In situ measurement and simulation of nano-magnetite mobility in porous media subject to transient salinity

Nanotechnologies have been proposed for a variety of environmental applications, including subsurface characterization, enhanced oil recovery, and in situ contaminant remediation. For such applications, quantitative predictive models will be of great utility for system design and implementation. Ele...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 7; no. 3; pp. 1047 - 1057
Main Authors Becker, Matthew D., Wang, Yonggang, L. Paulsen, Jeffrey, Song, Yi-Qiao, Abriola, Linda M., Pennell, Kurt D.
Format Journal Article
LanguageEnglish
Published England 21.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanotechnologies have been proposed for a variety of environmental applications, including subsurface characterization, enhanced oil recovery, and in situ contaminant remediation. For such applications, quantitative predictive models will be of great utility for system design and implementation. Electrolyte chemistry, which can vary substantially within subsurface pore waters, has been shown to strongly influence nanoparticle aggregation and deposition in porous media. Thus, it is essential that mathematical models be capable of tracking changes in electrolyte chemistry and predicting its influence on nanoparticle mobility. In this work, a modified version of a multi-dimensional multispecies transport simulator (SEAWAT) was employed to model nanoparticle transport under transient electrolyte conditions. The modeling effort was supported by experimental measurements of paramagnetic magnetite (Fe 3 O 4 ) nanoparticle, coated with polyacrylamide-methylpropane sulfonic acid – lauryl acrylate (nMag-PAMPS), mobility in columns packed with 40–50 mesh Ottawa sand. Column effluent analyses and magnetic resonance imaging (MRI) were used to quantify nanoparticle breakthrough and in situ aqueous phase concentrations, respectively. Experimental observations revealed that introduction of de-ionized water into the brine saturated column (80 g L −1 NaCl + 20 g L −1 CaCl 2 ) promoted release and remobilization of deposited nanoparticles along a diagonal front, coincident with the variable density flow field. This behavior was accurately captured by the simulation results, which indicated that a two-site deposition-release model provided the best fit to experimental observations, suggesting that heterogeneous nanoparticle–surface interactions governed nanoparticle attachment. These findings illustrate the importance of accounting for both physical and chemical processes associated with changes in electrolyte chemistry when predicting nanoparticle transport behavior in subsurface formations.
AbstractList Nanotechnologies have been proposed for a variety of environmental applications, including subsurface characterization, enhanced oil recovery, and in situ contaminant remediation. For such applications, quantitative predictive models will be of great utility for system design and implementation. Electrolyte chemistry, which can vary substantially within subsurface pore waters, has been shown to strongly influence nanoparticle aggregation and deposition in porous media. Thus, it is essential that mathematical models be capable of tracking changes in electrolyte chemistry and predicting its influence on nanoparticle mobility. In this work, a modified version of a multi-dimensional multispecies transport simulator (SEAWAT) was employed to model nanoparticle transport under transient electrolyte conditions. The modeling effort was supported by experimental measurements of paramagnetic magnetite (Fe 3 O 4 ) nanoparticle, coated with polyacrylamide-methylpropane sulfonic acid – lauryl acrylate (nMag-PAMPS), mobility in columns packed with 40–50 mesh Ottawa sand. Column effluent analyses and magnetic resonance imaging (MRI) were used to quantify nanoparticle breakthrough and in situ aqueous phase concentrations, respectively. Experimental observations revealed that introduction of de-ionized water into the brine saturated column (80 g L −1 NaCl + 20 g L −1 CaCl 2 ) promoted release and remobilization of deposited nanoparticles along a diagonal front, coincident with the variable density flow field. This behavior was accurately captured by the simulation results, which indicated that a two-site deposition-release model provided the best fit to experimental observations, suggesting that heterogeneous nanoparticle–surface interactions governed nanoparticle attachment. These findings illustrate the importance of accounting for both physical and chemical processes associated with changes in electrolyte chemistry when predicting nanoparticle transport behavior in subsurface formations.
Nanotechnologies have been proposed for a variety of environmental applications, including subsurface characterization, enhanced oil recovery, and in situ contaminant remediation. For such applications, quantitative predictive models will be of great utility for system design and implementation. Electrolyte chemistry, which can vary substantially within subsurface pore waters, has been shown to strongly influence nanoparticle aggregation and deposition in porous media. Thus, it is essential that mathematical models be capable of tracking changes in electrolyte chemistry and predicting its influence on nanoparticle mobility. In this work, a modified version of a multi-dimensional multispecies transport simulator (SEAWAT) was employed to model nanoparticle transport under transient electrolyte conditions. The modeling effort was supported by experimental measurements of paramagnetic magnetite (Fe3O4) nanoparticle, coated with polyacrylamide-methylpropane sulfonic acid - lauryl acrylate (nMag-PAMPS), mobility in columns packed with 40-50 mesh Ottawa sand. Column effluent analyses and magnetic resonance imaging (MRI) were used to quantify nanoparticle breakthrough and in situ aqueous phase concentrations, respectively. Experimental observations revealed that introduction of de-ionized water into the brine saturated column (80 g L(-1) NaCl + 20 g L(-1) CaCl2) promoted release and remobilization of deposited nanoparticles along a diagonal front, coincident with the variable density flow field. This behavior was accurately captured by the simulation results, which indicated that a two-site deposition-release model provided the best fit to experimental observations, suggesting that heterogeneous nanoparticle-surface interactions governed nanoparticle attachment. These findings illustrate the importance of accounting for both physical and chemical processes associated with changes in electrolyte chemistry when predicting nanoparticle transport behavior in subsurface formations.
Nanotechnologies have been proposed for a variety of environmental applications, including subsurface characterization, enhanced oil recovery, and in situ contaminant remediation. For such applications, quantitative predictive models will be of great utility for system design and implementation. Electrolyte chemistry, which can vary substantially within subsurface pore waters, has been shown to strongly influence nanoparticle aggregation and deposition in porous media. Thus, it is essential that mathematical models be capable of tracking changes in electrolyte chemistry and predicting its influence on nanoparticle mobility. In this work, a modified version of a multi-dimensional multispecies transport simulator (SEAWAT) was employed to model nanoparticle transport under transient electrolyte conditions. The modeling effort was supported by experimental measurements of paramagnetic magnetite (Fe sub(3)O sub(4)) nanoparticle, coated with polyacrylamide-methylpropane sulfonic acid - lauryl acrylate (nMag-PAMPS), mobility in columns packed with 40-50 mesh Ottawa sand. Column effluent analyses and magnetic resonance imaging (MRI) were used to quantify nanoparticle breakthrough and in situ aqueous phase concentrations, respectively. Experimental observations revealed that introduction of de-ionized water into the brine saturated column (80 g L super(-1) NaCl + 20 g L super(-1) CaCl sub(2)) promoted release and remobilization of deposited nanoparticles along a diagonal front, coincident with the variable density flow field. This behavior was accurately captured by the simulation results, which indicated that a two-site deposition-release model provided the best fit to experimental observations, suggesting that heterogeneous nanoparticle-surface interactions governed nanoparticle attachment. These findings illustrate the importance of accounting for both physical and chemical processes associated with changes in electrolyte chemistry when predicting nanoparticle transport behavior in subsurface formations.
Nanotechnologies have been proposed for a variety of environmental applications, including subsurface characterization, enhanced oil recovery, and in situ contaminant remediation. For such applications, quantitative predictive models will be of great utility for system design and implementation. Electrolyte chemistry, which can vary substantially within subsurface pore waters, has been shown to strongly influence nanoparticle aggregation and deposition in porous media. Thus, it is essential that mathematical models be capable of tracking changes in electrolyte chemistry and predicting its influence on nanoparticle mobility. In this work, a modified version of a multi-dimensional multispecies transport simulator (SEAWAT) was employed to model nanoparticle transport under transient electrolyte conditions. The modeling effort was supported by experimental measurements of paramagnetic magnetite (Fe3O4) nanoparticle, coated with polyacrylamide-methylpropane sulfonic acid - lauryl acrylate (nMag-PAMPS), mobility in columns packed with 40-50 mesh Ottawa sand. Column effluent analyses and magnetic resonance imaging (MRI) were used to quantify nanoparticle breakthrough and in situ aqueous phase concentrations, respectively. Experimental observations revealed that introduction of de-ionized water into the brine saturated column (80 g L(-1) NaCl + 20 g L(-1) CaCl2) promoted release and remobilization of deposited nanoparticles along a diagonal front, coincident with the variable density flow field. This behavior was accurately captured by the simulation results, which indicated that a two-site deposition-release model provided the best fit to experimental observations, suggesting that heterogeneous nanoparticle-surface interactions governed nanoparticle attachment. These findings illustrate the importance of accounting for both physical and chemical processes associated with changes in electrolyte chemistry when predicting nanoparticle transport behavior in subsurface formations.Nanotechnologies have been proposed for a variety of environmental applications, including subsurface characterization, enhanced oil recovery, and in situ contaminant remediation. For such applications, quantitative predictive models will be of great utility for system design and implementation. Electrolyte chemistry, which can vary substantially within subsurface pore waters, has been shown to strongly influence nanoparticle aggregation and deposition in porous media. Thus, it is essential that mathematical models be capable of tracking changes in electrolyte chemistry and predicting its influence on nanoparticle mobility. In this work, a modified version of a multi-dimensional multispecies transport simulator (SEAWAT) was employed to model nanoparticle transport under transient electrolyte conditions. The modeling effort was supported by experimental measurements of paramagnetic magnetite (Fe3O4) nanoparticle, coated with polyacrylamide-methylpropane sulfonic acid - lauryl acrylate (nMag-PAMPS), mobility in columns packed with 40-50 mesh Ottawa sand. Column effluent analyses and magnetic resonance imaging (MRI) were used to quantify nanoparticle breakthrough and in situ aqueous phase concentrations, respectively. Experimental observations revealed that introduction of de-ionized water into the brine saturated column (80 g L(-1) NaCl + 20 g L(-1) CaCl2) promoted release and remobilization of deposited nanoparticles along a diagonal front, coincident with the variable density flow field. This behavior was accurately captured by the simulation results, which indicated that a two-site deposition-release model provided the best fit to experimental observations, suggesting that heterogeneous nanoparticle-surface interactions governed nanoparticle attachment. These findings illustrate the importance of accounting for both physical and chemical processes associated with changes in electrolyte chemistry when predicting nanoparticle transport behavior in subsurface formations.
Author Wang, Yonggang
Pennell, Kurt D.
Song, Yi-Qiao
Becker, Matthew D.
Abriola, Linda M.
L. Paulsen, Jeffrey
Author_xml – sequence: 1
  givenname: Matthew D.
  surname: Becker
  fullname: Becker, Matthew D.
  organization: Department of Civil and Environmental Engineering, Tufts University, Medford, USA
– sequence: 2
  givenname: Yonggang
  surname: Wang
  fullname: Wang, Yonggang
  organization: Department of Civil and Environmental Engineering, Tufts University, Medford, USA
– sequence: 3
  givenname: Jeffrey
  surname: L. Paulsen
  fullname: L. Paulsen, Jeffrey
  organization: Schlumberger-Doll Research Center, Cambridge, USA
– sequence: 4
  givenname: Yi-Qiao
  surname: Song
  fullname: Song, Yi-Qiao
  organization: Schlumberger-Doll Research Center, Cambridge, USA
– sequence: 5
  givenname: Linda M.
  surname: Abriola
  fullname: Abriola, Linda M.
  organization: Department of Civil and Environmental Engineering, Tufts University, Medford, USA
– sequence: 6
  givenname: Kurt D.
  surname: Pennell
  fullname: Pennell, Kurt D.
  organization: Department of Civil and Environmental Engineering, Tufts University, Medford, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25474703$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1LxDAQhoOsuB968QdIjiJUkyZNm6MsfiwsCqLnkrRTydoma5Me_Pdm3V0F8eBphuF5X2bemaKRdRYQOqXkkhImr-b84YlkpChuD9AkJZwkjOXp6LsXfIym3q8IEZIJdoTGacZznhM2QW8Li70JA-5A-aGHDmzAytZx2A2tCsZZ7BpslXVJp14tBBMAd06b1oQPbCxeu94NPupro7Af9AqqgIPDoVfWm42dV62xkT5Gh41qPZzs6gy93N48z--T5ePdYn69TCqW5SFRGriWeS4krSmvq0wLyjMlCqBNChqYLGjRFHUqtK6AaSUJRJYTqWqRcs5m6Hzru-7d-wA-lJ3xFbStshBXLanIKE9zzrJ_oExyWRScRvRshw46Hluue9Op_qPcZxkBsgWq3nnfQ1NWJnwlGKMwbUlJuXlX-fOuKLn4Jdm7_gF_AhjTlbM
CitedBy_id crossref_primary_10_3390_nano12091536
crossref_primary_10_1016_j_jhazmat_2020_123443
crossref_primary_10_1021_acs_est_7b04037
crossref_primary_10_1021_acs_est_0c00123
crossref_primary_10_1016_j_scitotenv_2019_03_007
crossref_primary_10_1016_j_jconhyd_2016_08_006
crossref_primary_10_1021_acs_energyfuels_4c04583
crossref_primary_10_1007_s11356_015_5193_0
crossref_primary_10_1016_j_cis_2017_06_002
crossref_primary_10_1016_j_jcis_2015_01_024
crossref_primary_10_1039_C7EN00152E
crossref_primary_10_1016_j_petsci_2024_12_027
crossref_primary_10_1021_acs_energyfuels_5b01785
Cites_doi 10.1007/s11051-013-1805-0
10.1002/aic.690450305
10.1016/j.cageo.2006.04.005
10.1021/es60058a005
10.1021/es0490018
10.1016/j.watres.2011.12.033
10.1021/ma202511b
10.1021/es802628n
10.1021/am4003974
10.1016/j.jconhyd.2011.09.005
10.1897/08-039.1
10.1021/la2006327
10.1016/j.jmr.2011.06.025
10.1201/9781315274287
10.1021/es100598h
10.1021/ef402453b
10.1016/j.watres.2013.02.025
10.1039/b907658a
10.1021/es801305y
10.1021/es071936b
10.1021/es2034747
10.1016/S0169-7722(01)00215-7
10.1021/es800128m
10.1016/j.advwatres.2012.02.005
10.1021/es902240k
10.1021/es402075f
10.1016/j.jmmm.2010.05.044
10.3390/s91008130
10.1021/es202643c
10.1016/S0169-7722(01)00160-7
10.1021/es900245d
10.1080/10643380091184174
10.1021/la404387t
10.1029/2006WR005151
10.1029/2012WR012468
10.1007/s13204-014-0305-6
10.1021/ef401338c
10.1021/es803388u
10.1016/S0009-2509(99)00422-4
10.1021/es500523p
10.1016/j.jconhyd.2012.04.008
10.1021/ef3020537
10.1021/es3036779
10.1016/j.jconhyd.2012.05.004
10.1039/c2ee21574h
10.1093/oso/9780198539445.001.0001
10.1016/j.watres.2011.05.025
10.1021/es402046u
10.1016/j.jcis.2011.04.111
10.1021/es903277p
10.1021/la204628c
10.1016/j.jconhyd.2010.10.002
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
DOI 10.1039/C4NR05088F
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList CrossRef
PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 1057
ExternalDocumentID 25474703
10_1039_C4NR05088F
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABIQK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BLAPV
BSQNT
C6K
CAG
CITATION
COF
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
FEDTE
GGIMP
H13
HVGLF
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
P2P
R56
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
NPM
7X8
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
ID FETCH-LOGICAL-c357t-abe4b977691d14dc5b6145a68e1f2ebe39818f8d26bbce3ba90e691409ad62443
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 00:01:58 EDT 2025
Fri Jul 11 10:13:17 EDT 2025
Mon Jul 21 05:55:54 EDT 2025
Tue Jul 01 00:33:15 EDT 2025
Thu Apr 24 23:08:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c357t-abe4b977691d14dc5b6145a68e1f2ebe39818f8d26bbce3ba90e691409ad62443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25474703
PQID 1639498841
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1651427435
proquest_miscellaneous_1639498841
pubmed_primary_25474703
crossref_citationtrail_10_1039_C4NR05088F
crossref_primary_10_1039_C4NR05088F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-21
PublicationDateYYYYMMDD 2015-01-21
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2015
References Wang (C4NR05088F-(cit39)/*[position()=1]) 2008; 42
Petosa (C4NR05088F-(cit14)/*[position()=1]) 2010; 44
Elimelech (C4NR05088F-(cit16)/*[position()=1]) 1998
Liang (C4NR05088F-(cit24)/*[position()=1]) 2013; 47
Quinn (C4NR05088F-(cit9)/*[position()=1]) 2005; 39
Bergendahl (C4NR05088F-(cit44)/*[position()=1]) 1999; 45
Thorne (C4NR05088F-(cit56)/*[position()=1]) 2006; 32
Hwang (C4NR05088F-(cit3)/*[position()=1]) 2012; 5
Hashemi (C4NR05088F-(cit5)/*[position()=1]) 2013; 27
Hiemenz (C4NR05088F-(cit15)/*[position()=1]) 1997
Quevedo (C4NR05088F-(cit25)/*[position()=1]) 2009; 43
Bai (C4NR05088F-(cit60)/*[position()=1]) 2012; 136–137
El Badawy (C4NR05088F-(cit30)/*[position()=1]) 2010; 44
Chowdhury (C4NR05088F-(cit21)/*[position()=1]) 2011; 360
Ersenkal (C4NR05088F-(cit11)/*[position()=1]) 2011; 126
Tosco (C4NR05088F-(cit12)/*[position()=1]) 2012; 46
Yao (C4NR05088F-(cit37)/*[position()=1]) 1971; 5
Park (C4NR05088F-(cit33)/*[position()=1]) 2012; 28
Schijven (C4NR05088F-(cit58)/*[position()=1]) 2000; 30
Park (C4NR05088F-(cit32)/*[position()=1]) 2014; 30
Paulsen (C4NR05088F-(cit48)/*[position()=1]) 2011; 212
French (C4NR05088F-(cit20)/*[position()=1]) 2009; 43
Petosa (C4NR05088F-(cit28)/*[position()=1]) 2012; 46
Chowdhury (C4NR05088F-(cit22)/*[position()=1]) 2012; 46
Schijven (C4NR05088F-(cit59)/*[position()=1]) 2002; 57
Bradford (C4NR05088F-(cit47)/*[position()=1]) 2012; 48
Wang (C4NR05088F-(cit23)/*[position()=1]) 2012; 14
Yoon (C4NR05088F-(cit35)/*[position()=1]) 2012; 45
Jeong (C4NR05088F-(cit26)/*[position()=1]) 2009; 11
Torkzaban (C4NR05088F-(cit41)/*[position()=1]) 2010; 118
Bagaria (C4NR05088F-(cit34)/*[position()=1]) 2013; 5
Li (C4NR05088F-(cit27)/*[position()=1]) 2011; 45
Bergendahl (C4NR05088F-(cit45)/*[position()=1]) 2000; 55
Callaghan (C4NR05088F-(cit50)/*[position()=1]) 1991
Brown (C4NR05088F-(cit51)/*[position()=1]) 2010; 322
Torkzaban (C4NR05088F-(cit29)/*[position()=1]) 2013; 47
Wang (C4NR05088F-(cit17)/*[position()=1]) 2008; 27
Yoon (C4NR05088F-(cit36)/*[position()=1]) 2011; 27
Ehtesabi (C4NR05088F-(cit6)/*[position()=1]) 2014; 28
Pensini (C4NR05088F-(cit19)/*[position()=1]) 2012; 46
Hendraningrat (C4NR05088F-(cit7)/*[position()=1]) 2014
Torkzaban (C4NR05088F-(cit42)/*[position()=1]) 2012; 136–137
Torkzaban (C4NR05088F-(cit46)/*[position()=1]) 2010; 44
Bear (C4NR05088F-(cit53)/*[position()=1]) 1972
Simmons (C4NR05088F-(cit31)/*[position()=1]) 2001; 52
O'Carroll (C4NR05088F-(cit10)/*[position()=1]) 2013; 51
Li (C4NR05088F-(cit40)/*[position()=1]) 2008; 42
Sun (C4NR05088F-(cit8)/*[position()=1]) 2014; 28
Tosco (C4NR05088F-(cit38)/*[position()=1]) 2009; 43
Goswami (C4NR05088F-(cit57)/*[position()=1]) 2007; 43
Liang (C4NR05088F-(cit43)/*[position()=1]) 2013; 47
Wang (C4NR05088F-(cit49)/*[position()=1]) 2014; 48
Koh (C4NR05088F-(cit61)/*[position()=1]) 2009; 9
Wang (C4NR05088F-(cit13)/*[position()=1]) 2013; 15
Saleh (C4NR05088F-(cit18)/*[position()=1]) 2008; 42
References_xml – volume: 15
  start-page: 1805
  year: 2013
  ident: C4NR05088F-(cit13)/*[position()=1]
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-013-1805-0
– volume: 45
  start-page: 475
  year: 1999
  ident: C4NR05088F-(cit44)/*[position()=1]
  publication-title: AIChE J.
  doi: 10.1002/aic.690450305
– volume: 32
  start-page: 1758
  year: 2006
  ident: C4NR05088F-(cit56)/*[position()=1]
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2006.04.005
– volume: 5
  start-page: 1105
  year: 1971
  ident: C4NR05088F-(cit37)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es60058a005
– volume: 39
  start-page: 1309
  year: 2005
  ident: C4NR05088F-(cit9)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0490018
– volume: 46
  start-page: 1273
  year: 2012
  ident: C4NR05088F-(cit28)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.12.033
– volume: 45
  start-page: 5157
  year: 2012
  ident: C4NR05088F-(cit35)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma202511b
– volume: 43
  start-page: 1354
  year: 2009
  ident: C4NR05088F-(cit20)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es802628n
– volume: 5
  start-page: 3329
  year: 2013
  ident: C4NR05088F-(cit34)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4003974
– volume: 126
  start-page: 248
  year: 2011
  ident: C4NR05088F-(cit11)/*[position()=1]
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2011.09.005
– volume: 27
  start-page: 1860
  year: 2008
  ident: C4NR05088F-(cit17)/*[position()=1]
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/08-039.1
– volume: 27
  start-page: 10962
  year: 2011
  ident: C4NR05088F-(cit36)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la2006327
– volume: 212
  start-page: 133
  year: 2011
  ident: C4NR05088F-(cit48)/*[position()=1]
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2011.06.025
– volume-title: Principles of Colloid and Surface Chemistry
  year: 1997
  ident: C4NR05088F-(cit15)/*[position()=1]
  doi: 10.1201/9781315274287
– volume: 44
  start-page: 6532
  year: 2010
  ident: C4NR05088F-(cit14)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es100598h
– volume: 28
  start-page: 2384
  year: 2014
  ident: C4NR05088F-(cit8)/*[position()=1]
  publication-title: Energy Fuels
  doi: 10.1021/ef402453b
– volume: 47
  start-page: 2572
  year: 2013
  ident: C4NR05088F-(cit24)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.02.025
– volume: 11
  start-page: 1595
  year: 2009
  ident: C4NR05088F-(cit26)/*[position()=1]
  publication-title: J. Environ. Monit.
  doi: 10.1039/b907658a
– volume: 42
  start-page: 7174
  year: 2008
  ident: C4NR05088F-(cit40)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es801305y
– volume: 42
  start-page: 3349
  year: 2008
  ident: C4NR05088F-(cit18)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es071936b
– volume: 46
  start-page: 6968
  year: 2012
  ident: C4NR05088F-(cit22)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2034747
– volume: 57
  start-page: 259
  year: 2002
  ident: C4NR05088F-(cit59)/*[position()=1]
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/S0169-7722(01)00215-7
– volume: 42
  start-page: 3588
  year: 2008
  ident: C4NR05088F-(cit39)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800128m
– volume: 51
  start-page: 104
  year: 2013
  ident: C4NR05088F-(cit10)/*[position()=1]
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2012.02.005
– volume-title: Particle Deposition and Aggregation: Measurement, Modelling and Simulation
  year: 1998
  ident: C4NR05088F-(cit16)/*[position()=1]
– volume: 44
  start-page: 1260
  year: 2010
  ident: C4NR05088F-(cit30)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902240k
– volume: 47
  start-page: 11528
  year: 2013
  ident: C4NR05088F-(cit29)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es402075f
– volume: 322
  start-page: 3122
  year: 2010
  ident: C4NR05088F-(cit51)/*[position()=1]
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2010.05.044
– volume: 9
  start-page: 8130
  year: 2009
  ident: C4NR05088F-(cit61)/*[position()=1]
  publication-title: Sensors
  doi: 10.3390/s91008130
– volume: 46
  start-page: 4008
  year: 2012
  ident: C4NR05088F-(cit12)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202643c
– volume: 52
  start-page: 245
  year: 2001
  ident: C4NR05088F-(cit31)/*[position()=1]
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/S0169-7722(01)00160-7
– volume: 43
  start-page: 4425
  year: 2009
  ident: C4NR05088F-(cit38)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es900245d
– volume: 30
  start-page: 49
  year: 2000
  ident: C4NR05088F-(cit58)/*[position()=1]
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380091184174
– volume: 30
  start-page: 784
  year: 2014
  ident: C4NR05088F-(cit32)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la404387t
– volume: 43
  start-page: W04418
  year: 2007
  ident: C4NR05088F-(cit57)/*[position()=1]
  publication-title: Water Resour. Res.
  doi: 10.1029/2006WR005151
– volume: 48
  start-page: W09509
  year: 2012
  ident: C4NR05088F-(cit47)/*[position()=1]
  publication-title: Water Resour. Res.
  doi: 10.1029/2012WR012468
– year: 2014
  ident: C4NR05088F-(cit7)/*[position()=1]
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-014-0305-6
– volume: 28
  start-page: 423
  year: 2014
  ident: C4NR05088F-(cit6)/*[position()=1]
  publication-title: Energy Fuels
  doi: 10.1021/ef401338c
– volume: 43
  start-page: 3176
  year: 2009
  ident: C4NR05088F-(cit25)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803388u
– volume: 55
  start-page: 1523
  year: 2000
  ident: C4NR05088F-(cit45)/*[position()=1]
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(99)00422-4
– volume: 48
  start-page: 10664
  year: 2014
  ident: C4NR05088F-(cit49)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es500523p
– volume: 136–137
  start-page: 43
  year: 2012
  ident: C4NR05088F-(cit60)/*[position()=1]
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2012.04.008
– volume: 27
  start-page: 2194
  year: 2013
  ident: C4NR05088F-(cit5)/*[position()=1]
  publication-title: Energy Fuels
  doi: 10.1021/ef3020537
– volume: 46
  start-page: 13401
  year: 2012
  ident: C4NR05088F-(cit19)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es3036779
– volume: 136–137
  start-page: 86
  year: 2012
  ident: C4NR05088F-(cit42)/*[position()=1]
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2012.05.004
– volume: 5
  start-page: 8304
  year: 2012
  ident: C4NR05088F-(cit3)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21574h
– volume-title: Principles of Nuclear Magnetic Resonance Microscopy
  year: 1991
  ident: C4NR05088F-(cit50)/*[position()=1]
  doi: 10.1093/oso/9780198539445.001.0001
– volume: 45
  start-page: 4409
  year: 2011
  ident: C4NR05088F-(cit27)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.05.025
– volume: 47
  start-page: 12229
  year: 2013
  ident: C4NR05088F-(cit43)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es402046u
– volume: 360
  start-page: 548
  year: 2011
  ident: C4NR05088F-(cit21)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.04.111
– volume: 44
  start-page: 1662
  year: 2010
  ident: C4NR05088F-(cit46)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903277p
– volume: 28
  start-page: 6246
  year: 2012
  ident: C4NR05088F-(cit33)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la204628c
– volume: 118
  start-page: 208
  year: 2010
  ident: C4NR05088F-(cit41)/*[position()=1]
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2010.10.002
– volume-title: Dynamics of Fluids in Porous Media
  year: 1972
  ident: C4NR05088F-(cit53)/*[position()=1]
– volume: 14
  start-page: 1
  year: 2012
  ident: C4NR05088F-(cit23)/*[position()=1]
  publication-title: J. Nanopart. Res.
SSID ssj0069363
Score 2.2057774
Snippet Nanotechnologies have been proposed for a variety of environmental applications, including subsurface characterization, enhanced oil recovery, and in situ...
Nanotechnologies have been proposed for a variety of environmental applications, including subsurface characterization, enhanced oil recovery, and in situ...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1047
SubjectTerms Computer simulation
Deposition
Electrolytes
Magnetic resonance imaging
Mathematical models
Nanostructure
Sand
Transport
Title In situ measurement and simulation of nano-magnetite mobility in porous media subject to transient salinity
URI https://www.ncbi.nlm.nih.gov/pubmed/25474703
https://www.proquest.com/docview/1639498841
https://www.proquest.com/docview/1651427435
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvcAB8WZ5yQguKHJJYjsbH0tFaUFUArUqPUV24qwiiFM12Qu_nrHjPFbaIuASRYl3I_n7PJ6xvxkj9EaKVNtD34ngYUEY1wlJS0aJKhTnMJ7ixIkxv5wkR2fs03c-22h32SWd2st_bc0r-R9U4RngarNk_wHZ8U_hAdwDvnAFhOH6Vxgfm6CtunVQTwt9bjOgrWp_KpfTaUjTkFqujE0o00HdOD2sy_cD59tKYF36SNCulV2Ucd6oncFspmTQSps62W1s_oJFblrAdtqQ14M4wx8fPumIz_169EVjVivpp0krAHKaRL_849PJxtUeLxO-qMjXSjbzhYnIagBJn-28p50Bi61akdLlhrVdzkhFZ5bTlozYatJDaiui5sxchdaZLOeNAI7L2oELcS4ERiGdprVRbDi8uol2Y4glwBju7n9-__F8mLATQRM6VK6l4t30KVsp2v940225JhZxPsnpXXTHBxN4v2fGPXRDm_vo9qzE5AP049hgyxE84wgGjuCJI7gp8SZH8MARXBnccwQ7jmDPEdw1eOQIHjjyEJ0dfjg9OCL-gA2SU77siFSaKQgAEhEVEStyrsBZ4zKB4VvGMLqpAHeuTGHAKpVrqqQINbRloZBFAn4hfYR2TGP0E4S5jMDTg5Gt09j2l4BQt4wkV4UoYp0nC_R26L8s99Xn7SEoPzOngqAiO2An31y3Hy7Q67HtZV9zZWurVwMMGZhEu88ljYYOySDEEEykKYv-1AYihRjcZ75Aj3sMx28NmD-99s0zdGti_HO0012t9QtwTjv10pPrN8XFk8o
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+measurement+and+simulation+of+nano-magnetite+mobility+in+porous+media+subject+to+transient+salinity&rft.jtitle=Nanoscale&rft.au=Becker%2C+Matthew+D&rft.au=Wang%2C+Yonggang&rft.au=L+Paulsen%2C+Jeffrey&rft.au=Song%2C+Yi-Qiao&rft.date=2015-01-21&rft.eissn=2040-3372&rft.volume=7&rft.issue=3&rft.spage=1047&rft_id=info:doi/10.1039%2Fc4nr05088f&rft_id=info%3Apmid%2F25474703&rft.externalDocID=25474703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon