Changes in mobility of synaptic vesicles with assembly and disassembly of actin network

In a presynaptic terminal, neurotransmitters are stored in synaptic vesicles and secreted into the synaptic cleft as a final step of cell signal transduction. At a static state, the vesicles are retained in the highly dense actin network. Prior to exocytosis, the dense actin network must disassemble...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1244; no. 1; pp. 85 - 91
Main Author Miyamoto, Shigeaki
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 11.05.1995
Subjects
Online AccessGet full text
ISSN0304-4165
0006-3002
1872-8006
DOI10.1016/0304-4165(94)00199-8

Cover

Abstract In a presynaptic terminal, neurotransmitters are stored in synaptic vesicles and secreted into the synaptic cleft as a final step of cell signal transduction. At a static state, the vesicles are retained in the highly dense actin network. Prior to exocytosis, the dense actin network must disassemble or largely be organized. Actin networks are formed in vitro which retain synaptic vesicles prepared from rat cerebral cortex. Dynamic behaviors of synaptic vesicles are measured by the dynamic light scattering method. The D app values of synaptic vesicles confined in actin network became less than 1 4 those of free vesicles. The motions of synaptic vesicles are substantially restricted. This means that synaptic vesicles which are liberated from the actin network by detachment of synapsin 1 molecules are still trapped in the cage-like spare of actin filaments. The actin network is disassembled by the actin severing protein, gelsolin, which is activated in the presence of μM level free Ca 2+ ions. The D app(v) values of synaptic vesicles after severing the actin network return to those of free vesicles in the presence of short actin fragments. A molecular model for exocytosis in the synaptic terminal is constructed on the basis of these results.
AbstractList In a presynaptic terminal, neurotransmitters are stored in synaptic vesicles and secreted into the synaptic cleft as a final step of cell signal transduction. At a static state, the vesicles are retained in the highly dense actin network. Prior to exocytosis, the dense actin network must disassemble or largely be organized. Actin networks are formed in vitro which retain synaptic vesicles prepared from rat cerebral cortex. Dynamic behaviors of synaptic vesicles are measured by the dynamic light scattering method. The D(app) values of synaptic vesicles confined in actin network became less than 1/4 those of free vesicles. The motions of synaptic vesicles are substantially restricted. This means that synaptic vesicles which are liberated from the actin network by detachment of synapsin 1 molecules are still trapped in the cage-like space of actin filaments. The actin network is disassembled by the actin severing protein, gelsolin, which is activated in the presence of microM level free Ca2+ ions. The D(app)(v) values of synaptic vesicles after severing the actin network return to those of free vesicles in the presence of short actin fragments. A molecular model for exocytosis in the synaptic terminal is constructed on the basis of these results.
In a presynaptic terminal, neurotransmitters are stored in synaptic vesicles and secreted into the synaptic cleft as a final step of cell signal transduction. At a static state, the vesicles are retained in the highly dense actin network. Prior to exocytosis, the dense actin network must disassemble or largely be organized. Actin networks are formed in vitro which retain synaptic vesicles prepared from rat cerebral cortex. Dynamic behaviors of synaptic vesicles are measured by the dynamic light scattering method. The D(app) values of synaptic vesicles confined in actin network became less than 1/4 those of free vesicles. The motions of synaptic vesicles are substantially restricted. This means that synaptic vesicles which are liberated from the actin network by detachment of synapsin 1 molecules are still trapped in the cage-like space of actin filaments. The actin network is disassembled by the actin severing protein, gelsolin, which is activated in the presence of microM level free Ca2+ ions. The D(app)(v) values of synaptic vesicles after severing the actin network return to those of free vesicles in the presence of short actin fragments. A molecular model for exocytosis in the synaptic terminal is constructed on the basis of these results.In a presynaptic terminal, neurotransmitters are stored in synaptic vesicles and secreted into the synaptic cleft as a final step of cell signal transduction. At a static state, the vesicles are retained in the highly dense actin network. Prior to exocytosis, the dense actin network must disassemble or largely be organized. Actin networks are formed in vitro which retain synaptic vesicles prepared from rat cerebral cortex. Dynamic behaviors of synaptic vesicles are measured by the dynamic light scattering method. The D(app) values of synaptic vesicles confined in actin network became less than 1/4 those of free vesicles. The motions of synaptic vesicles are substantially restricted. This means that synaptic vesicles which are liberated from the actin network by detachment of synapsin 1 molecules are still trapped in the cage-like space of actin filaments. The actin network is disassembled by the actin severing protein, gelsolin, which is activated in the presence of microM level free Ca2+ ions. The D(app)(v) values of synaptic vesicles after severing the actin network return to those of free vesicles in the presence of short actin fragments. A molecular model for exocytosis in the synaptic terminal is constructed on the basis of these results.
In a presynaptic terminal, neurotransmitters are stored in synaptic vesicles and secreted into the synaptic cleft as a final step of cell signal transduction. At a static state, the vesicles are retained in the highly dense actin network. Prior to exocytosis, the dense actin network must disassemble or largely be organized. Actin networks are formed in vitro which retain synaptic vesicles prepared from rat cerebral cortex. Dynamic behaviors of synaptic vesicles are measured by the dynamic light scattering method. The D app values of synaptic vesicles confined in actin network became less than 1 4 those of free vesicles. The motions of synaptic vesicles are substantially restricted. This means that synaptic vesicles which are liberated from the actin network by detachment of synapsin 1 molecules are still trapped in the cage-like spare of actin filaments. The actin network is disassembled by the actin severing protein, gelsolin, which is activated in the presence of μM level free Ca 2+ ions. The D app(v) values of synaptic vesicles after severing the actin network return to those of free vesicles in the presence of short actin fragments. A molecular model for exocytosis in the synaptic terminal is constructed on the basis of these results.
Author Miyamoto, Shigeaki
Author_xml – sequence: 1
  givenname: Shigeaki
  surname: Miyamoto
  fullname: Miyamoto, Shigeaki
  organization: Department of Biochemical Engineering, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/7766673$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1PGzEQhi1EFcLHPwBpTxUctrXjr3UPSCgCWgmpl1YcLa93XEx37dR2iPLv2ZA0Bw7tXEajeZ_38ByjwxADIHRO8CeCifiMKWY1I4JfKnaFMVGqbg7QlDRyVjcYi0M03UeO0HHOz3gcrvgETaQUQkg6RY_zJxN-Qa58qIbY-t6XdRVdldfBLIq31Qtkb_sxsPLlqTI5w9D268qErup83t8jYmwZSwKUVUy_T9EHZ_oMZ7t9gn7e3f6Yf60fvt9_m9881JZyWeq2wZYpAowZAOaUFI5SZUEo5xoiWjnjjGMi20ZQYp1RM8otbzsuAXPjJD1BH7e9ixT_LCEXPfhsoe9NgLjMWsqZokzwMXixCy7bATq9SH4waa13Jsb_l-3fpphzAqetL6b4GEoyvtcE6411vVGqN0q1YvrNum5GmL2D_9b_B7veYjAaevGQdLYegoXOJ7BFd9H_u-AVujqZGg
CitedBy_id crossref_primary_10_1242_jcs_165571
crossref_primary_10_1016_S0197_0186_99_00007_8
crossref_primary_10_7554_eLife_45650
crossref_primary_10_1034_j_1600_0854_2002_31105_x
crossref_primary_10_1111_j_1749_6632_2001_tb05709_x
crossref_primary_10_1002_ange_202403241
crossref_primary_10_1529_biophysj_105_059295
crossref_primary_10_1210_endo_142_5_8133
crossref_primary_10_1098_rsta_1998_0254
crossref_primary_10_1242_jcs_02942
crossref_primary_10_1007_s11571_012_9232_y
crossref_primary_10_1002__SICI_1097_4547_19971215_50_6_979__AID_JNR8_3_0_CO_2_A
crossref_primary_10_1073_pnas_95_8_4673
crossref_primary_10_1186_1471_2164_11_203
crossref_primary_10_1186_1471_2202_11_37
crossref_primary_10_1016_j_pneurobio_2003_10_003
crossref_primary_10_1016_S0197_0186_99_00159_X
crossref_primary_10_1103_PhysRevE_65_061901
crossref_primary_10_1210_en_2005_0263
crossref_primary_10_1002_anie_202403241
crossref_primary_10_1007_s00018_012_1156_5
crossref_primary_10_1039_D4SC01664E
crossref_primary_10_1371_journal_pone_0102988
crossref_primary_10_1097_00001756_200103050_00003
crossref_primary_10_1074_jbc_M004069200
crossref_primary_10_1007_BF03379582
Cites_doi 10.1083/jcb.108.1.111
10.1016/S0006-3495(88)83054-6
10.1126/science.8430330
10.1016/S0021-9258(18)42501-X
10.1093/oxfordjournals.jbchem.a134620
10.1002/bies.950120603
10.1016/0896-6273(92)90303-U
10.1083/jcb.105.3.1355
10.1523/JNEUROSCI.14-03-01038.1994
10.1083/jcb.110.1.53
10.1002/j.1460-2075.1990.tb08078.x
10.1126/science.1553547
10.1016/S0021-9258(18)62016-2
10.1038/326704a0
10.1016/S0021-9258(18)51454-X
10.1016/0301-4622(86)80017-5
10.1126/science.8493552
10.1016/S0006-3495(93)81480-2
10.1083/jcb.96.5.1374
10.1111/j.1471-4159.1983.tb08119.x
10.1016/S0021-9258(18)83256-2
10.1038/361315a0
10.1016/0306-4522(90)90067-E
10.1016/S0021-9258(19)49908-0
10.1016/0014-5793(88)80226-6
10.1083/jcb.108.5.1863
ContentType Journal Article
Copyright 1995
Copyright_xml – notice: 1995
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/0304-4165(94)00199-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 91
ExternalDocumentID 7766673
10_1016_0304_4165_94_00199_8
0304416594001998
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-~X
.55
.GJ
ABJNI
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
F5P
H~9
MVM
NPM
PKN
TWZ
UHS
VH1
X7M
Y6R
ZGI
~KM
7X8
ID FETCH-LOGICAL-c357t-b80c491e44aee4f976f339ce69ff816b72545017b8631cfa9235c5bd57e05af73
IEDL.DBID .~1
ISSN 0304-4165
0006-3002
IngestDate Thu Jul 10 22:00:10 EDT 2025
Wed Feb 19 02:33:49 EST 2025
Tue Jul 01 03:48:53 EDT 2025
Thu Apr 24 23:11:14 EDT 2025
Fri Feb 23 02:32:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Synaptic vesicle
Actin network
Gelsolin
Dynamic light scattering
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-b80c491e44aee4f976f339ce69ff816b72545017b8631cfa9235c5bd57e05af73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 7766673
PQID 77293465
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_77293465
pubmed_primary_7766673
crossref_citationtrail_10_1016_0304_4165_94_00199_8
crossref_primary_10_1016_0304_4165_94_00199_8
elsevier_sciencedirect_doi_10_1016_0304_4165_94_00199_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1995-05-11
PublicationDateYYYYMMDD 1995-05-11
PublicationDate_xml – month: 05
  year: 1995
  text: 1995-05-11
  day: 11
PublicationDecade 1990
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 1995
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Petrucci, Morrow (BIB21) 1987; 105
Bahler, Greengard (BIB4) 1987; 326
Betz, Bewick (BIB23) 1992; 255
Nishida, Maekawa, Sakai (BIB26) 1984; 95
Masai, Ishiwata, Fujime (BIB17) 1986; 25
Valtorta, Greengard, Fesce, Chieregatti, Benfenati (BIB22) 1992; 267
Benfenati, Bahler, Jahn, Greengard (BIB5) 1989; 108
Chu (BIB16) 1974
Fujime, Takasaki-Ohsita, Miyamoto (BIB18) 1988; 54
Huttner, Schiebler, Greengard, Camilli (BIB3) 1983; 96
Valtorta, Benfenati, Greengard (BIB27) 1992; 267
Benfenati, Valtorta, Chieregatti, Greengard (BIB20) 1992; 8
Sakurai, Ohmi, Kurokawa, Nonomura (BIB10) 1990; 38
Tanaka, Sobue (BIB11) 1994; 14
Miyamoto, Funatsu, Ishiwata, Fujime (BIB12) 1993; 64
Petrucci, Thomas, Bray (BIB9) 1983; 40
Hirokawa, Sobue, Kanda, Harada, Yorifuji (BIB2) 1989; 108
Bahler, Benfenati, Valtorta, Greengard (BIB19) 1990; 12
Maekawa, Toriyama, Hisanaga, Yonezawa, Endo, Hirokawa, Sakai (BIB24) 1989; 264
Rodriguez, Leminaire, Tchakarov, Jeyapragasan, Doucet, Vitale, Trifaro (BIB25) 1990; 9
Berridge (BIB1) 1993; 361
Miyamoto, Fujime (BIB13) 1988; 238
Greengard, Valtorta, Czernik, Benfenati (BIB6) 1993; 259
Stossel (BIB7) 1989; 264
Stossel (BIB8) 1993; 260
Spudich, Watt (BIB14) 1971; 246
Funatsu, Higuchi, Ishiwata (BIB15) 1990; 110
Betz (10.1016/0304-4165(94)00199-8_BIB23) 1992; 255
Masai (10.1016/0304-4165(94)00199-8_BIB17) 1986; 25
Huttner (10.1016/0304-4165(94)00199-8_BIB3) 1983; 96
Valtorta (10.1016/0304-4165(94)00199-8_BIB22) 1992; 267
Miyamoto (10.1016/0304-4165(94)00199-8_BIB12) 1993; 64
Greengard (10.1016/0304-4165(94)00199-8_BIB6) 1993; 259
Benfenati (10.1016/0304-4165(94)00199-8_BIB20) 1992; 8
Hirokawa (10.1016/0304-4165(94)00199-8_BIB2) 1989; 108
Petrucci (10.1016/0304-4165(94)00199-8_BIB9) 1983; 40
Chu (10.1016/0304-4165(94)00199-8_BIB16) 1974
Petrucci (10.1016/0304-4165(94)00199-8_BIB21) 1987; 105
Bahler (10.1016/0304-4165(94)00199-8_BIB4) 1987; 326
Tanaka (10.1016/0304-4165(94)00199-8_BIB11) 1994; 14
Berridge (10.1016/0304-4165(94)00199-8_BIB1) 1993; 361
Bahler (10.1016/0304-4165(94)00199-8_BIB19) 1990; 12
Fujime (10.1016/0304-4165(94)00199-8_BIB18) 1988; 54
Stossel (10.1016/0304-4165(94)00199-8_BIB7) 1989; 264
Stossel (10.1016/0304-4165(94)00199-8_BIB8) 1993; 260
Nishida (10.1016/0304-4165(94)00199-8_BIB26) 1984; 95
Funatsu (10.1016/0304-4165(94)00199-8_BIB15) 1990; 110
Benfenati (10.1016/0304-4165(94)00199-8_BIB5) 1989; 108
Sakurai (10.1016/0304-4165(94)00199-8_BIB10) 1990; 38
Spudich (10.1016/0304-4165(94)00199-8_BIB14) 1971; 246
Rodriguez (10.1016/0304-4165(94)00199-8_BIB25) 1990; 9
Valtorta (10.1016/0304-4165(94)00199-8_BIB27) 1992; 267
Maekawa (10.1016/0304-4165(94)00199-8_BIB24) 1989; 264
Miyamoto (10.1016/0304-4165(94)00199-8_BIB13) 1988; 238
References_xml – volume: 40
  start-page: 1507
  year: 1983
  end-page: 1516
  ident: BIB9
  publication-title: J. Neurochem.
– volume: 264
  start-page: 7458
  year: 1989
  end-page: 7465
  ident: BIB24
  publication-title: J. Biol. Chem.
– volume: 267
  start-page: 7195
  year: 1992
  end-page: 7198
  ident: BIB27
  publication-title: J. Biol. Chem.
– volume: 38
  start-page: 743
  year: 1990
  end-page: 756
  ident: BIB10
  publication-title: Neuroscience
– volume: 12
  start-page: 259
  year: 1990
  end-page: 263
  ident: BIB19
  publication-title: BioEssay
– volume: 95
  start-page: 399
  year: 1984
  end-page: 404
  ident: BIB26
  publication-title: J. Biochem.
– volume: 108
  start-page: 1863
  year: 1989
  end-page: 1872
  ident: BIB5
  publication-title: J. Cell Biol.
– volume: 96
  start-page: 1374
  year: 1983
  end-page: 1388
  ident: BIB3
  publication-title: J. Cell Biol.
– volume: 267
  start-page: 11281
  year: 1992
  end-page: 11288
  ident: BIB22
  publication-title: J. Biol. Chem.
– volume: 108
  start-page: 111
  year: 1989
  end-page: 126
  ident: BIB2
  publication-title: J. Cell Biol.
– start-page: 317
  year: 1974
  ident: BIB16
  article-title: Laser Light Scattering
– volume: 110
  start-page: 53
  year: 1990
  end-page: 62
  ident: BIB15
  publication-title: J. Cell Biol.
– volume: 238
  start-page: 67
  year: 1988
  end-page: 70
  ident: BIB13
  publication-title: FEBS Lett.
– volume: 8
  start-page: 377
  year: 1992
  end-page: 386
  ident: BIB20
  publication-title: Neuron
– volume: 14
  start-page: 1038
  year: 1994
  end-page: 1052
  ident: BIB11
  publication-title: J. Neurosci.
– volume: 105
  start-page: 1355
  year: 1987
  end-page: 1363
  ident: BIB21
  publication-title: J. Cell Biol.
– volume: 361
  start-page: 315
  year: 1993
  end-page: 325
  ident: BIB1
  publication-title: Nature
– volume: 54
  start-page: 1179
  year: 1988
  end-page: 1184
  ident: BIB18
  publication-title: Biophys. J.
– volume: 259
  start-page: 780
  year: 1993
  end-page: 785
  ident: BIB6
  publication-title: Science
– volume: 255
  start-page: 200
  year: 1992
  end-page: 203
  ident: BIB23
  publication-title: Science
– volume: 264
  start-page: 18261
  year: 1989
  end-page: 18264
  ident: BIB7
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 43
  year: 1990
  end-page: 52
  ident: BIB25
  publication-title: EMBO J.
– volume: 326
  start-page: 704
  year: 1987
  end-page: 707
  ident: BIB4
  publication-title: Nature
– volume: 260
  start-page: 1086
  year: 1993
  end-page: 1094
  ident: BIB8
  publication-title: Science
– volume: 64
  start-page: 1139
  year: 1993
  end-page: 1150
  ident: BIB12
  publication-title: Biophys. J.
– volume: 25
  start-page: 253
  year: 1986
  end-page: 269
  ident: BIB17
  publication-title: Biophys. Chem.
– volume: 246
  start-page: 4866
  year: 1971
  end-page: 4871
  ident: BIB14
  publication-title: J. Biol. Chem.
– volume: 108
  start-page: 111
  year: 1989
  ident: 10.1016/0304-4165(94)00199-8_BIB2
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.108.1.111
– volume: 54
  start-page: 1179
  year: 1988
  ident: 10.1016/0304-4165(94)00199-8_BIB18
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(88)83054-6
– volume: 259
  start-page: 780
  year: 1993
  ident: 10.1016/0304-4165(94)00199-8_BIB6
  publication-title: Science
  doi: 10.1126/science.8430330
– volume: 267
  start-page: 7195
  year: 1992
  ident: 10.1016/0304-4165(94)00199-8_BIB27
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)42501-X
– volume: 95
  start-page: 399
  year: 1984
  ident: 10.1016/0304-4165(94)00199-8_BIB26
  publication-title: J. Biochem.
  doi: 10.1093/oxfordjournals.jbchem.a134620
– volume: 12
  start-page: 259
  year: 1990
  ident: 10.1016/0304-4165(94)00199-8_BIB19
  publication-title: BioEssay
  doi: 10.1002/bies.950120603
– volume: 8
  start-page: 377
  year: 1992
  ident: 10.1016/0304-4165(94)00199-8_BIB20
  publication-title: Neuron
  doi: 10.1016/0896-6273(92)90303-U
– volume: 105
  start-page: 1355
  year: 1987
  ident: 10.1016/0304-4165(94)00199-8_BIB21
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.105.3.1355
– volume: 14
  start-page: 1038
  year: 1994
  ident: 10.1016/0304-4165(94)00199-8_BIB11
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.14-03-01038.1994
– volume: 110
  start-page: 53
  year: 1990
  ident: 10.1016/0304-4165(94)00199-8_BIB15
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.110.1.53
– volume: 9
  start-page: 43
  year: 1990
  ident: 10.1016/0304-4165(94)00199-8_BIB25
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1990.tb08078.x
– volume: 255
  start-page: 200
  year: 1992
  ident: 10.1016/0304-4165(94)00199-8_BIB23
  publication-title: Science
  doi: 10.1126/science.1553547
– start-page: 317
  year: 1974
  ident: 10.1016/0304-4165(94)00199-8_BIB16
  article-title: Laser Light Scattering
– volume: 246
  start-page: 4866
  year: 1971
  ident: 10.1016/0304-4165(94)00199-8_BIB14
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)62016-2
– volume: 326
  start-page: 704
  year: 1987
  ident: 10.1016/0304-4165(94)00199-8_BIB4
  publication-title: Nature
  doi: 10.1038/326704a0
– volume: 264
  start-page: 18261
  year: 1989
  ident: 10.1016/0304-4165(94)00199-8_BIB7
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)51454-X
– volume: 25
  start-page: 253
  year: 1986
  ident: 10.1016/0304-4165(94)00199-8_BIB17
  publication-title: Biophys. Chem.
  doi: 10.1016/0301-4622(86)80017-5
– volume: 260
  start-page: 1086
  year: 1993
  ident: 10.1016/0304-4165(94)00199-8_BIB8
  publication-title: Science
  doi: 10.1126/science.8493552
– volume: 64
  start-page: 1139
  year: 1993
  ident: 10.1016/0304-4165(94)00199-8_BIB12
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(93)81480-2
– volume: 96
  start-page: 1374
  year: 1983
  ident: 10.1016/0304-4165(94)00199-8_BIB3
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.96.5.1374
– volume: 40
  start-page: 1507
  year: 1983
  ident: 10.1016/0304-4165(94)00199-8_BIB9
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.1983.tb08119.x
– volume: 264
  start-page: 7458
  year: 1989
  ident: 10.1016/0304-4165(94)00199-8_BIB24
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)83256-2
– volume: 361
  start-page: 315
  year: 1993
  ident: 10.1016/0304-4165(94)00199-8_BIB1
  publication-title: Nature
  doi: 10.1038/361315a0
– volume: 38
  start-page: 743
  year: 1990
  ident: 10.1016/0304-4165(94)00199-8_BIB10
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(90)90067-E
– volume: 267
  start-page: 11281
  year: 1992
  ident: 10.1016/0304-4165(94)00199-8_BIB22
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)49908-0
– volume: 238
  start-page: 67
  year: 1988
  ident: 10.1016/0304-4165(94)00199-8_BIB13
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(88)80226-6
– volume: 108
  start-page: 1863
  year: 1989
  ident: 10.1016/0304-4165(94)00199-8_BIB5
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.108.5.1863
SSID ssj0000595
ssj0025309
Score 1.5765905
Snippet In a presynaptic terminal, neurotransmitters are stored in synaptic vesicles and secreted into the synaptic cleft as a final step of cell signal transduction....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 85
SubjectTerms Actin Cytoskeleton - physiology
Actin network
Actins - physiology
Animals
Brain - ultrastructure
Diffusion
Dynamic light scattering
Gelsolin
Gelsolin - pharmacology
Light
Motion
Rabbits
Rats
Scattering, Radiation
Synaptic vesicle
Synaptic Vesicles - physiology
Title Changes in mobility of synaptic vesicles with assembly and disassembly of actin network
URI https://dx.doi.org/10.1016/0304-4165(94)00199-8
https://www.ncbi.nlm.nih.gov/pubmed/7766673
https://www.proquest.com/docview/77293465
Volume 1244
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYmENouiLGhlR_Fhx22g9e6seP4WCFQoRKHaQhulu0-S5XARaQg9cLfjl-cdOyAkHZKYsWJ9Z7z_Dn-Pj9CvnMnwgyEYMCtY2Jkh8xV6cx54KDCCHhm-V6WkytxcSNvXmlhkFbZxv4c05to3ZYMWmsO7ufzAa7pJTQhMbM3CsVQwC4UdvVfz39ZHgk9yLyQIBje3anneDlYl_3Q4mfzDFa9NTq9hT6bUehsh2y38JGOcws_kw8Qd8lWTii52iUfT7r8bV_IdRYO1HQe6d2i4cCu6CLQehVtihOePkHdcOIo_oulCUTDnbtdURtndDav19epCoofIo2ZMf6VXJ2d_jmZsDaNAvOFVMtk-6EXmieHWAAREv4IRaE9lDqEipdOpTmiTB-mq8qC-2AT5JNeuplUMJQ2qGKPbMRFhG-EQglhpIWuuE9IT3sbKlcorZ3GfbO075GiM5_x7R7jmOri1nRkMjS6QaMbLUxjdFP1CFvXus97bLxzv-o8Y_7pKyYNA-_UPO4caZI3cG3ERlg81gYnGYUoZY_sZf-uW6JUialR9__7pQfkU9bBS8b5IdlYPjzCUUIyS9dv-mqfbI7Pp5NLPE5_X09fAIC27fw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB0VqopeUEtBLNDiAwd6cHe9tuP4iFDRtqWcQOVm2d6xtBJ4UbMg7YVvx46TbXtASL0lliexZpyZ5_iNB-CIORGmKARFZh0VYzuirk5XziNDFcbICsv3oppcie_X8vqvXJhMq-x8f_HprbfuWoadNod3s9kw7-klNCFzZe-cKLYGr4XkKtP6vjz-oXkk-CDLToKguXufPseq4artWIvP7UNo_Vx4eg5-tmHo7B1sdviRnJQhvodXGLfgTakoudyCjdO-gNsH-FUyBxoyi-R23pJgl2QeSLOMNjkKTx6waUlxJP-MJQlF4627WRIbp2Q6a1b3SSRnP0QSC2V8G67Ovl6eTmhXR4F6LtUiKX_khWbJIhZRhARAAufaY6VDqFnlVFokyvRlurrizAebMJ_00k2lwpG0QfEdWI_ziLtAsMIw1kLXzCeop70NteNKa6fzwVnaD4D36jO-O2Q817q4MT2bLCvdZKUbLUyrdFMPgK6k7sohGy_0V71lzD-TxaQ48ILkYW9Ik6yRN0dsxPl9Y_Iqg4tKDmCn2Hc1EqWqXBt1779feggbk8uf5-b828WPfXhbkuIlZewA1he_7_FjgjUL96mdt0-Z6u3s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+mobility+of+synaptic+vesicles+with+assembly+and+disassembly+of+actin+network&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Miyamoto%2C+S&rft.date=1995-05-11&rft.issn=0006-3002&rft.volume=1244&rft.issue=1&rft.spage=85&rft_id=info:doi/10.1016%2F0304-4165%2894%2900199-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon