Frequency-Dependent Discrete Implicit Monte Carlo Scheme for the Radiative Transfer Equation

This work generalizes the discrete implicit Monte Carlo (DIMC) method for modeling the radiative transfer equation from a gray treatment to a frequency-dependent one. The classic implicit Monte Carlo (IMC) algorithm, which has been used for several decades, suffers from a well-known numerical proble...

Full description

Saved in:
Bibliographic Details
Published inNuclear science and engineering Vol. 197; no. 9; pp. 2343 - 2355
Main Authors Steinberg, Elad, Heizler, Shay I.
Format Journal Article
LanguageEnglish
Published Taylor & Francis 02.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work generalizes the discrete implicit Monte Carlo (DIMC) method for modeling the radiative transfer equation from a gray treatment to a frequency-dependent one. The classic implicit Monte Carlo (IMC) algorithm, which has been used for several decades, suffers from a well-known numerical problem, called teleportation, where the photons might propagate faster than the exact solution due to the finite size of the spatial and temporal resolution. The semi-analog Monte Carlo algorithm proposed the use of two kinds of particles, photons and material particles, that are born when a photon is absorbed. The material particle can "propagate" only by transforming into a photon due to black-body emissions. While this algorithm produces a teleportation-free result, its results are noisier compared to the IMC due to the discrete nature of the absorption-emission process. In a previous work, Steinberg and Heizler [ApJS, Vol. 258, p. 14 (2022)] proposed a gray version of DIMC that makes use of two kinds of particles, and therefore has teleportation-free results, but also uses the continuous absorption algorithm of IMC, yielding smoother results. This work is a direct frequency-dependent (energy-dependent) generalization of the DIMC algorithm. We find in several one- and two-dimensional benchmarks that the new frequency-dependent DIMC algorithm yields teleportation-free results on one hand, and smooth results with an IMC-like noise level.
AbstractList This work generalizes the discrete implicit Monte Carlo (DIMC) method for modeling the radiative transfer equation from a gray treatment to a frequency-dependent one. The classic implicit Monte Carlo (IMC) algorithm, which has been used for several decades, suffers from a well-known numerical problem, called teleportation, where the photons might propagate faster than the exact solution due to the finite size of the spatial and temporal resolution. The semi-analog Monte Carlo algorithm proposed the use of two kinds of particles, photons and material particles, that are born when a photon is absorbed. The material particle can "propagate" only by transforming into a photon due to black-body emissions. While this algorithm produces a teleportation-free result, its results are noisier compared to the IMC due to the discrete nature of the absorption-emission process. In a previous work, Steinberg and Heizler [ApJS, Vol. 258, p. 14 (2022)] proposed a gray version of DIMC that makes use of two kinds of particles, and therefore has teleportation-free results, but also uses the continuous absorption algorithm of IMC, yielding smoother results. This work is a direct frequency-dependent (energy-dependent) generalization of the DIMC algorithm. We find in several one- and two-dimensional benchmarks that the new frequency-dependent DIMC algorithm yields teleportation-free results on one hand, and smooth results with an IMC-like noise level.
Author Heizler, Shay I.
Steinberg, Elad
Author_xml – sequence: 1
  givenname: Elad
  orcidid: 0000-0003-0053-0696
  surname: Steinberg
  fullname: Steinberg, Elad
  organization: The Hebrew University, Racah Institute of Physics
– sequence: 2
  givenname: Shay I.
  orcidid: 0000-0002-9334-5993
  surname: Heizler
  fullname: Heizler, Shay I.
  email: shay.heizler@mail.huji.ac.il
  organization: The Hebrew University, Racah Institute of Physics
BookMark eNp9kF1LwzAYhYNMcJv-BCF_oDPNR9vcKfvQwUTQCV4IIU3fsEiXbGmn7N_bsnnr1ct5OefAeUZo4IMHhG5TMklJQe4IoVJkTE4ooWxCU0lyWlygYSo5S3JefAzQsPckvekKjZrmq5MZl2KIPhcR9gfw5pjMYAe-At_imWtMhBbwcrurnXEtfg6-k1Md64DfzAa2gG2IuN0AftWV0637BryO2jcWIp7vD90n-Gt0aXXdwM35jtH7Yr6ePiWrl8fl9GGVGCbyNtFlzgourSWciLIqdaklmKISTEBZCW5KYwvKobQZGENNyqXJuo9gvCQmpWyMxKnXxNA0EazaRbfV8ahSonpE6g-R6hGpM6Iud3_KOd-t2eqfEOtKtfpYh2i7McY1iv1f8QuPdHF-
CitedBy_id crossref_primary_10_1016_j_jcp_2023_112552
crossref_primary_10_1063_5_0208111
crossref_primary_10_1080_00295639_2024_2363089
crossref_primary_10_1063_5_0186666
Cites_doi 10.1080/23324309.2020.1800745
10.1080/23324309.2016.1157491
10.1080/00411450.2014.909850
10.2172/883456
10.2172/1047094
10.1016/j.jcp.2020.109405
10.1080/23324309.2019.1669661
10.3847/1538-4365/ac33a3
10.1016/0021-9991(71)90015-5
10.1080/00411450.2012.671221
10.1016/j.jcp.2021.110806
10.1006/jcph.2001.6836
10.1016/j.jcp.2010.04.004
10.1080/23324309.2019.1678484
10.1080/23324309.2020.1785893
10.1016/j.jcp.2011.03.029
10.1080/23324309.2015.1060245
10.1016/j.jcp.2012.06.020
10.1103/PhysRevLett.129.075001
10.1016/j.jcp.2009.04.028
10.1111/j.1745-3933.2012.01329.x
10.1088/0004-637X/716/1/781
10.1080/23324309.2016.1138132
10.1017/CBO9780511536182
10.1016/j.jcp.2010.10.030
10.1016/j.jcp.2020.109687
10.1016/j.jcp.2013.10.038
10.1016/j.jcp.2014.08.017
ContentType Journal Article
Copyright 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023
Copyright_xml – notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023
DBID 0YH
AAYXX
CITATION
DOI 10.1080/00295639.2023.2190728
DatabaseName Taylor & Francis (Open access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis (Open access)
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1943-748X
EndPage 2355
ExternalDocumentID 10_1080_00295639_2023_2190728
2190728
Genre Research Articles
GroupedDBID -~X
0BK
0R~
0YH
123
30N
85S
8WZ
A6W
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABEFU
ABJVF
ABLIJ
ABQHQ
ABXUL
ABXYU
ACNCT
ACTIO
ADGTB
AEGYZ
AEISY
AENEX
AEYOC
AFWLO
AGDLA
AIJEM
AIRXU
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
BLEHA
CCCUG
DWNMW
EBS
F5P
IPNFZ
KYCEM
LJTGL
M4Z
O9-
RBQ
RIG
RNANH
ROSJB
RTWRZ
TCY
TEN
TEX
TFL
TFT
TFW
TTHFI
ZGOLN
AAYXX
ABJNI
ABPAQ
ACBEA
AHDZW
AWYRJ
CITATION
DGEBU
H13
TBQAZ
TDBHL
TUROJ
ID FETCH-LOGICAL-c357t-ab73849ff0405bdbaba9ec8d535ebd54cbcf824ebf6ecc2c149c6f82534b0c123
IEDL.DBID 0YH
ISSN 0029-5639
IngestDate Fri Aug 23 01:35:26 EDT 2024
Thu Aug 10 13:47:17 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-ab73849ff0405bdbaba9ec8d535ebd54cbcf824ebf6ecc2c149c6f82534b0c123
ORCID 0000-0002-9334-5993
0000-0003-0053-0696
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/00295639.2023.2190728
PageCount 13
ParticipantIDs crossref_primary_10_1080_00295639_2023_2190728
informaworld_taylorfrancis_310_1080_00295639_2023_2190728
PublicationCentury 2000
PublicationDate 2023-09-02
PublicationDateYYYYMMDD 2023-09-02
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-02
  day: 02
PublicationDecade 2020
PublicationTitle Nuclear science and engineering
PublicationYear 2023
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0011
cit0033
cit0012
AHRENS C. (cit0030) 2001
DUDERSTADT J. J. (cit0007) 1979
cit0031
cit0010
cit0032
ZEL’DOVICH B. Y. (cit0006) 2002
SHI Y. (cit0021) 2020
cit0019
cit0017
cit0018
cit0015
cit0016
cit0013
cit0014
cit0022
cit0023
cit0020
cit0008
cit0009
POMRANING G. C. (cit0001) 1973
cit0028
cit0029
cit0004
cit0026
cit0005
cit0027
cit0002
cit0024
cit0003
cit0025
References_xml – ident: cit0032
  doi: 10.1080/23324309.2020.1800745
– ident: cit0025
  doi: 10.1080/23324309.2016.1157491
– ident: cit0014
  doi: 10.1080/00411450.2014.909850
– ident: cit0010
  doi: 10.2172/883456
– ident: cit0024
  doi: 10.2172/1047094
– ident: cit0028
  doi: 10.1016/j.jcp.2020.109405
– ident: cit0033
  doi: 10.1080/23324309.2019.1669661
– ident: cit0031
  doi: 10.3847/1538-4365/ac33a3
– ident: cit0008
  doi: 10.1016/0021-9991(71)90015-5
– ident: cit0017
  doi: 10.1080/00411450.2012.671221
– ident: cit0029
  doi: 10.1016/j.jcp.2021.110806
– ident: cit0011
  doi: 10.1006/jcph.2001.6836
– ident: cit0015
  doi: 10.1016/j.jcp.2010.04.004
– ident: cit0022
  doi: 10.1080/23324309.2019.1678484
– ident: cit0023
  doi: 10.1080/23324309.2020.1785893
– volume-title: The Equations of Radiation Hydrodynamics
  year: 1973
  ident: cit0001
  contributor:
    fullname: POMRANING G. C.
– ident: cit0016
  doi: 10.1016/j.jcp.2011.03.029
– volume-title: presented at the ANS Mathematics and Computations (M&C) Topl. Mtg.
  year: 2001
  ident: cit0030
  contributor:
    fullname: AHRENS C.
– ident: cit0013
  doi: 10.1080/23324309.2015.1060245
– ident: cit0027
  doi: 10.1016/j.jcp.2012.06.020
– ident: cit0005
  doi: 10.1103/PhysRevLett.129.075001
– ident: cit0019
  doi: 10.1016/j.jcp.2009.04.028
– volume-title: Transport Theory
  year: 1979
  ident: cit0007
  contributor:
    fullname: DUDERSTADT J. J.
– ident: cit0003
  doi: 10.1111/j.1745-3933.2012.01329.x
– ident: cit0004
  doi: 10.1088/0004-637X/716/1/781
– volume-title: Physics of Shock Waves and High Temperature Hydrodynamics Phenomena
  year: 2002
  ident: cit0006
  contributor:
    fullname: ZEL’DOVICH B. Y.
– ident: cit0009
  doi: 10.1080/23324309.2016.1138132
– ident: cit0002
  doi: 10.1017/CBO9780511536182
– ident: cit0012
  doi: 10.1016/j.jcp.2010.10.030
– ident: cit0020
  doi: 10.1016/j.jcp.2020.109687
– ident: cit0026
  doi: 10.1016/j.jcp.2013.10.038
– start-page: 1
  year: 2020
  ident: cit0021
  publication-title: J. Comput. Theor. Transport
  contributor:
    fullname: SHI Y.
– ident: cit0018
  doi: 10.1016/j.jcp.2014.08.017
SSID ssj0026495
Score 2.4057436
Snippet This work generalizes the discrete implicit Monte Carlo (DIMC) method for modeling the radiative transfer equation from a gray treatment to a...
SourceID crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 2343
SubjectTerms frequency-dependent approximation
implicit Monte Carlo
Radiative transfer
Title Frequency-Dependent Discrete Implicit Monte Carlo Scheme for the Radiative Transfer Equation
URI https://www.tandfonline.com/doi/abs/10.1080/00295639.2023.2190728
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60RfAiPrE-yh68pqSb3SR7LH1QhXpQiw-EkNnsQkFbTePBf-_uJintQS8eNzAJzGReyTffAFxZGjE7mmebnNBjmDFPSKE8FEhjxWg3i-zs8OQ2HE_ZzROv0YTLClZpe2hdEkW4WG2dO8VljYizE9ymqndjJjToGJfzIxpvQ5NG3P2p9Z_Hq54rZILXKA8rUw_x_HabjfS0QV66lnZG-7BX1YukVxr4ALbU_BB2HG5TLo_gdZSXWOhvb1Ctsy3IYGZigSmGybWDi88KMrEcVKSf5m8Lcm_M9K6IeSQxxR-5s-QENuYRl7a0ysnws-T_PobpaPjQH3vVwgRPBjwqvBSjIGZCa-OZHDNMMRVKxhkPuMKMM4lSx5Qp1KGxHJWmO5KhucIDhr40OewEGvPFXJ0CYebEotjP0kgzDKjIqNBc6dhHu69HtKBT6yn5KHkxku6KbrRUbGIVm1SKbYFY12ZSuA8SutwekgR_yp79Q_Ycdu3RwcLoBTSK_EtdmjqiwLZ7U9rQ7I0HL48_cDO-_g
link.rule.ids 315,783,787,27516,27938,27939,59479,59480,60222,61011
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLWgCMHCG1GeHlhTpY6dxCPqQy20HaCVOiBFsWNLFdBCSAf4enydpGqRYOmYRI4S-_o-rHPORegWZMSAmgdFju9QkVCHS64cwQUJFSX1JADucH_gd0b0fszGS1wYgFVCDa1zoQjrq2Fzw2F0CYkDCrdJ6y3PhHg1s-fcgISbaMuH6gVoHO5gUXT5lLMS5gFjShbPX69ZiU8r6qVLcae9j2T5xTnc5KU2z0RNfv8Sc1zvlw7QXpGW4rvcjg7RhpoeoW0LD5Wfx-i5neaQ6y-nWXTNzXBzYlyOyblx16LSJxnug9QVbsTp6ww_GWt4U9j8GDY5Jn4EDQRwrdhGR61S3PrIZcZP0KjdGjY6TtGXwZEeCzInFoEXUq61cQBMJCIWMVcyTJjHlEgYlULqkFAltG8MhEhThEnf3GEeFa40ofIUVaazqTpDmJorGoRuEgeaCo_whHDNlA5dAW2BeBXVytWI3nP5jai-UDXNpyyCKYuKKasivrxmUWbPPXTepCTy_h17vsbYG7TTGfZ7Ua87eLhAu_DIItHIJapk6VxdmdQlE9fWNn8AN_bgwg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gCMSFN2I8c-DaqsujbY5oW7UBmxAwiQNS1aSJNAHb6LoD_HqStJ02JLjs2FauGseO7erzZwCuDY2Yac0zRY7vEJ4ShwkmHc44CiVBjTQwvcO9vt8ZkNsXWqEJpyWs0tTQqiCKsGe1ce5JqipEnOng1lm9bTNB2NUu5wUoXAcbOhOwvom9_rzm8gmjFcrDyFRNPH-9Zik8LZGXLoSdaBfw6oMLtMmbO8u5K75_cTmutKI9sFMmpfCmsKJ9sCZHB2DTgkPF9BC8RlkBuP5yWuXM3By2hvrA0Rk37FpM-jCHPUN0BZtJ9j6GT9oWPiTU64I6w4SPhgHBHKzQxkYlM9j-LEjGj8Agaj83O045lcERmAa5k_AAh4Qppd2f8pQnPGFShCnFVPKUEsGFChGRXPnaPJDQJZjw9R2KCfeEDpTHoDYaj-QJgERfkSD00iRQhGPEUsQUlSr0uBkKxOrArTYjnhTkG3FjzmlaqCw2KotLldUBW9yyOLd_PVQxoiTG_8qeriB7BbYeWlF83-3fnYFt88TC0NA5qOXZTF7ovCXnl9YyfwCepd9v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frequency-Dependent+Discrete+Implicit+Monte+Carlo+Scheme+for+the+Radiative+Transfer+Equation&rft.jtitle=Nuclear+science+and+engineering&rft.au=Steinberg%2C+Elad&rft.au=Heizler%2C+Shay+I.&rft.date=2023-09-02&rft.pub=Taylor+%26+Francis&rft.issn=0029-5639&rft.eissn=1943-748X&rft.volume=197&rft.issue=9&rft.spage=2343&rft.epage=2355&rft_id=info:doi/10.1080%2F00295639.2023.2190728&rft.externalDBID=0YH&rft.externalDocID=2190728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5639&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5639&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5639&client=summon