Frequency-Dependent Discrete Implicit Monte Carlo Scheme for the Radiative Transfer Equation
This work generalizes the discrete implicit Monte Carlo (DIMC) method for modeling the radiative transfer equation from a gray treatment to a frequency-dependent one. The classic implicit Monte Carlo (IMC) algorithm, which has been used for several decades, suffers from a well-known numerical proble...
Saved in:
Published in | Nuclear science and engineering Vol. 197; no. 9; pp. 2343 - 2355 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
02.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work generalizes the discrete implicit Monte Carlo (DIMC) method for modeling the radiative transfer equation from a gray treatment to a frequency-dependent one. The classic implicit Monte Carlo (IMC) algorithm, which has been used for several decades, suffers from a well-known numerical problem, called teleportation, where the photons might propagate faster than the exact solution due to the finite size of the spatial and temporal resolution. The semi-analog Monte Carlo algorithm proposed the use of two kinds of particles, photons and material particles, that are born when a photon is absorbed. The material particle can "propagate" only by transforming into a photon due to black-body emissions. While this algorithm produces a teleportation-free result, its results are noisier compared to the IMC due to the discrete nature of the absorption-emission process.
In a previous work, Steinberg and Heizler [ApJS, Vol. 258, p. 14 (2022)] proposed a gray version of DIMC that makes use of two kinds of particles, and therefore has teleportation-free results, but also uses the continuous absorption algorithm of IMC, yielding smoother results. This work is a direct frequency-dependent (energy-dependent) generalization of the DIMC algorithm. We find in several one- and two-dimensional benchmarks that the new frequency-dependent DIMC algorithm yields teleportation-free results on one hand, and smooth results with an IMC-like noise level. |
---|---|
AbstractList | This work generalizes the discrete implicit Monte Carlo (DIMC) method for modeling the radiative transfer equation from a gray treatment to a frequency-dependent one. The classic implicit Monte Carlo (IMC) algorithm, which has been used for several decades, suffers from a well-known numerical problem, called teleportation, where the photons might propagate faster than the exact solution due to the finite size of the spatial and temporal resolution. The semi-analog Monte Carlo algorithm proposed the use of two kinds of particles, photons and material particles, that are born when a photon is absorbed. The material particle can "propagate" only by transforming into a photon due to black-body emissions. While this algorithm produces a teleportation-free result, its results are noisier compared to the IMC due to the discrete nature of the absorption-emission process.
In a previous work, Steinberg and Heizler [ApJS, Vol. 258, p. 14 (2022)] proposed a gray version of DIMC that makes use of two kinds of particles, and therefore has teleportation-free results, but also uses the continuous absorption algorithm of IMC, yielding smoother results. This work is a direct frequency-dependent (energy-dependent) generalization of the DIMC algorithm. We find in several one- and two-dimensional benchmarks that the new frequency-dependent DIMC algorithm yields teleportation-free results on one hand, and smooth results with an IMC-like noise level. |
Author | Heizler, Shay I. Steinberg, Elad |
Author_xml | – sequence: 1 givenname: Elad orcidid: 0000-0003-0053-0696 surname: Steinberg fullname: Steinberg, Elad organization: The Hebrew University, Racah Institute of Physics – sequence: 2 givenname: Shay I. orcidid: 0000-0002-9334-5993 surname: Heizler fullname: Heizler, Shay I. email: shay.heizler@mail.huji.ac.il organization: The Hebrew University, Racah Institute of Physics |
BookMark | eNp9kF1LwzAYhYNMcJv-BCF_oDPNR9vcKfvQwUTQCV4IIU3fsEiXbGmn7N_bsnnr1ct5OefAeUZo4IMHhG5TMklJQe4IoVJkTE4ooWxCU0lyWlygYSo5S3JefAzQsPckvekKjZrmq5MZl2KIPhcR9gfw5pjMYAe-At_imWtMhBbwcrurnXEtfg6-k1Md64DfzAa2gG2IuN0AftWV0637BryO2jcWIp7vD90n-Gt0aXXdwM35jtH7Yr6ePiWrl8fl9GGVGCbyNtFlzgourSWciLIqdaklmKISTEBZCW5KYwvKobQZGENNyqXJuo9gvCQmpWyMxKnXxNA0EazaRbfV8ahSonpE6g-R6hGpM6Iud3_KOd-t2eqfEOtKtfpYh2i7McY1iv1f8QuPdHF- |
CitedBy_id | crossref_primary_10_1016_j_jcp_2023_112552 crossref_primary_10_1063_5_0208111 crossref_primary_10_1080_00295639_2024_2363089 crossref_primary_10_1063_5_0186666 |
Cites_doi | 10.1080/23324309.2020.1800745 10.1080/23324309.2016.1157491 10.1080/00411450.2014.909850 10.2172/883456 10.2172/1047094 10.1016/j.jcp.2020.109405 10.1080/23324309.2019.1669661 10.3847/1538-4365/ac33a3 10.1016/0021-9991(71)90015-5 10.1080/00411450.2012.671221 10.1016/j.jcp.2021.110806 10.1006/jcph.2001.6836 10.1016/j.jcp.2010.04.004 10.1080/23324309.2019.1678484 10.1080/23324309.2020.1785893 10.1016/j.jcp.2011.03.029 10.1080/23324309.2015.1060245 10.1016/j.jcp.2012.06.020 10.1103/PhysRevLett.129.075001 10.1016/j.jcp.2009.04.028 10.1111/j.1745-3933.2012.01329.x 10.1088/0004-637X/716/1/781 10.1080/23324309.2016.1138132 10.1017/CBO9780511536182 10.1016/j.jcp.2010.10.030 10.1016/j.jcp.2020.109687 10.1016/j.jcp.2013.10.038 10.1016/j.jcp.2014.08.017 |
ContentType | Journal Article |
Copyright | 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023 |
Copyright_xml | – notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023 |
DBID | 0YH AAYXX CITATION |
DOI | 10.1080/00295639.2023.2190728 |
DatabaseName | Taylor & Francis (Open access) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis (Open access) url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1943-748X |
EndPage | 2355 |
ExternalDocumentID | 10_1080_00295639_2023_2190728 2190728 |
Genre | Research Articles |
GroupedDBID | -~X 0BK 0R~ 0YH 123 30N 85S 8WZ A6W AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABEFU ABJVF ABLIJ ABQHQ ABXUL ABXYU ACNCT ACTIO ADGTB AEGYZ AEISY AENEX AEYOC AFWLO AGDLA AIJEM AIRXU AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH BLEHA CCCUG DWNMW EBS F5P IPNFZ KYCEM LJTGL M4Z O9- RBQ RIG RNANH ROSJB RTWRZ TCY TEN TEX TFL TFT TFW TTHFI ZGOLN AAYXX ABJNI ABPAQ ACBEA AHDZW AWYRJ CITATION DGEBU H13 TBQAZ TDBHL TUROJ |
ID | FETCH-LOGICAL-c357t-ab73849ff0405bdbaba9ec8d535ebd54cbcf824ebf6ecc2c149c6f82534b0c123 |
IEDL.DBID | 0YH |
ISSN | 0029-5639 |
IngestDate | Fri Aug 23 01:35:26 EDT 2024 Thu Aug 10 13:47:17 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-ab73849ff0405bdbaba9ec8d535ebd54cbcf824ebf6ecc2c149c6f82534b0c123 |
ORCID | 0000-0002-9334-5993 0000-0003-0053-0696 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/00295639.2023.2190728 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1080_00295639_2023_2190728 informaworld_taylorfrancis_310_1080_00295639_2023_2190728 |
PublicationCentury | 2000 |
PublicationDate | 2023-09-02 |
PublicationDateYYYYMMDD | 2023-09-02 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-02 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | Nuclear science and engineering |
PublicationYear | 2023 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | cit0011 cit0033 cit0012 AHRENS C. (cit0030) 2001 DUDERSTADT J. J. (cit0007) 1979 cit0031 cit0010 cit0032 ZEL’DOVICH B. Y. (cit0006) 2002 SHI Y. (cit0021) 2020 cit0019 cit0017 cit0018 cit0015 cit0016 cit0013 cit0014 cit0022 cit0023 cit0020 cit0008 cit0009 POMRANING G. C. (cit0001) 1973 cit0028 cit0029 cit0004 cit0026 cit0005 cit0027 cit0002 cit0024 cit0003 cit0025 |
References_xml | – ident: cit0032 doi: 10.1080/23324309.2020.1800745 – ident: cit0025 doi: 10.1080/23324309.2016.1157491 – ident: cit0014 doi: 10.1080/00411450.2014.909850 – ident: cit0010 doi: 10.2172/883456 – ident: cit0024 doi: 10.2172/1047094 – ident: cit0028 doi: 10.1016/j.jcp.2020.109405 – ident: cit0033 doi: 10.1080/23324309.2019.1669661 – ident: cit0031 doi: 10.3847/1538-4365/ac33a3 – ident: cit0008 doi: 10.1016/0021-9991(71)90015-5 – ident: cit0017 doi: 10.1080/00411450.2012.671221 – ident: cit0029 doi: 10.1016/j.jcp.2021.110806 – ident: cit0011 doi: 10.1006/jcph.2001.6836 – ident: cit0015 doi: 10.1016/j.jcp.2010.04.004 – ident: cit0022 doi: 10.1080/23324309.2019.1678484 – ident: cit0023 doi: 10.1080/23324309.2020.1785893 – volume-title: The Equations of Radiation Hydrodynamics year: 1973 ident: cit0001 contributor: fullname: POMRANING G. C. – ident: cit0016 doi: 10.1016/j.jcp.2011.03.029 – volume-title: presented at the ANS Mathematics and Computations (M&C) Topl. Mtg. year: 2001 ident: cit0030 contributor: fullname: AHRENS C. – ident: cit0013 doi: 10.1080/23324309.2015.1060245 – ident: cit0027 doi: 10.1016/j.jcp.2012.06.020 – ident: cit0005 doi: 10.1103/PhysRevLett.129.075001 – ident: cit0019 doi: 10.1016/j.jcp.2009.04.028 – volume-title: Transport Theory year: 1979 ident: cit0007 contributor: fullname: DUDERSTADT J. J. – ident: cit0003 doi: 10.1111/j.1745-3933.2012.01329.x – ident: cit0004 doi: 10.1088/0004-637X/716/1/781 – volume-title: Physics of Shock Waves and High Temperature Hydrodynamics Phenomena year: 2002 ident: cit0006 contributor: fullname: ZEL’DOVICH B. Y. – ident: cit0009 doi: 10.1080/23324309.2016.1138132 – ident: cit0002 doi: 10.1017/CBO9780511536182 – ident: cit0012 doi: 10.1016/j.jcp.2010.10.030 – ident: cit0020 doi: 10.1016/j.jcp.2020.109687 – ident: cit0026 doi: 10.1016/j.jcp.2013.10.038 – start-page: 1 year: 2020 ident: cit0021 publication-title: J. Comput. Theor. Transport contributor: fullname: SHI Y. – ident: cit0018 doi: 10.1016/j.jcp.2014.08.017 |
SSID | ssj0026495 |
Score | 2.4057436 |
Snippet | This work generalizes the discrete implicit Monte Carlo (DIMC) method for modeling the radiative transfer equation from a gray treatment to a... |
SourceID | crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 2343 |
SubjectTerms | frequency-dependent approximation implicit Monte Carlo Radiative transfer |
Title | Frequency-Dependent Discrete Implicit Monte Carlo Scheme for the Radiative Transfer Equation |
URI | https://www.tandfonline.com/doi/abs/10.1080/00295639.2023.2190728 |
Volume | 197 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60RfAiPrE-yh68pqSb3SR7LH1QhXpQiw-EkNnsQkFbTePBf-_uJintQS8eNzAJzGReyTffAFxZGjE7mmebnNBjmDFPSKE8FEhjxWg3i-zs8OQ2HE_ZzROv0YTLClZpe2hdEkW4WG2dO8VljYizE9ymqndjJjToGJfzIxpvQ5NG3P2p9Z_Hq54rZILXKA8rUw_x_HabjfS0QV66lnZG-7BX1YukVxr4ALbU_BB2HG5TLo_gdZSXWOhvb1Ctsy3IYGZigSmGybWDi88KMrEcVKSf5m8Lcm_M9K6IeSQxxR-5s-QENuYRl7a0ysnws-T_PobpaPjQH3vVwgRPBjwqvBSjIGZCa-OZHDNMMRVKxhkPuMKMM4lSx5Qp1KGxHJWmO5KhucIDhr40OewEGvPFXJ0CYebEotjP0kgzDKjIqNBc6dhHu69HtKBT6yn5KHkxku6KbrRUbGIVm1SKbYFY12ZSuA8SutwekgR_yp79Q_Ycdu3RwcLoBTSK_EtdmjqiwLZ7U9rQ7I0HL48_cDO-_g |
link.rule.ids | 315,783,787,27516,27938,27939,59479,59480,60222,61011 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLWgCMHCG1GeHlhTpY6dxCPqQy20HaCVOiBFsWNLFdBCSAf4enydpGqRYOmYRI4S-_o-rHPORegWZMSAmgdFju9QkVCHS64cwQUJFSX1JADucH_gd0b0fszGS1wYgFVCDa1zoQjrq2Fzw2F0CYkDCrdJ6y3PhHg1s-fcgISbaMuH6gVoHO5gUXT5lLMS5gFjShbPX69ZiU8r6qVLcae9j2T5xTnc5KU2z0RNfv8Sc1zvlw7QXpGW4rvcjg7RhpoeoW0LD5Wfx-i5neaQ6y-nWXTNzXBzYlyOyblx16LSJxnug9QVbsTp6ww_GWt4U9j8GDY5Jn4EDQRwrdhGR61S3PrIZcZP0KjdGjY6TtGXwZEeCzInFoEXUq61cQBMJCIWMVcyTJjHlEgYlULqkFAltG8MhEhThEnf3GEeFa40ofIUVaazqTpDmJorGoRuEgeaCo_whHDNlA5dAW2BeBXVytWI3nP5jai-UDXNpyyCKYuKKasivrxmUWbPPXTepCTy_h17vsbYG7TTGfZ7Ua87eLhAu_DIItHIJapk6VxdmdQlE9fWNn8AN_bgwg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gCMSFN2I8c-DaqsujbY5oW7UBmxAwiQNS1aSJNAHb6LoD_HqStJ02JLjs2FauGseO7erzZwCuDY2Yac0zRY7vEJ4ShwkmHc44CiVBjTQwvcO9vt8ZkNsXWqEJpyWs0tTQqiCKsGe1ce5JqipEnOng1lm9bTNB2NUu5wUoXAcbOhOwvom9_rzm8gmjFcrDyFRNPH-9Zik8LZGXLoSdaBfw6oMLtMmbO8u5K75_cTmutKI9sFMmpfCmsKJ9sCZHB2DTgkPF9BC8RlkBuP5yWuXM3By2hvrA0Rk37FpM-jCHPUN0BZtJ9j6GT9oWPiTU64I6w4SPhgHBHKzQxkYlM9j-LEjGj8Agaj83O045lcERmAa5k_AAh4Qppd2f8pQnPGFShCnFVPKUEsGFChGRXPnaPJDQJZjw9R2KCfeEDpTHoDYaj-QJgERfkSD00iRQhGPEUsQUlSr0uBkKxOrArTYjnhTkG3FjzmlaqCw2KotLldUBW9yyOLd_PVQxoiTG_8qeriB7BbYeWlF83-3fnYFt88TC0NA5qOXZTF7ovCXnl9YyfwCepd9v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frequency-Dependent+Discrete+Implicit+Monte+Carlo+Scheme+for+the+Radiative+Transfer+Equation&rft.jtitle=Nuclear+science+and+engineering&rft.au=Steinberg%2C+Elad&rft.au=Heizler%2C+Shay+I.&rft.date=2023-09-02&rft.pub=Taylor+%26+Francis&rft.issn=0029-5639&rft.eissn=1943-748X&rft.volume=197&rft.issue=9&rft.spage=2343&rft.epage=2355&rft_id=info:doi/10.1080%2F00295639.2023.2190728&rft.externalDBID=0YH&rft.externalDocID=2190728 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5639&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5639&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5639&client=summon |