Changes in mobility of synaptic vesicles with assembly and disassembly of actin network
In a presynaptic terminal, neurotransmitters are stored in synaptic vesicles and secreted into the synaptic cleft as a final step of cell signal transduction. At a static state, the vesicles are retained in the highly dense actin network. Prior to exocytosis, the dense actin network must disassemble...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1244; no. 1; pp. 85 - 91 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
11.05.1995
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 0006-3002 1872-8006 |
DOI | 10.1016/0304-4165(94)00199-8 |
Cover
Abstract | In a presynaptic terminal, neurotransmitters are stored in synaptic vesicles and secreted into the synaptic cleft as a final step of cell signal transduction. At a static state, the vesicles are retained in the highly dense actin network. Prior to exocytosis, the dense actin network must disassemble or largely be organized. Actin networks are formed in vitro which retain synaptic vesicles prepared from rat cerebral cortex. Dynamic behaviors of synaptic vesicles are measured by the dynamic light scattering method. The
D
app values of synaptic vesicles confined in actin network became less than
1
4
those of free vesicles. The motions of synaptic vesicles are substantially restricted. This means that synaptic vesicles which are liberated from the actin network by detachment of synapsin 1 molecules are still trapped in the cage-like spare of actin filaments. The actin network is disassembled by the actin severing protein, gelsolin, which is activated in the presence of μM level free Ca
2+ ions. The
D
app(v) values of synaptic vesicles after severing the actin network return to those of free vesicles in the presence of short actin fragments. A molecular model for exocytosis in the synaptic terminal is constructed on the basis of these results. |
---|---|
AbstractList | In a presynaptic terminal, neurotransmitters are stored in synaptic vesicles and secreted into the synaptic cleft as a final step of cell signal transduction. At a static state, the vesicles are retained in the highly dense actin network. Prior to exocytosis, the dense actin network must disassemble or largely be organized. Actin networks are formed in vitro which retain synaptic vesicles prepared from rat cerebral cortex. Dynamic behaviors of synaptic vesicles are measured by the dynamic light scattering method. The D(app) values of synaptic vesicles confined in actin network became less than 1/4 those of free vesicles. The motions of synaptic vesicles are substantially restricted. This means that synaptic vesicles which are liberated from the actin network by detachment of synapsin 1 molecules are still trapped in the cage-like space of actin filaments. The actin network is disassembled by the actin severing protein, gelsolin, which is activated in the presence of microM level free Ca2+ ions. The D(app)(v) values of synaptic vesicles after severing the actin network return to those of free vesicles in the presence of short actin fragments. A molecular model for exocytosis in the synaptic terminal is constructed on the basis of these results. In a presynaptic terminal, neurotransmitters are stored in synaptic vesicles and secreted into the synaptic cleft as a final step of cell signal transduction. At a static state, the vesicles are retained in the highly dense actin network. Prior to exocytosis, the dense actin network must disassemble or largely be organized. Actin networks are formed in vitro which retain synaptic vesicles prepared from rat cerebral cortex. Dynamic behaviors of synaptic vesicles are measured by the dynamic light scattering method. The D(app) values of synaptic vesicles confined in actin network became less than 1/4 those of free vesicles. The motions of synaptic vesicles are substantially restricted. This means that synaptic vesicles which are liberated from the actin network by detachment of synapsin 1 molecules are still trapped in the cage-like space of actin filaments. The actin network is disassembled by the actin severing protein, gelsolin, which is activated in the presence of microM level free Ca2+ ions. The D(app)(v) values of synaptic vesicles after severing the actin network return to those of free vesicles in the presence of short actin fragments. A molecular model for exocytosis in the synaptic terminal is constructed on the basis of these results.In a presynaptic terminal, neurotransmitters are stored in synaptic vesicles and secreted into the synaptic cleft as a final step of cell signal transduction. At a static state, the vesicles are retained in the highly dense actin network. Prior to exocytosis, the dense actin network must disassemble or largely be organized. Actin networks are formed in vitro which retain synaptic vesicles prepared from rat cerebral cortex. Dynamic behaviors of synaptic vesicles are measured by the dynamic light scattering method. The D(app) values of synaptic vesicles confined in actin network became less than 1/4 those of free vesicles. The motions of synaptic vesicles are substantially restricted. This means that synaptic vesicles which are liberated from the actin network by detachment of synapsin 1 molecules are still trapped in the cage-like space of actin filaments. The actin network is disassembled by the actin severing protein, gelsolin, which is activated in the presence of microM level free Ca2+ ions. The D(app)(v) values of synaptic vesicles after severing the actin network return to those of free vesicles in the presence of short actin fragments. A molecular model for exocytosis in the synaptic terminal is constructed on the basis of these results. In a presynaptic terminal, neurotransmitters are stored in synaptic vesicles and secreted into the synaptic cleft as a final step of cell signal transduction. At a static state, the vesicles are retained in the highly dense actin network. Prior to exocytosis, the dense actin network must disassemble or largely be organized. Actin networks are formed in vitro which retain synaptic vesicles prepared from rat cerebral cortex. Dynamic behaviors of synaptic vesicles are measured by the dynamic light scattering method. The D app values of synaptic vesicles confined in actin network became less than 1 4 those of free vesicles. The motions of synaptic vesicles are substantially restricted. This means that synaptic vesicles which are liberated from the actin network by detachment of synapsin 1 molecules are still trapped in the cage-like spare of actin filaments. The actin network is disassembled by the actin severing protein, gelsolin, which is activated in the presence of μM level free Ca 2+ ions. The D app(v) values of synaptic vesicles after severing the actin network return to those of free vesicles in the presence of short actin fragments. A molecular model for exocytosis in the synaptic terminal is constructed on the basis of these results. |
Author | Miyamoto, Shigeaki |
Author_xml | – sequence: 1 givenname: Shigeaki surname: Miyamoto fullname: Miyamoto, Shigeaki organization: Department of Biochemical Engineering, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/7766673$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1PGzEQhi1EFcLHPwBpTxUctrXjr3UPSCgCWgmpl1YcLa93XEx37dR2iPLv2ZA0Bw7tXEajeZ_38ByjwxADIHRO8CeCifiMKWY1I4JfKnaFMVGqbg7QlDRyVjcYi0M03UeO0HHOz3gcrvgETaQUQkg6RY_zJxN-Qa58qIbY-t6XdRVdldfBLIq31Qtkb_sxsPLlqTI5w9D268qErup83t8jYmwZSwKUVUy_T9EHZ_oMZ7t9gn7e3f6Yf60fvt9_m9881JZyWeq2wZYpAowZAOaUFI5SZUEo5xoiWjnjjGMi20ZQYp1RM8otbzsuAXPjJD1BH7e9ixT_LCEXPfhsoe9NgLjMWsqZokzwMXixCy7bATq9SH4waa13Jsb_l-3fpphzAqetL6b4GEoyvtcE6411vVGqN0q1YvrNum5GmL2D_9b_B7veYjAaevGQdLYegoXOJ7BFd9H_u-AVujqZGg |
CitedBy_id | crossref_primary_10_1242_jcs_165571 crossref_primary_10_1016_S0197_0186_99_00007_8 crossref_primary_10_7554_eLife_45650 crossref_primary_10_1034_j_1600_0854_2002_31105_x crossref_primary_10_1111_j_1749_6632_2001_tb05709_x crossref_primary_10_1002_ange_202403241 crossref_primary_10_1529_biophysj_105_059295 crossref_primary_10_1210_endo_142_5_8133 crossref_primary_10_1098_rsta_1998_0254 crossref_primary_10_1242_jcs_02942 crossref_primary_10_1007_s11571_012_9232_y crossref_primary_10_1002__SICI_1097_4547_19971215_50_6_979__AID_JNR8_3_0_CO_2_A crossref_primary_10_1073_pnas_95_8_4673 crossref_primary_10_1186_1471_2164_11_203 crossref_primary_10_1186_1471_2202_11_37 crossref_primary_10_1016_j_pneurobio_2003_10_003 crossref_primary_10_1016_S0197_0186_99_00159_X crossref_primary_10_1103_PhysRevE_65_061901 crossref_primary_10_1210_en_2005_0263 crossref_primary_10_1002_anie_202403241 crossref_primary_10_1007_s00018_012_1156_5 crossref_primary_10_1039_D4SC01664E crossref_primary_10_1371_journal_pone_0102988 crossref_primary_10_1097_00001756_200103050_00003 crossref_primary_10_1074_jbc_M004069200 crossref_primary_10_1007_BF03379582 |
Cites_doi | 10.1083/jcb.108.1.111 10.1016/S0006-3495(88)83054-6 10.1126/science.8430330 10.1016/S0021-9258(18)42501-X 10.1093/oxfordjournals.jbchem.a134620 10.1002/bies.950120603 10.1016/0896-6273(92)90303-U 10.1083/jcb.105.3.1355 10.1523/JNEUROSCI.14-03-01038.1994 10.1083/jcb.110.1.53 10.1002/j.1460-2075.1990.tb08078.x 10.1126/science.1553547 10.1016/S0021-9258(18)62016-2 10.1038/326704a0 10.1016/S0021-9258(18)51454-X 10.1016/0301-4622(86)80017-5 10.1126/science.8493552 10.1016/S0006-3495(93)81480-2 10.1083/jcb.96.5.1374 10.1111/j.1471-4159.1983.tb08119.x 10.1016/S0021-9258(18)83256-2 10.1038/361315a0 10.1016/0306-4522(90)90067-E 10.1016/S0021-9258(19)49908-0 10.1016/0014-5793(88)80226-6 10.1083/jcb.108.5.1863 |
ContentType | Journal Article |
Copyright | 1995 |
Copyright_xml | – notice: 1995 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/0304-4165(94)00199-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 91 |
ExternalDocumentID | 7766673 10_1016_0304_4165_94_00199_8 0304416594001998 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 MVM NPM PKN TWZ UHS VH1 X7M Y6R ZGI ~KM 7X8 |
ID | FETCH-LOGICAL-c357t-b80c491e44aee4f976f339ce69ff816b72545017b8631cfa9235c5bd57e05af73 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Thu Jul 10 22:00:10 EDT 2025 Wed Feb 19 02:33:49 EST 2025 Tue Jul 01 03:48:53 EDT 2025 Thu Apr 24 23:11:14 EDT 2025 Fri Feb 23 02:32:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Synaptic vesicle Actin network Gelsolin Dynamic light scattering |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-b80c491e44aee4f976f339ce69ff816b72545017b8631cfa9235c5bd57e05af73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 7766673 |
PQID | 77293465 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_77293465 pubmed_primary_7766673 crossref_citationtrail_10_1016_0304_4165_94_00199_8 crossref_primary_10_1016_0304_4165_94_00199_8 elsevier_sciencedirect_doi_10_1016_0304_4165_94_00199_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1995-05-11 |
PublicationDateYYYYMMDD | 1995-05-11 |
PublicationDate_xml | – month: 05 year: 1995 text: 1995-05-11 day: 11 |
PublicationDecade | 1990 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 1995 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Petrucci, Morrow (BIB21) 1987; 105 Bahler, Greengard (BIB4) 1987; 326 Betz, Bewick (BIB23) 1992; 255 Nishida, Maekawa, Sakai (BIB26) 1984; 95 Masai, Ishiwata, Fujime (BIB17) 1986; 25 Valtorta, Greengard, Fesce, Chieregatti, Benfenati (BIB22) 1992; 267 Benfenati, Bahler, Jahn, Greengard (BIB5) 1989; 108 Chu (BIB16) 1974 Fujime, Takasaki-Ohsita, Miyamoto (BIB18) 1988; 54 Huttner, Schiebler, Greengard, Camilli (BIB3) 1983; 96 Valtorta, Benfenati, Greengard (BIB27) 1992; 267 Benfenati, Valtorta, Chieregatti, Greengard (BIB20) 1992; 8 Sakurai, Ohmi, Kurokawa, Nonomura (BIB10) 1990; 38 Tanaka, Sobue (BIB11) 1994; 14 Miyamoto, Funatsu, Ishiwata, Fujime (BIB12) 1993; 64 Petrucci, Thomas, Bray (BIB9) 1983; 40 Hirokawa, Sobue, Kanda, Harada, Yorifuji (BIB2) 1989; 108 Bahler, Benfenati, Valtorta, Greengard (BIB19) 1990; 12 Maekawa, Toriyama, Hisanaga, Yonezawa, Endo, Hirokawa, Sakai (BIB24) 1989; 264 Rodriguez, Leminaire, Tchakarov, Jeyapragasan, Doucet, Vitale, Trifaro (BIB25) 1990; 9 Berridge (BIB1) 1993; 361 Miyamoto, Fujime (BIB13) 1988; 238 Greengard, Valtorta, Czernik, Benfenati (BIB6) 1993; 259 Stossel (BIB7) 1989; 264 Stossel (BIB8) 1993; 260 Spudich, Watt (BIB14) 1971; 246 Funatsu, Higuchi, Ishiwata (BIB15) 1990; 110 Betz (10.1016/0304-4165(94)00199-8_BIB23) 1992; 255 Masai (10.1016/0304-4165(94)00199-8_BIB17) 1986; 25 Huttner (10.1016/0304-4165(94)00199-8_BIB3) 1983; 96 Valtorta (10.1016/0304-4165(94)00199-8_BIB22) 1992; 267 Miyamoto (10.1016/0304-4165(94)00199-8_BIB12) 1993; 64 Greengard (10.1016/0304-4165(94)00199-8_BIB6) 1993; 259 Benfenati (10.1016/0304-4165(94)00199-8_BIB20) 1992; 8 Hirokawa (10.1016/0304-4165(94)00199-8_BIB2) 1989; 108 Petrucci (10.1016/0304-4165(94)00199-8_BIB9) 1983; 40 Chu (10.1016/0304-4165(94)00199-8_BIB16) 1974 Petrucci (10.1016/0304-4165(94)00199-8_BIB21) 1987; 105 Bahler (10.1016/0304-4165(94)00199-8_BIB4) 1987; 326 Tanaka (10.1016/0304-4165(94)00199-8_BIB11) 1994; 14 Berridge (10.1016/0304-4165(94)00199-8_BIB1) 1993; 361 Bahler (10.1016/0304-4165(94)00199-8_BIB19) 1990; 12 Fujime (10.1016/0304-4165(94)00199-8_BIB18) 1988; 54 Stossel (10.1016/0304-4165(94)00199-8_BIB7) 1989; 264 Stossel (10.1016/0304-4165(94)00199-8_BIB8) 1993; 260 Nishida (10.1016/0304-4165(94)00199-8_BIB26) 1984; 95 Funatsu (10.1016/0304-4165(94)00199-8_BIB15) 1990; 110 Benfenati (10.1016/0304-4165(94)00199-8_BIB5) 1989; 108 Sakurai (10.1016/0304-4165(94)00199-8_BIB10) 1990; 38 Spudich (10.1016/0304-4165(94)00199-8_BIB14) 1971; 246 Rodriguez (10.1016/0304-4165(94)00199-8_BIB25) 1990; 9 Valtorta (10.1016/0304-4165(94)00199-8_BIB27) 1992; 267 Maekawa (10.1016/0304-4165(94)00199-8_BIB24) 1989; 264 Miyamoto (10.1016/0304-4165(94)00199-8_BIB13) 1988; 238 |
References_xml | – volume: 40 start-page: 1507 year: 1983 end-page: 1516 ident: BIB9 publication-title: J. Neurochem. – volume: 264 start-page: 7458 year: 1989 end-page: 7465 ident: BIB24 publication-title: J. Biol. Chem. – volume: 267 start-page: 7195 year: 1992 end-page: 7198 ident: BIB27 publication-title: J. Biol. Chem. – volume: 38 start-page: 743 year: 1990 end-page: 756 ident: BIB10 publication-title: Neuroscience – volume: 12 start-page: 259 year: 1990 end-page: 263 ident: BIB19 publication-title: BioEssay – volume: 95 start-page: 399 year: 1984 end-page: 404 ident: BIB26 publication-title: J. Biochem. – volume: 108 start-page: 1863 year: 1989 end-page: 1872 ident: BIB5 publication-title: J. Cell Biol. – volume: 96 start-page: 1374 year: 1983 end-page: 1388 ident: BIB3 publication-title: J. Cell Biol. – volume: 267 start-page: 11281 year: 1992 end-page: 11288 ident: BIB22 publication-title: J. Biol. Chem. – volume: 108 start-page: 111 year: 1989 end-page: 126 ident: BIB2 publication-title: J. Cell Biol. – start-page: 317 year: 1974 ident: BIB16 article-title: Laser Light Scattering – volume: 110 start-page: 53 year: 1990 end-page: 62 ident: BIB15 publication-title: J. Cell Biol. – volume: 238 start-page: 67 year: 1988 end-page: 70 ident: BIB13 publication-title: FEBS Lett. – volume: 8 start-page: 377 year: 1992 end-page: 386 ident: BIB20 publication-title: Neuron – volume: 14 start-page: 1038 year: 1994 end-page: 1052 ident: BIB11 publication-title: J. Neurosci. – volume: 105 start-page: 1355 year: 1987 end-page: 1363 ident: BIB21 publication-title: J. Cell Biol. – volume: 361 start-page: 315 year: 1993 end-page: 325 ident: BIB1 publication-title: Nature – volume: 54 start-page: 1179 year: 1988 end-page: 1184 ident: BIB18 publication-title: Biophys. J. – volume: 259 start-page: 780 year: 1993 end-page: 785 ident: BIB6 publication-title: Science – volume: 255 start-page: 200 year: 1992 end-page: 203 ident: BIB23 publication-title: Science – volume: 264 start-page: 18261 year: 1989 end-page: 18264 ident: BIB7 publication-title: J. Biol. Chem. – volume: 9 start-page: 43 year: 1990 end-page: 52 ident: BIB25 publication-title: EMBO J. – volume: 326 start-page: 704 year: 1987 end-page: 707 ident: BIB4 publication-title: Nature – volume: 260 start-page: 1086 year: 1993 end-page: 1094 ident: BIB8 publication-title: Science – volume: 64 start-page: 1139 year: 1993 end-page: 1150 ident: BIB12 publication-title: Biophys. J. – volume: 25 start-page: 253 year: 1986 end-page: 269 ident: BIB17 publication-title: Biophys. Chem. – volume: 246 start-page: 4866 year: 1971 end-page: 4871 ident: BIB14 publication-title: J. Biol. Chem. – volume: 108 start-page: 111 year: 1989 ident: 10.1016/0304-4165(94)00199-8_BIB2 publication-title: J. Cell Biol. doi: 10.1083/jcb.108.1.111 – volume: 54 start-page: 1179 year: 1988 ident: 10.1016/0304-4165(94)00199-8_BIB18 publication-title: Biophys. J. doi: 10.1016/S0006-3495(88)83054-6 – volume: 259 start-page: 780 year: 1993 ident: 10.1016/0304-4165(94)00199-8_BIB6 publication-title: Science doi: 10.1126/science.8430330 – volume: 267 start-page: 7195 year: 1992 ident: 10.1016/0304-4165(94)00199-8_BIB27 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)42501-X – volume: 95 start-page: 399 year: 1984 ident: 10.1016/0304-4165(94)00199-8_BIB26 publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a134620 – volume: 12 start-page: 259 year: 1990 ident: 10.1016/0304-4165(94)00199-8_BIB19 publication-title: BioEssay doi: 10.1002/bies.950120603 – volume: 8 start-page: 377 year: 1992 ident: 10.1016/0304-4165(94)00199-8_BIB20 publication-title: Neuron doi: 10.1016/0896-6273(92)90303-U – volume: 105 start-page: 1355 year: 1987 ident: 10.1016/0304-4165(94)00199-8_BIB21 publication-title: J. Cell Biol. doi: 10.1083/jcb.105.3.1355 – volume: 14 start-page: 1038 year: 1994 ident: 10.1016/0304-4165(94)00199-8_BIB11 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.14-03-01038.1994 – volume: 110 start-page: 53 year: 1990 ident: 10.1016/0304-4165(94)00199-8_BIB15 publication-title: J. Cell Biol. doi: 10.1083/jcb.110.1.53 – volume: 9 start-page: 43 year: 1990 ident: 10.1016/0304-4165(94)00199-8_BIB25 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1990.tb08078.x – volume: 255 start-page: 200 year: 1992 ident: 10.1016/0304-4165(94)00199-8_BIB23 publication-title: Science doi: 10.1126/science.1553547 – start-page: 317 year: 1974 ident: 10.1016/0304-4165(94)00199-8_BIB16 article-title: Laser Light Scattering – volume: 246 start-page: 4866 year: 1971 ident: 10.1016/0304-4165(94)00199-8_BIB14 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)62016-2 – volume: 326 start-page: 704 year: 1987 ident: 10.1016/0304-4165(94)00199-8_BIB4 publication-title: Nature doi: 10.1038/326704a0 – volume: 264 start-page: 18261 year: 1989 ident: 10.1016/0304-4165(94)00199-8_BIB7 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)51454-X – volume: 25 start-page: 253 year: 1986 ident: 10.1016/0304-4165(94)00199-8_BIB17 publication-title: Biophys. Chem. doi: 10.1016/0301-4622(86)80017-5 – volume: 260 start-page: 1086 year: 1993 ident: 10.1016/0304-4165(94)00199-8_BIB8 publication-title: Science doi: 10.1126/science.8493552 – volume: 64 start-page: 1139 year: 1993 ident: 10.1016/0304-4165(94)00199-8_BIB12 publication-title: Biophys. J. doi: 10.1016/S0006-3495(93)81480-2 – volume: 96 start-page: 1374 year: 1983 ident: 10.1016/0304-4165(94)00199-8_BIB3 publication-title: J. Cell Biol. doi: 10.1083/jcb.96.5.1374 – volume: 40 start-page: 1507 year: 1983 ident: 10.1016/0304-4165(94)00199-8_BIB9 publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.1983.tb08119.x – volume: 264 start-page: 7458 year: 1989 ident: 10.1016/0304-4165(94)00199-8_BIB24 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)83256-2 – volume: 361 start-page: 315 year: 1993 ident: 10.1016/0304-4165(94)00199-8_BIB1 publication-title: Nature doi: 10.1038/361315a0 – volume: 38 start-page: 743 year: 1990 ident: 10.1016/0304-4165(94)00199-8_BIB10 publication-title: Neuroscience doi: 10.1016/0306-4522(90)90067-E – volume: 267 start-page: 11281 year: 1992 ident: 10.1016/0304-4165(94)00199-8_BIB22 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)49908-0 – volume: 238 start-page: 67 year: 1988 ident: 10.1016/0304-4165(94)00199-8_BIB13 publication-title: FEBS Lett. doi: 10.1016/0014-5793(88)80226-6 – volume: 108 start-page: 1863 year: 1989 ident: 10.1016/0304-4165(94)00199-8_BIB5 publication-title: J. Cell Biol. doi: 10.1083/jcb.108.5.1863 |
SSID | ssj0000595 ssj0025309 |
Score | 1.5765905 |
Snippet | In a presynaptic terminal, neurotransmitters are stored in synaptic vesicles and secreted into the synaptic cleft as a final step of cell signal transduction.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 85 |
SubjectTerms | Actin Cytoskeleton - physiology Actin network Actins - physiology Animals Brain - ultrastructure Diffusion Dynamic light scattering Gelsolin Gelsolin - pharmacology Light Motion Rabbits Rats Scattering, Radiation Synaptic vesicle Synaptic Vesicles - physiology |
Title | Changes in mobility of synaptic vesicles with assembly and disassembly of actin network |
URI | https://dx.doi.org/10.1016/0304-4165(94)00199-8 https://www.ncbi.nlm.nih.gov/pubmed/7766673 https://www.proquest.com/docview/77293465 |
Volume | 1244 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYmENouiLGhlR_Fhx22g9e6seP4WCFQoRKHaQhulu0-S5XARaQg9cLfjl-cdOyAkHZKYsWJ9Z7z_Dn-Pj9CvnMnwgyEYMCtY2Jkh8xV6cx54KDCCHhm-V6WkytxcSNvXmlhkFbZxv4c05to3ZYMWmsO7ufzAa7pJTQhMbM3CsVQwC4UdvVfz39ZHgk9yLyQIBje3anneDlYl_3Q4mfzDFa9NTq9hT6bUehsh2y38JGOcws_kw8Qd8lWTii52iUfT7r8bV_IdRYO1HQe6d2i4cCu6CLQehVtihOePkHdcOIo_oulCUTDnbtdURtndDav19epCoofIo2ZMf6VXJ2d_jmZsDaNAvOFVMtk-6EXmieHWAAREv4IRaE9lDqEipdOpTmiTB-mq8qC-2AT5JNeuplUMJQ2qGKPbMRFhG-EQglhpIWuuE9IT3sbKlcorZ3GfbO075GiM5_x7R7jmOri1nRkMjS6QaMbLUxjdFP1CFvXus97bLxzv-o8Y_7pKyYNA-_UPO4caZI3cG3ERlg81gYnGYUoZY_sZf-uW6JUialR9__7pQfkU9bBS8b5IdlYPjzCUUIyS9dv-mqfbI7Pp5NLPE5_X09fAIC27fw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB0VqopeUEtBLNDiAwd6cHe9tuP4iFDRtqWcQOVm2d6xtBJ4UbMg7YVvx46TbXtASL0lliexZpyZ5_iNB-CIORGmKARFZh0VYzuirk5XziNDFcbICsv3oppcie_X8vqvXJhMq-x8f_HprbfuWoadNod3s9kw7-klNCFzZe-cKLYGr4XkKtP6vjz-oXkk-CDLToKguXufPseq4artWIvP7UNo_Vx4eg5-tmHo7B1sdviRnJQhvodXGLfgTakoudyCjdO-gNsH-FUyBxoyi-R23pJgl2QeSLOMNjkKTx6waUlxJP-MJQlF4627WRIbp2Q6a1b3SSRnP0QSC2V8G67Ovl6eTmhXR4F6LtUiKX_khWbJIhZRhARAAufaY6VDqFnlVFokyvRlurrizAebMJ_00k2lwpG0QfEdWI_ziLtAsMIw1kLXzCeop70NteNKa6fzwVnaD4D36jO-O2Q817q4MT2bLCvdZKUbLUyrdFMPgK6k7sohGy_0V71lzD-TxaQ48ILkYW9Ik6yRN0dsxPl9Y_Iqg4tKDmCn2Hc1EqWqXBt1779feggbk8uf5-b828WPfXhbkuIlZewA1he_7_FjgjUL96mdt0-Z6u3s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+mobility+of+synaptic+vesicles+with+assembly+and+disassembly+of+actin+network&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Miyamoto%2C+S&rft.date=1995-05-11&rft.issn=0006-3002&rft.volume=1244&rft.issue=1&rft.spage=85&rft_id=info:doi/10.1016%2F0304-4165%2894%2900199-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |