Saved in:
Bibliographic Details
Published inKompʹûternaâ optika Vol. 48; no. 2; pp. 242 - 252
Main Authors Zagitov, A., Chebotareva, E., Toschev, A., Magid, E.
Format Journal Article
LanguageEnglish
Published Samara National Research University 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A computer vision based real-time object detection on low-power devices is economically attractive, yet a technically challenging task. The paper presents results of benchmarks on popular deep neural network models, which are often used for this task. The results of experiments provide insights into trade-offs between accuracy, speed, and computational efficiency of MobileNetV2 SSD, CenterNet MobileNetV2 FPN, EfficientDet, YoloV5, YoloV7, YoloV7 Tiny and YoloV8 neural network models on Raspberry Pi 4B, Raspberry Pi 3B and NVIDIA Jetson Nano with TensorFlow Lite. We fine-tuned the models on our custom dataset prior to benchmarking and used post-training quantization (PTQ) and quantization-aware training (QAT) to optimize the models’ size and speed. The experiments demonstrated that an appropriate algorithm selection depends on task requirements. We recommend EfficientDet Lite 512×512 quantized or YoloV7 Tiny for tasks that require around 2 FPS, EfficientDet Lite 320×320 quantized or SSD Mobilenet V2 320×320 for tasks with over 10 FPS, and EfficientDet Lite 320×320 or YoloV5 320×320 with QAT for tasks with intermediate FPS requirements.
AbstractList A computer vision based real-time object detection on low-power devices is economically attractive, yet a technically challenging task. The paper presents results of benchmarks on popular deep neural network models, which are often used for this task. The results of experiments provide insights into trade-offs between accuracy, speed, and computational efficiency of MobileNetV2 SSD, CenterNet MobileNetV2 FPN, EfficientDet, YoloV5, YoloV7, YoloV7 Tiny and YoloV8 neural network models on Raspberry Pi 4B, Raspberry Pi 3B and NVIDIA Jetson Nano with TensorFlow Lite. We fine-tuned the models on our custom dataset prior to benchmarking and used post-training quantization (PTQ) and quantization-aware training (QAT) to optimize the models’ size and speed. The experiments demonstrated that an appropriate algorithm selection depends on task requirements. We recommend EfficientDet Lite 512×512 quantized or YoloV7 Tiny for tasks that require around 2 FPS, EfficientDet Lite 320×320 quantized or SSD Mobilenet V2 320×320 for tasks with over 10 FPS, and EfficientDet Lite 320×320 or YoloV5 320×320 with QAT for tasks with intermediate FPS requirements.
Author Magid, E.
Zagitov, A.
Toschev, A.
Chebotareva, E.
Author_xml – sequence: 1
  givenname: A.
  surname: Zagitov
  fullname: Zagitov, A.
– sequence: 2
  givenname: E.
  surname: Chebotareva
  fullname: Chebotareva, E.
– sequence: 3
  givenname: A.
  surname: Toschev
  fullname: Toschev, A.
– sequence: 4
  givenname: E.
  surname: Magid
  fullname: Magid, E.
BookMark eNp9kctOHDEQRS0EUibAD2TlH3DiV7-WqJUAEtJs2Ftldxl56G6PbMOIv4-H14IFqyvdqnNVj5_kdI0rEvJL8N-il333R2ohWSu6gY1bJpRWJ2Tz6Z2SDa8ek7qRP8hlzjvOeaVaocWGlDEue0hQwjNSWGF-ySHT6OmKTwnmKuUQ0yNd4oRzpntMPqYFVoc0rnSOB7aPB0x0wufgMNNapUATwsxKWGqT3aErtVyqhIoUyI8X5MzDnPHyXc_J_b-_9-MNu9te345Xd8yppivMDRIVDK3nUg0oW26hlcq3alBoLYDunfPaO40ORYvNNAkrGutl79UkhTont2-xU4Sd2aewQHoxEYJ5NWJ6MJBKcDMa13rtLGI36V6rXgyCW4Wu6aZOC2t5zerfslyKOSf0xoUCx41KgjAbwc3rL8zx7uZ4dzNuzfEXFZVf0I9RvoH-AzmRkRE
CitedBy_id crossref_primary_10_3103_S1060992X24700553
ContentType Journal Article
CorporateAuthor Institute of Information Technology and Intelligent Systems, Kazan Federal Universit
School of Electronic Engineering, Tikhonov Moscow Institute of Electronics and Mathematics, HSE University
CorporateAuthor_xml – name: School of Electronic Engineering, Tikhonov Moscow Institute of Electronics and Mathematics, HSE University
– name: Institute of Information Technology and Intelligent Systems, Kazan Federal Universit
DBID AAYXX
CITATION
DOA
DOI 10.18287/2412-6179-CO-1343
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2412-6179
EndPage 252
ExternalDocumentID oai_doaj_org_article_c6f4cbee7d484381910b3ec57d741bb0
10_18287_2412_6179_CO_1343
GroupedDBID 642
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c357t-c92e3a96f0239e260ba623f6393ebbaa48ccf4fc4ece16e5dd1b15bf28f3d213
IEDL.DBID DOA
ISSN 0134-2452
IngestDate Wed Aug 27 01:29:10 EDT 2025
Tue Jul 01 03:11:57 EDT 2025
Thu Apr 24 23:12:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-c92e3a96f0239e260ba623f6393ebbaa48ccf4fc4ece16e5dd1b15bf28f3d213
OpenAccessLink https://doaj.org/article/c6f4cbee7d484381910b3ec57d741bb0
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_c6f4cbee7d484381910b3ec57d741bb0
crossref_citationtrail_10_18287_2412_6179_CO_1343
crossref_primary_10_18287_2412_6179_CO_1343
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Kompʹûternaâ optika
PublicationYear 2024
Publisher Samara National Research University
Publisher_xml – name: Samara National Research University
SSID ssj0002876141
Score 2.3429065
Snippet A computer vision based real-time object detection on low-power devices is economically attractive, yet a technically challenging task. The paper presents...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 242
SubjectTerms benchmarking
computer vision
deep learning
image analysis
object detection
optimization techniques
Title Comparative analysis of neural network models performance on low-power devices for a real-time object detection task
URI https://doaj.org/article/c6f4cbee7d484381910b3ec57d741bb0
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbeiPKSBzZkNY6dpBmhoqqQoEuRulm2Yw9QJRUN4u9z55i2LLCwxg9Fl3PuvuTu-wi5SXnuUbiaSecrACiCszIvBZPWQPDI4HhZbE5-es4nL_Jxns23pL6wJqyjB-4MN7C5h3XOFZUcygAvEiOczYoKYqExAa1DzNsCU6_hkxHAc9mJEQrJ8Pdi7JhBgvcBhK0Um-NKNpoymCB-RKUt8v4QZcYHZC-mh_Suu61DsuPqI7IfU0UaD-LqmLSjDWs31ZFYhDaeIj8lbFB31d00CN2s6HLTHkCbmi6aT7ZEeTRaufCmoDBKNYUEcsFQbZ42Br_PwHAbSrVq2urV2wmZjR9mowmLAgrMiqxomS1TJ3SZe-xgdYBcjIZsx0NSIpwxWsuhtV56K511PHdZVXHDM-PToRdVysUp6dVN7c4ITQpjcgCcqckKWfJKp4mwWQlbOJ4InfQJ_7afspFcHDUuFgpBBtpcoc0V2lyNpgpt3ie36zXLjlrj19n3-FjWM5EWO1wAZ1HRWdRfznL-H5tckN0UMpuufOeS9Nr3D3cFmUlrroMTfgG9r96B
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+of+neural+network+models+performance+on+low-power+devices+for+a+real-time+object+detection+task&rft.jtitle=Komp%CA%B9%C3%BBterna%C3%A2+optika&rft.au=Zagitov%2C+A.&rft.au=Chebotareva%2C+E.&rft.au=Toschev%2C+A.&rft.au=Magid%2C+E.&rft.date=2024-04-01&rft.issn=0134-2452&rft.eissn=2412-6179&rft.volume=48&rft.issue=2&rft.spage=242&rft.epage=252&rft_id=info:doi/10.18287%2F2412-6179-CO-1343&rft.externalDBID=n%2Fa&rft.externalDocID=10_18287_2412_6179_CO_1343
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0134-2452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0134-2452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0134-2452&client=summon