A semiparametric pseudo-score method for analysis of two-phase studies with continuous phase-I covariates
Two-phase study designs can reduce cost and other practical burdens associated with large scale epidemiologic studies by limiting ascertainment of expensive covariates to a smaller but informative sub-sample (phase-II) of the main study (phase-I). During the analysis of such studies, however, subjec...
Saved in:
Published in | Lifetime data analysis Vol. 13; no. 4; pp. 607 - 622 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Springer Nature B.V
01.12.2007
|
Subjects | |
Online Access | Get full text |
ISSN | 1380-7870 1572-9249 |
DOI | 10.1007/s10985-007-9066-9 |
Cover
Loading…
Abstract | Two-phase study designs can reduce cost and other practical burdens associated with large scale epidemiologic studies by limiting ascertainment of expensive covariates to a smaller but informative sub-sample (phase-II) of the main study (phase-I). During the analysis of such studies, however, subjects who are selected at phase-I but not at phase-II, remain informative as they may have partial covariate information. A variety of semi-parametric methods now exist for incorporating such data from phase-I subjects when the covariate information can be summarized into a finite number of strata. In this article, we consider extending the pseudo-score approach proposed by Chatterjee et al. (J Am Stat Assoc 98:158-168, 2003) using a kernel smoothing approach to incorporate information on continuous phase-I covariates. Practical issues and algorithms for implementing the methods using existing software are discussed. A sandwich-type variance estimator based on the influence function representation of the pseudo-score function is proposed. Finite sample performance of the methods are studies using simulated data. Advantage of the proposed smoothing approach over alternative methods that use discretized phase-I covariate information is illustrated using two-phase data simulated within the National Wilms Tumor Study (NWTS). |
---|---|
AbstractList | Two-phase study designs can reduce cost and other practical burdens associated with large scale epidemiologic studies by limiting ascertainment of expensive covariates to a smaller but informative sub-sample (phase-II) of the main study (phase-I). During the analysis of such studies, however, subjects who are selected at phase-I but not at phase-II, remain informative as they may have partial covariate information. A variety of semi-parametric methods now exist for incorporating such data from phase-I subjects when the covariate information can be summarized into a finite number of strata. In this article, we consider extending the pseudo-score approach proposed by Chatterjee et al. (J Am Stat Assoc 98:158-168, 2003) using a kernel smoothing approach to incorporate information on continuous phase-I covariates. Practical issues and algorithms for implementing the methods using existing software are discussed. A sandwich-type variance estimator based on the influence function representation of the pseudo-score function is proposed. Finite sample performance of the methods are studies using simulated data. Advantage of the proposed smoothing approach over alternative methods that use discretized phase-I covariate information is illustrated using two-phase data simulated within the National Wilms Tumor Study (NWTS). Two-phase study designs can reduce cost and other practical burdens associated with large scale epidemiologic studies by limiting ascertainment of expensive covariates to a smaller but informative sub-sample (phase-II) of the main study (phase-I). During the analysis of such studies, however, subjects who are selected at phase-I but not at phase-II, remain informative as they may have partial covariate information. A variety of semi-parametric methods now exist for incorporating such data from phase-I subjects when the covariate information can be summarized into a finite number of strata. In this article, we consider extending the pseudo-score approach proposed by Chatterjee et al. (J Am Stat Assoc 98:158-168, 2003) using a kernel smoothing approach to incorporate information on continuous phase-I covariates. Practical issues and algorithms for implementing the methods using existing software are discussed. A sandwich-type variance estimator based on the influence function representation of the pseudo-score function is proposed. Finite sample performance of the methods are studies using simulated data. Advantage of the proposed smoothing approach over alternative methods that use discretized phase-I covariate information is illustrated using two-phase data simulated within the National Wilms Tumor Study (NWTS). [PUBLICATION ABSTRACT] Two-phase study designs can reduce cost and other practical burdens associated with large scale epidemiologic studies by limiting ascertainment of expensive covariates to a smaller but informative sub-sample (phase-II) of the main study (phase-I). During the analysis of such studies, however, subjects who are selected at phase-I but not at phase-II, remain informative as they may have partial covariate information. A variety of semi-parametric methods now exist for incorporating such data from phase-I subjects when the covariate information can be summarized into a finite number of strata. In this article, we consider extending the pseudo-score approach proposed by Chatterjee et al. (J Am Stat Assoc 98:158-168, 2003) using a kernel smoothing approach to incorporate information on continuous phase-I covariates. Practical issues and algorithms for implementing the methods using existing software are discussed. A sandwich-type variance estimator based on the influence function representation of the pseudo-score function is proposed. Finite sample performance of the methods are studies using simulated data. Advantage of the proposed smoothing approach over alternative methods that use discretized phase-I covariate information is illustrated using two-phase data simulated within the National Wilms Tumor Study (NWTS).Two-phase study designs can reduce cost and other practical burdens associated with large scale epidemiologic studies by limiting ascertainment of expensive covariates to a smaller but informative sub-sample (phase-II) of the main study (phase-I). During the analysis of such studies, however, subjects who are selected at phase-I but not at phase-II, remain informative as they may have partial covariate information. A variety of semi-parametric methods now exist for incorporating such data from phase-I subjects when the covariate information can be summarized into a finite number of strata. In this article, we consider extending the pseudo-score approach proposed by Chatterjee et al. (J Am Stat Assoc 98:158-168, 2003) using a kernel smoothing approach to incorporate information on continuous phase-I covariates. Practical issues and algorithms for implementing the methods using existing software are discussed. A sandwich-type variance estimator based on the influence function representation of the pseudo-score function is proposed. Finite sample performance of the methods are studies using simulated data. Advantage of the proposed smoothing approach over alternative methods that use discretized phase-I covariate information is illustrated using two-phase data simulated within the National Wilms Tumor Study (NWTS). |
Author | Chen, Yi-Hau Chatterjee, Nilanjan |
Author_xml | – sequence: 1 givenname: Nilanjan surname: Chatterjee fullname: Chatterjee, Nilanjan – sequence: 2 givenname: Yi-Hau surname: Chen fullname: Chen, Yi-Hau |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18004656$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtr3TAQhUVJaB7tD-imiC66UzOyrdcyhLYJBLJJ10KWx1wF23IluSH_vrq9aRaB0pUOo-8Mwzln5GiJCxLygcMXDqAuMgejBauSGZCSmTfklAvVMNN05qjqVgNTWsEJOcv5ASpopHlLTrgG6KSQpyRc0oxzWF1yM5YUPF0zbkNk2ceEtM52caBjTNQtbnrKIdM40vIY2bpzGWku2xAw08dQdtTHpYRli1umf37ZTR39cim4gvkdOR7dlPH983tOfnz7en91zW7vvt9cXd4y3wpVmOt1C4B8MANoCYMWRulRNuiV72DonOmlBgQPA_amVz1qL3vEpjVCNj1vz8nnw941xZ8b5mLnkD1Ok1uwXmalAS1apf8LNiCMlLKr4KdX4EPcUo1jz3RCtYKrCn18hrZ-xsGuKcwuPdm_UVdAHQCfYs4JR-tDcSXUzJILk-Vg96XaQ6l2L_elWlOd_JXzZfk_Pb8BvRSktA |
CitedBy_id | crossref_primary_10_1177_0962280208096046 crossref_primary_10_1158_1055_9965_EPI_19_1574 crossref_primary_10_1080_01621459_2017_1295864 crossref_primary_10_1002_cjs_11314 crossref_primary_10_1177_0962280220978500 |
Cites_doi | 10.1198/016214505000000295 10.1080/01621459.1995.10476498 10.1002/sim.4780100509 10.1111/1467-9868.00078 10.1214/aos/1176345788 10.1093/biomet/82.2.299 10.1111/1467-9868.00185 10.1080/01621459.1994.10476818 10.1093/oxfordjournals.aje.a113266 10.1214/aos/1176324461 10.1093/biomet/75.1.11 10.1198/016214504000001853 10.1080/01621459.1979.10481038 10.1111/j.2517-6161.1991.tb01846.x 10.1080/01621459.1991.10475009 10.1198/016214503388619184 10.2307/2529883 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC 2007 |
Copyright_xml | – notice: Springer Science+Business Media, LLC 2007 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7WY 7WZ 7X7 7XB 87Z 88C 88E 88I 8AO 8C1 8FE 8FG 8FI 8FJ 8FK 8FL ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- L.0 L6V M0C M0S M0T M1P M2P M7S PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U 7QL C1K 7X8 |
DOI | 10.1007/s10985-007-9066-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection ABI/INFORM Global Health & Medical Collection (Alumni) Healthcare Administration Database PQ Medical Database Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ABI/INFORM Professional Standard ProQuest Central Korea ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Health Management ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Bacteriology Abstracts (Microbiology B) ProQuest Business Collection (Alumni Edition) MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1572-9249 |
EndPage | 622 |
ExternalDocumentID | 1413020711 18004656 10_1007_s10985_007_9066_9 |
Genre | Journal Article |
GroupedDBID | --- -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 4.4 406 408 409 40D 40E 44B 53G 5GY 5QI 5VS 67Z 6NX 78A 7WY 7X7 88E 88I 8AO 8C1 8FE 8FG 8FI 8FJ 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADBBV ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHQJS AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AQUVI ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS BVXVI CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EBU EIOEI EJD EMB EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6~ KDC KOV KOW L6V LAK LLZTM M0C M0T M1P M2P M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TEORI TH9 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZL0 ZMTXR ZWQNP ~8M ~EX -52 -5D -5G -BR -EM 3V. ADINQ CGR CUY CVF ECM EIF GQ6 GROUPED_ABI_INFORM_COMPLETE NPM Z7U Z81 Z83 Z8U Z8W Z92 7XB 8FK ABRTQ K9. L.- L.0 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7QL C1K PUEGO 7X8 |
ID | FETCH-LOGICAL-c357t-ab8300e1d9d0860d85978f62ec7c40d4a9b680e0c0deb9b7be8c6bee239562b13 |
IEDL.DBID | BENPR |
ISSN | 1380-7870 |
IngestDate | Thu Sep 04 20:10:39 EDT 2025 Sun Aug 24 04:05:13 EDT 2025 Sat Aug 23 12:56:42 EDT 2025 Wed Feb 19 01:47:29 EST 2025 Tue Jul 01 01:43:33 EDT 2025 Thu Apr 24 23:09:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-ab8300e1d9d0860d85978f62ec7c40d4a9b680e0c0deb9b7be8c6bee239562b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 18004656 |
PQID | 204573517 |
PQPubID | 26261 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_69085378 proquest_miscellaneous_20596664 proquest_journals_204573517 pubmed_primary_18004656 crossref_citationtrail_10_1007_s10985_007_9066_9 crossref_primary_10_1007_s10985_007_9066_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-12-00 2007-Dec 20071201 |
PublicationDateYYYYMMDD | 2007-12-01 |
PublicationDate_xml | – month: 12 year: 2007 text: 2007-12-00 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Lifetime data analysis |
PublicationTitleAlternate | Lifetime Data Anal |
PublicationYear | 2007 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | NE Breslow (9066_CR3) 1997; 59 MA Weaver (9066_CR21) 2005; 100 JF Lawless (9066_CR12) 1999; 61 AJ Scott (9066_CR18) 1997; 78 WS Cleveland (9066_CR9) 1979; 74 RJ Carroll (9066_CR4) 1995; 23 CY Wang (9066_CR20) 1997; 7 MS Pepe (9066_CR13) 1991; 86 JE White (9066_CR22) 1982; 115 WD Flanders (9066_CR10) 1991; 10 M Reilly (9066_CR16) 1995; 82 N Chatterjee (9066_CR8) 2003; 98 T Hastie (9066_CR11) 1990 NE Breslow (9066_CR2) 1999; 48 RJ Carroll (9066_CR6) 1995; 90 NE Breslow (9066_CR1) 1988; 75 9066_CR7 LH Qi (9066_CR15) 2005; 100 AM Walker (9066_CR19) 1982; 38 RJ Carroll (9066_CR5) 1991; 53 JM Robins (9066_CR17) 1994; 89 DA Pierce (9066_CR14) 1982; 10 2068427 - Stat Med. 1991 May;10(5):739-47 7168792 - Biometrics. 1982 Dec;38(4):1025-32 7055123 - Am J Epidemiol. 1982 Jan;115(1):119-28 |
References_xml | – ident: 9066_CR7 – volume: 100 start-page: 1250 year: 2005 ident: 9066_CR15 publication-title: J Am Stat Assoc doi: 10.1198/016214505000000295 – volume: 90 start-page: 157 year: 1995 ident: 9066_CR6 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1995.10476498 – volume: 10 start-page: 739 year: 1991 ident: 9066_CR10 publication-title: Stat Med doi: 10.1002/sim.4780100509 – volume: 59 start-page: 447 year: 1997 ident: 9066_CR3 publication-title: J Stat Soc B doi: 10.1111/1467-9868.00078 – volume: 10 start-page: 475 year: 1982 ident: 9066_CR14 publication-title: Ann Stat doi: 10.1214/aos/1176345788 – volume: 82 start-page: 299 year: 1995 ident: 9066_CR16 publication-title: Biometrika doi: 10.1093/biomet/82.2.299 – volume: 78 start-page: 705 year: 1997 ident: 9066_CR18 publication-title: Biometrika – volume: 61 start-page: 413 year: 1999 ident: 9066_CR12 publication-title: J Stat Soc B doi: 10.1111/1467-9868.00185 – volume: 89 start-page: 846 year: 1994 ident: 9066_CR17 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1994.10476818 – volume: 115 start-page: 119 year: 1982 ident: 9066_CR22 publication-title: Am J Epidemiol doi: 10.1093/oxfordjournals.aje.a113266 – volume: 23 start-page: 161 year: 1995 ident: 9066_CR4 publication-title: Ann Stat doi: 10.1214/aos/1176324461 – volume: 75 start-page: 11 year: 1988 ident: 9066_CR1 publication-title: Biometrika doi: 10.1093/biomet/75.1.11 – volume: 48 start-page: 457 year: 1999 ident: 9066_CR2 publication-title: Appl Stat – volume: 100 start-page: 459 year: 2005 ident: 9066_CR21 publication-title: J Am Stat Assoc doi: 10.1198/016214504000001853 – volume-title: Generalized additive models year: 1990 ident: 9066_CR11 – volume: 74 start-page: 829 year: 1979 ident: 9066_CR9 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1979.10481038 – volume: 53 start-page: 573 year: 1991 ident: 9066_CR5 publication-title: J Roy Stat Soc B doi: 10.1111/j.2517-6161.1991.tb01846.x – volume: 86 start-page: 108 year: 1991 ident: 9066_CR13 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1991.10475009 – volume: 98 start-page: 158 year: 2003 ident: 9066_CR8 publication-title: J Am Stat Assoc doi: 10.1198/016214503388619184 – volume: 38 start-page: 1025 year: 1982 ident: 9066_CR19 publication-title: Biometrics doi: 10.2307/2529883 – volume: 7 start-page: 1103 year: 1997 ident: 9066_CR20 publication-title: Statistica Sinica – reference: 2068427 - Stat Med. 1991 May;10(5):739-47 – reference: 7055123 - Am J Epidemiol. 1982 Jan;115(1):119-28 – reference: 7168792 - Biometrics. 1982 Dec;38(4):1025-32 |
SSID | ssj0007969 |
Score | 1.7645172 |
Snippet | Two-phase study designs can reduce cost and other practical burdens associated with large scale epidemiologic studies by limiting ascertainment of expensive... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 607 |
SubjectTerms | Algorithms Case-Control Studies Cohort Studies Computer Simulation Data Interpretation, Statistical Epidemiologic Research Design Humans Kidney Neoplasms - epidemiology Kidney Neoplasms - therapy Measurement errors Methods Neoplasm Recurrence, Local - epidemiology Random variables Regression Analysis Sampling Studies Validation studies Wilms Tumor - epidemiology Wilms Tumor - therapy |
Title | A semiparametric pseudo-score method for analysis of two-phase studies with continuous phase-I covariates |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18004656 https://www.proquest.com/docview/204573517 https://www.proquest.com/docview/20596664 https://www.proquest.com/docview/69085378 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R7aUcEC2vpaX4wAnJwlm_T6itui1IrRCi0t4ivyJWapOF7MLfx5NkU3FoL1EUO0o0tme-GY-_AfiQZtoZJwKtXOBUVHmle5UkdVV2hwQPUkQ84Hx1rS5vxNeFXAy5Oe2QVrnViZ2ijk3AGPknpE3XXBb68-oXxaJRuLk6VNDYgd2sgY2cwO7p-fW376Mq1raraVdwg2lzetzW7M_OWSMpRupsNrvU_m-YHkCbndWZP4dnA1wkJ_347sOTVB_A06uRa7U9gD3Eiz3d8gtYnpA23S2R0PsOa2UFsmrTJja0RbpK0teLJhmoEjewkZCmIuu_DV39zPaMtH1aIcHwLME09mW9aTYt6Vrpl_zoT3auEZ--hJv5-Y-zSzpUU6CBS72mzhvOWCqijdmNYdFkV8JUapaCDoJF4axXhiUWWEzeeu2TCcqnNOPZhZr5gr-CSd3U6Q0QpYOvmPOickZIG5330VvhtBJF5VycAtuKsgwD1ThWvLgt70mSUfol3qL0SzuFj-Mrq55n47HOh9vxKYcl15bjBJnC-7E1rxXcAHF1yrLKXWT27pR4uIeyGYJybabwuh_2-58xGEqQ6u2j3z6EvS742-W7HMFk_XuT3mXUsvbHsKMXOl_NWYHX-cXxMFv_ARtA76w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcqAcEJTXUqA-wAXJIokdPw4IVcCyS7s9tVJvwa-oK9FkIbtU_Cj-I568Kg7trbcodh4az9jfjMffALwJmTTKcEdL4xjlZbR0K0JOTRndIc5czj0ecF4ci9kp_3aWn23B3-EsDKZVDnNiO1H72mGM_D3SpkuWp_Lj6ifFolG4uTpU0Oi04jD8uYweW_Nh_jkO79ssm345-TSjfVEB6lgu19RYxZIkpF77iOYTryKiVqXIgpOOJ54bbYVKQuISH6y20gblhA0hY9GTyGzK4nvvwF3OmEaqfjX9Ok78UrcV9FKmMElPjpuo3Uk9rXKKcUEdF3mq_18Gr8G27Ro3fQgPenBKDjptegRbodqF-4uR2bXZhR1Epx2582NYHpAmXCyRPvwCK3M5smrCxte0QXJM0lWnJhEWE9Nzn5C6JOvLmq7O4-pJmi6JkWAwmGDS_LLa1JuGtK10Hm_9jq48ouEncHorYn4K21VdhedAhHS2TIzlpVE8195Y663mRgqelsb4CSSDKAvXE5tjfY0fxRUlM0q_wEuUfqEn8G58ZNWxetzUeW8Yn6I38KYY1XEC-2NrtEzcbjFViLKKXfLoSwp-fQ-hI-BlUk3gWTfsVz-jMHCRixc3fnsf7s1OFkfF0fz4cA922rBzm2nzErbXvzbhVcRLa_u61VIC32_bLP4B5g0pNQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTKAUF5LQXqA1yQrObhxPYBoUK76lK6qhCVegt-RaxENwvZpeKn8e-Yyavi0N56i2LnobHH8814_A3A65BIo4xwvDQu5aJETbd5yLgp0R0SqcuEpwPOJ7P86Ex8Os_ON-BvfxaG0ir7NbFZqH3lKEa-R7TpMs1iuVd2WRGnB5P3y5-cCkjRRmtfTaOdIcfhzyV6b_W76QEO9ZskmRx-_XjEuwID3KWZXHFjVRpFIfbaI7KPvEJ0rco8CU46EXlhtM1VFCIX-WC1lTYol9sQkhS9isTGKb73DmxKNIpqBJsfDmenXwYzIHVTTy9OFaXsyWFLtT23p1XGKUqo0eRz_b9RvAbpNhZv8gDud1CV7bdz6yFshMU23DsZeF7rbdgirNpSPT-C-T6rw8WcyMQvqE6XY8s6rH3Fa6LKZG2taoYgmZmOCYVVJVtdVnz5HW0pq9uURkahYUYp9PPFulrXrGnlU7z1Gx17wsaP4exWBP0ERotqEZ4By6WzZWSsKI0SmfbGWm-1MDIXcWmMH0PUi7JwHc05Vdv4UVwRNJP0C7ok6Rd6DG-HR5Ytx8dNnXf68Sk6da-LYXKOYXdoRT2lzRezCCgr7JKhZ5mL63vkGuFvKtUYnrbDfvUzisIYWf78xm_vwl1UieLzdHa8A1tNDLpJu3kBo9WvdXiJ4GllX3XTlMG329aMf6vPLtA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+semiparametric+pseudo-score+method+for+analysis+of+two-phase+studies+with+continuous+phase-I+covariates&rft.jtitle=Lifetime+data+analysis&rft.au=Chatterjee%2C+Nilanjan&rft.au=Chen%2C+Yi-Hau&rft.date=2007-12-01&rft.issn=1380-7870&rft.volume=13&rft.issue=4&rft.spage=607&rft_id=info:doi/10.1007%2Fs10985-007-9066-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7870&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7870&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7870&client=summon |