Topology optimization of binary structures under design-dependent fluid-structure interaction loads

A current challenge for the structural topology optimization methods is the development of trustful techniques to account for different physics interactions. This paper devises a technique that considers separate physics analysis and optimization within the context of fluid-structure interaction (FS...

Full description

Saved in:
Bibliographic Details
Published inStructural and multidisciplinary optimization Vol. 62; no. 4; pp. 2101 - 2116
Main Authors Picelli, R., Ranjbarzadeh, S., Sivapuram, R., Gioria, R. S., Silva, E. C. N.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A current challenge for the structural topology optimization methods is the development of trustful techniques to account for different physics interactions. This paper devises a technique that considers separate physics analysis and optimization within the context of fluid-structure interaction (FSI) systems. Steady-state laminar flow and small structural displacements are assumed. We solve the compliance minimization problem subject to single or multiple volume constraints considering design-dependent FSI loads. For that, the TOBS (topology optimization of binary structures) method is applied. The TOBS approach uses binary {0,1} design variables, which can be advantageous when dealing with design-dependent physics interactions, e.g., in cases where fluid-structure boundaries are allowed to change during optimization. The COMSOL Multiphysics software is used to solve the fluid-structure equations and output the sensitivities using automatic differentiation. The TOBS optimizer provides a new set of {0,1} variables at every iteration. Numerical examples show smoothly converged solutions.
AbstractList A current challenge for the structural topology optimization methods is the development of trustful techniques to account for different physics interactions. This paper devises a technique that considers separate physics analysis and optimization within the context of fluid-structure interaction (FSI) systems. Steady-state laminar flow and small structural displacements are assumed. We solve the compliance minimization problem subject to single or multiple volume constraints considering design-dependent FSI loads. For that, the TOBS (topology optimization of binary structures) method is applied. The TOBS approach uses binary {0,1} design variables, which can be advantageous when dealing with design-dependent physics interactions, e.g., in cases where fluid-structure boundaries are allowed to change during optimization. The COMSOL Multiphysics software is used to solve the fluid-structure equations and output the sensitivities using automatic differentiation. The TOBS optimizer provides a new set of {0,1} variables at every iteration. Numerical examples show smoothly converged solutions.
Author Sivapuram, R.
Silva, E. C. N.
Picelli, R.
Ranjbarzadeh, S.
Gioria, R. S.
Author_xml – sequence: 1
  givenname: R.
  surname: Picelli
  fullname: Picelli, R.
  email: rpicelli@usp.br
  organization: Department of Mining and Petroleum Engineering, University of São Paulo
– sequence: 2
  givenname: S.
  surname: Ranjbarzadeh
  fullname: Ranjbarzadeh, S.
  organization: Department of Mechatronics and Mechanical Systems Engineering, University of São Paulo
– sequence: 3
  givenname: R.
  surname: Sivapuram
  fullname: Sivapuram, R.
  organization: Structural Engineering Department, University of California
– sequence: 4
  givenname: R. S.
  surname: Gioria
  fullname: Gioria, R. S.
  organization: Department of Mining and Petroleum Engineering, University of São Paulo
– sequence: 5
  givenname: E. C. N.
  surname: Silva
  fullname: Silva, E. C. N.
  organization: Department of Mechatronics and Mechanical Systems Engineering, University of São Paulo
BookMark eNp9kMtKQzEQhoNUsK2-gKu8QHRy7mcpxRsU3FRwF3ItKafJIclZ1Kc3ttKFiy5CJpBvZv5vgWbOO43QPYUHCtA-RgBadwQKyKfuc3WF5rShNaFV183Odft1gxYx7gCgg6qfI7nxox_89oD9mOzefvNkvcPeYGEdDwccU5hkmoKOeHJKB6x0tFtHlB51fruEzTBZRc7_sHVJBy6PfQbPVbxF14YPUd_93Uv0-fK8Wb2R9cfr--ppTWRZt4lwQQU1plcg82qmVQaasi9qoaHpaSVLqrSSnSy5pqIwoql6KToqpTJVrdumXKLi1FcGH2PQho3B7nMIRoH9amInTSxrYkdNDDLU_YOkTUcJKXA7XEbLExrzHLfVge38FFyOeIn6AbY8gu0
CitedBy_id crossref_primary_10_1007_s00158_022_03442_3
crossref_primary_10_1007_s00158_023_03718_2
crossref_primary_10_1007_s00158_021_02910_6
crossref_primary_10_1016_j_finel_2021_103690
crossref_primary_10_1007_s10915_021_01695_6
crossref_primary_10_1016_j_finel_2021_103650
crossref_primary_10_1016_j_apacoust_2024_110347
crossref_primary_10_1017_jfm_2024_170
crossref_primary_10_1007_s00158_024_03762_6
crossref_primary_10_1016_j_engstruct_2023_116843
crossref_primary_10_1007_s00158_021_03117_5
crossref_primary_10_1007_s00158_021_03118_4
crossref_primary_10_1007_s00158_024_03877_w
crossref_primary_10_1016_j_ins_2023_119066
crossref_primary_10_1002_nme_6775
crossref_primary_10_1007_s00158_024_03894_9
crossref_primary_10_32604_cmes_2023_031538
crossref_primary_10_1002_zamm_202100086
crossref_primary_10_1016_j_apm_2021_08_021
crossref_primary_10_1016_j_cej_2024_149936
crossref_primary_10_1080_15376494_2024_2350680
crossref_primary_10_1016_j_advengsoft_2024_103599
crossref_primary_10_1016_j_cma_2021_114000
crossref_primary_10_1016_j_compstruc_2024_107471
crossref_primary_10_3390_app11115191
crossref_primary_10_1016_j_cma_2022_115334
crossref_primary_10_1080_0305215X_2024_2445653
crossref_primary_10_1177_09544062221150096
crossref_primary_10_1016_j_cma_2024_117350
crossref_primary_10_1007_s10957_023_02213_4
crossref_primary_10_7734_COSEIK_2024_37_6_417
crossref_primary_10_1016_j_apm_2023_11_024
crossref_primary_10_1007_s00158_025_03975_3
crossref_primary_10_1016_j_finel_2024_104137
crossref_primary_10_1007_s00158_020_02719_9
crossref_primary_10_1016_j_cma_2022_115729
crossref_primary_10_1016_j_compstruc_2021_106685
crossref_primary_10_1007_s00158_023_03546_4
crossref_primary_10_1080_0305215X_2024_2389281
crossref_primary_10_1016_j_isci_2024_110648
crossref_primary_10_1109_ACCESS_2022_3206368
Cites_doi 10.1007/s00158-016-1467-5
10.1016/j.commatsci.2018.08.008
10.1007/3-540-34596-5
10.1119/1.16590
10.1007/s40324-018-00185-4
10.1007/s00158-019-02442-0
10.1007/978-1-4612-3172-1
10.1007/s00158-004-0508-7
10.4208/cicp.291210.290411s
10.1007/s40430-018-1097-5
10.1002/nme.2777
10.1002/9781118483565
10.1007/s00158-018-1940-4
10.1080/0305215X.2014.963069
10.1007/s00158-019-02443-z
10.1007/s11831-016-9203-2
10.1007/s00158-019-02396-3
10.1016/S0168-874X(00)00021-4
10.1007/s00158-003-0362-z
10.2514/1.J056748
10.1007/s00158-013-0956-z
10.1007/s00158-019-02339-y
10.1016/j.finel.2017.10.006
10.1016/j.jsv.2008.03.042
10.1016/j.cma.2014.05.021
10.1016/S1874-5652(98)80003-3
10.1016/j.finel.2017.07.005
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
DBID AAYXX
CITATION
DOI 10.1007/s00158-020-02598-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-1488
EndPage 2116
ExternalDocumentID 10_1007_s00158_020_02598_0
GrantInformation_xml – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  grantid: 2018/05797-8; 2019/01685-3
  funderid: https://doi.org/10.13039/501100001807
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  grantid: 2014/50279-4
  funderid: https://doi.org/10.13039/501100001807
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 302658/2018-1
  funderid: https://doi.org/10.13039/501100003593
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
2.D
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
_50
~02
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c357t-ab1b1ff9d0c049f7df063925be06914c31dedc8c3ae1b2fb649cb81ccdf45e763
IEDL.DBID U2A
ISSN 1615-147X
IngestDate Tue Jul 01 01:31:44 EDT 2025
Thu Apr 24 23:09:13 EDT 2025
Fri Feb 21 02:35:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Laminar flow
Small displacements
Topology optimization
Binary variables
Fluid-structure interaction
Design-dependent loads
COMSOL multiphysics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-ab1b1ff9d0c049f7df063925be06914c31dedc8c3ae1b2fb649cb81ccdf45e763
PageCount 16
ParticipantIDs crossref_primary_10_1007_s00158_020_02598_0
crossref_citationtrail_10_1007_s00158_020_02598_0
springer_journals_10_1007_s00158_020_02598_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Structural and multidisciplinary optimization
PublicationTitleAbbrev Struct Multidisc Optim
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References PicelliRNeofytouAKimHATopology optimization for design-dependent hydrostatic pressure loading via the level-set methodStruct Multidiscip Optim20196013131326402655510.1007/s00158-019-02339-y
SivapuramRPicelliRTopology design of binary structures subjected to design-dependent thermal expansion and fluid pressure loadsStruct Multidiscip Optim20206118771895411760310.1007/s00158-019-02443-z
YoonGHTopology optimization for stationary fluid-structure interaction problems using a new monolithic formulationInt J Numer Methods Eng20108259161610.1002/nme.2777
BrezziFFortinMMixed and hybrid finite element methods1991BerlinSpringer10.1007/978-1-4612-3172-1
Sivapuram R, Picelli R, Xie YM (2018b) Topology optimization of binary microstructures involving various non-volume constraints. Computat Mater Sci 154:405–425. https://doi.org/10.1016/j.commatsci.2018.08.008
BillahKYScanlanRHResonance, Tacoma Narrows bridge failure, and undergraduate physics textbooksAm J Phys199159211812410.1119/1.16590
Bungartz HJ, Schȧfer M (2006) Fluid-structure interaction: modelling, simulation, optimization, Berlin
XiaLXiaQHuangXXieYMBi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive reviewArchives of Computational Methods in Engineering2018252437478377647710.1007/s11831-016-9203-2
Gersborg-HansenASigmundOHarberRBTopology optimization of channel flow problemsStruct Multidiscip Optim200530181192216571910.1007/s00158-004-0508-7
LiangYChengGFurther elaborations on topology optimization via sequential integer programming and Canonical relaxation algorithm and 128-line MATLAB codeStruct Multidiscip Optim202061141143110.1007/s00158-019-02396-3
FepponFAllaireGBordeuFCortialJDapognyCShape optimization of a coupled thermal fluid-structure problem in a level set mesh evolution frameworkSeMA J2019763413458399099810.1007/s40324-018-00185-4
Païdoussis MP (1998) Fluid-structure interactions: slender structures and axial flow, vol 1. Academic Press
HouGWangJLaytonANumerical methods for fluid-structure interaction – a reviewCommun Comput Phys201212337377289714310.4208/cicp.291210.290411s
PicelliRVicenteWMPavanelloREvolutionary topology optimization for structural compliance minimization considering design-dependent fsi loadsFinite Elem Anal Des2017135445510.1016/j.finel.2017.07.005
YoonGHStress-based topology optimization method for steady-state fluid-structure interaction problemsComput Methods Appl Mech Eng2014278499523323186910.1016/j.cma.2014.05.021
ChenBCKikuchiNTopology optimization with design-dependent loadsFinite Elem Anal Des200137577010.1016/S0168-874X(00)00021-4
TownsendSPicelliRStanfordBKimHAStructural optimization of platelike aircraft wings under flutter and divergence constraintsAIIA J20185683307331910.2514/1.J056748
Haftka RT, G urdal Z (1991) Elements of Structural Optimization, 3rd edn. Kluwer Academic Publishers
KumarPFrouwsJSLangelaarMTopology optimization of fluidic pressure loaded structures and compliant mechanisms using the Darcy methodStruct Multidiscip Optim20206116371655408109010.1007/s00158-019-02442-0
SivapuramRPicelliRTopology optimization of binary structures using integer linear programmingFinite Elem Anal Des20181394961372617010.1016/j.finel.2017.10.006
MauteKAllenMConceptual design of aeroelastic structures by topology optimizationStruct Multidiscip Optim2004271–2274210.1007/s00158-003-0362-z
DuhringMBJensenJSSigmundOAcoustic design by topology optimizationJ Sound Vib200831755757510.1016/j.jsv.2008.03.042
JenkinsNMauteKAn immersed boundary approach for shape and topology optimization of stationary fluid-structure interaction problemsStruct Multidiscip Optim20165411911208357116810.1007/s00158-016-1467-5
PintoHFda CruzAGBRanjbarzadehSDudaFPPredicting simulation of flow induced by ipmc oscillation in fluid environmentJ Braz Soc Mech Sci Eng201840420310.1007/s40430-018-1097-5
Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, New York
LundgaardCAlexandersenJZhouMAndreasenCSigmundORevisiting density-based topology optimization for fluid-structure-interaction problemsStruct Multidiscip Optim2018583969995384386210.1007/s00158-018-1940-4
Nocedal J, Wright SJ (2006) Numerical Optimization, 2nd edn. Springer-Verlag, Berlin, New York
DeatonJDGrandhiRVA survey of structural and multidisciplinary continuum topology optimization: post 2000Struct Multidiscip Optim201449138318245010.1007/s00158-013-0956-z
ZienkiewiczOCTaylorRLThe finite element method, vol 1-320056OxfordElsevier Butterworth Heinemann
Gresho PM, Sani RL (2000) Incompressible flow and the finite element method. Wiley, New York
PicelliRVicenteWMPavanelloRBi-directional evolutionary structural optimization for design-dependent fluid pressure loading problemsEng Optim2015471013241342337619210.1080/0305215X.2014.963069
Bosma T (2013) Levelset based fluid-structure interaction modeling with the extended finite element method. Master of sciences thesis, Faculty of Mechanical, Maritime and Materials Engineering (3mE), Delft University of Technology
BendsøeMPSigmundOTopology optimization - theory methods and applications2003BerlinSpringer1059.74001
2598_CR21
S Townsend (2598_CR29) 2018; 56
N Jenkins (2598_CR15) 2016; 54
C Lundgaard (2598_CR18) 2018; 58
R Picelli (2598_CR22) 2015; 47
R Picelli (2598_CR24) 2019; 60
F Brezzi (2598_CR5) 1991
R Sivapuram (2598_CR28) 2020; 61
P Kumar (2598_CR16) 2020; 61
OC Zienkiewicz (2598_CR33) 2005
A Gersborg-Hansen (2598_CR11) 2005; 30
Y Liang (2598_CR17) 2020; 61
BC Chen (2598_CR7) 2001; 37
2598_CR27
L Xia (2598_CR30) 2018; 25
GH Yoon (2598_CR32) 2014; 278
2598_CR6
F Feppon (2598_CR10) 2019; 76
2598_CR4
2598_CR12
2598_CR13
R Picelli (2598_CR23) 2017; 135
MB Duhring (2598_CR9) 2008; 317
HF Pinto (2598_CR25) 2018; 40
GH Yoon (2598_CR31) 2010; 82
2598_CR1
R Sivapuram (2598_CR26) 2018; 139
JD Deaton (2598_CR8) 2014; 49
KY Billah (2598_CR3) 1991; 59
MP Bendsøe (2598_CR2) 2003
2598_CR19
G Hou (2598_CR14) 2012; 12
K Maute (2598_CR20) 2004; 27
References_xml – reference: PintoHFda CruzAGBRanjbarzadehSDudaFPPredicting simulation of flow induced by ipmc oscillation in fluid environmentJ Braz Soc Mech Sci Eng201840420310.1007/s40430-018-1097-5
– reference: SivapuramRPicelliRTopology optimization of binary structures using integer linear programmingFinite Elem Anal Des20181394961372617010.1016/j.finel.2017.10.006
– reference: Bosma T (2013) Levelset based fluid-structure interaction modeling with the extended finite element method. Master of sciences thesis, Faculty of Mechanical, Maritime and Materials Engineering (3mE), Delft University of Technology
– reference: FepponFAllaireGBordeuFCortialJDapognyCShape optimization of a coupled thermal fluid-structure problem in a level set mesh evolution frameworkSeMA J2019763413458399099810.1007/s40324-018-00185-4
– reference: PicelliRNeofytouAKimHATopology optimization for design-dependent hydrostatic pressure loading via the level-set methodStruct Multidiscip Optim20196013131326402655510.1007/s00158-019-02339-y
– reference: BendsøeMPSigmundOTopology optimization - theory methods and applications2003BerlinSpringer1059.74001
– reference: Bungartz HJ, Schȧfer M (2006) Fluid-structure interaction: modelling, simulation, optimization, Berlin
– reference: KumarPFrouwsJSLangelaarMTopology optimization of fluidic pressure loaded structures and compliant mechanisms using the Darcy methodStruct Multidiscip Optim20206116371655408109010.1007/s00158-019-02442-0
– reference: PicelliRVicenteWMPavanelloREvolutionary topology optimization for structural compliance minimization considering design-dependent fsi loadsFinite Elem Anal Des2017135445510.1016/j.finel.2017.07.005
– reference: Païdoussis MP (1998) Fluid-structure interactions: slender structures and axial flow, vol 1. Academic Press
– reference: SivapuramRPicelliRTopology design of binary structures subjected to design-dependent thermal expansion and fluid pressure loadsStruct Multidiscip Optim20206118771895411760310.1007/s00158-019-02443-z
– reference: ChenBCKikuchiNTopology optimization with design-dependent loadsFinite Elem Anal Des200137577010.1016/S0168-874X(00)00021-4
– reference: Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, New York
– reference: YoonGHTopology optimization for stationary fluid-structure interaction problems using a new monolithic formulationInt J Numer Methods Eng20108259161610.1002/nme.2777
– reference: LundgaardCAlexandersenJZhouMAndreasenCSigmundORevisiting density-based topology optimization for fluid-structure-interaction problemsStruct Multidiscip Optim2018583969995384386210.1007/s00158-018-1940-4
– reference: TownsendSPicelliRStanfordBKimHAStructural optimization of platelike aircraft wings under flutter and divergence constraintsAIIA J20185683307331910.2514/1.J056748
– reference: XiaLXiaQHuangXXieYMBi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive reviewArchives of Computational Methods in Engineering2018252437478377647710.1007/s11831-016-9203-2
– reference: YoonGHStress-based topology optimization method for steady-state fluid-structure interaction problemsComput Methods Appl Mech Eng2014278499523323186910.1016/j.cma.2014.05.021
– reference: JenkinsNMauteKAn immersed boundary approach for shape and topology optimization of stationary fluid-structure interaction problemsStruct Multidiscip Optim20165411911208357116810.1007/s00158-016-1467-5
– reference: DeatonJDGrandhiRVA survey of structural and multidisciplinary continuum topology optimization: post 2000Struct Multidiscip Optim201449138318245010.1007/s00158-013-0956-z
– reference: MauteKAllenMConceptual design of aeroelastic structures by topology optimizationStruct Multidiscip Optim2004271–2274210.1007/s00158-003-0362-z
– reference: PicelliRVicenteWMPavanelloRBi-directional evolutionary structural optimization for design-dependent fluid pressure loading problemsEng Optim2015471013241342337619210.1080/0305215X.2014.963069
– reference: BillahKYScanlanRHResonance, Tacoma Narrows bridge failure, and undergraduate physics textbooksAm J Phys199159211812410.1119/1.16590
– reference: Gresho PM, Sani RL (2000) Incompressible flow and the finite element method. Wiley, New York
– reference: Haftka RT, G urdal Z (1991) Elements of Structural Optimization, 3rd edn. Kluwer Academic Publishers
– reference: HouGWangJLaytonANumerical methods for fluid-structure interaction – a reviewCommun Comput Phys201212337377289714310.4208/cicp.291210.290411s
– reference: Sivapuram R, Picelli R, Xie YM (2018b) Topology optimization of binary microstructures involving various non-volume constraints. Computat Mater Sci 154:405–425. https://doi.org/10.1016/j.commatsci.2018.08.008
– reference: ZienkiewiczOCTaylorRLThe finite element method, vol 1-320056OxfordElsevier Butterworth Heinemann
– reference: DuhringMBJensenJSSigmundOAcoustic design by topology optimizationJ Sound Vib200831755757510.1016/j.jsv.2008.03.042
– reference: BrezziFFortinMMixed and hybrid finite element methods1991BerlinSpringer10.1007/978-1-4612-3172-1
– reference: LiangYChengGFurther elaborations on topology optimization via sequential integer programming and Canonical relaxation algorithm and 128-line MATLAB codeStruct Multidiscip Optim202061141143110.1007/s00158-019-02396-3
– reference: Gersborg-HansenASigmundOHarberRBTopology optimization of channel flow problemsStruct Multidiscip Optim200530181192216571910.1007/s00158-004-0508-7
– reference: Nocedal J, Wright SJ (2006) Numerical Optimization, 2nd edn. Springer-Verlag, Berlin, New York
– volume: 54
  start-page: 1191
  year: 2016
  ident: 2598_CR15
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-016-1467-5
– ident: 2598_CR27
  doi: 10.1016/j.commatsci.2018.08.008
– ident: 2598_CR6
  doi: 10.1007/3-540-34596-5
– volume: 59
  start-page: 118
  issue: 2
  year: 1991
  ident: 2598_CR3
  publication-title: Am J Phys
  doi: 10.1119/1.16590
– volume: 76
  start-page: 413
  issue: 3
  year: 2019
  ident: 2598_CR10
  publication-title: SeMA J
  doi: 10.1007/s40324-018-00185-4
– volume: 61
  start-page: 1637
  year: 2020
  ident: 2598_CR16
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-019-02442-0
– ident: 2598_CR13
– volume-title: Mixed and hybrid finite element methods
  year: 1991
  ident: 2598_CR5
  doi: 10.1007/978-1-4612-3172-1
– ident: 2598_CR19
– volume: 30
  start-page: 181
  year: 2005
  ident: 2598_CR11
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-004-0508-7
– volume: 12
  start-page: 337
  year: 2012
  ident: 2598_CR14
  publication-title: Commun Comput Phys
  doi: 10.4208/cicp.291210.290411s
– volume: 40
  start-page: 203
  issue: 4
  year: 2018
  ident: 2598_CR25
  publication-title: J Braz Soc Mech Sci Eng
  doi: 10.1007/s40430-018-1097-5
– volume: 82
  start-page: 591
  year: 2010
  ident: 2598_CR31
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2777
– ident: 2598_CR1
  doi: 10.1002/9781118483565
– volume: 58
  start-page: 969
  issue: 3
  year: 2018
  ident: 2598_CR18
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-018-1940-4
– volume: 47
  start-page: 1324
  issue: 10
  year: 2015
  ident: 2598_CR22
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2014.963069
– volume: 61
  start-page: 1877
  year: 2020
  ident: 2598_CR28
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-019-02443-z
– volume: 25
  start-page: 437
  issue: 2
  year: 2018
  ident: 2598_CR30
  publication-title: Archives of Computational Methods in Engineering
  doi: 10.1007/s11831-016-9203-2
– ident: 2598_CR12
– volume: 61
  start-page: 411
  issue: 1
  year: 2020
  ident: 2598_CR17
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-019-02396-3
– volume: 37
  start-page: 57
  year: 2001
  ident: 2598_CR7
  publication-title: Finite Elem Anal Des
  doi: 10.1016/S0168-874X(00)00021-4
– volume-title: Topology optimization - theory methods and applications
  year: 2003
  ident: 2598_CR2
– volume-title: The finite element method, vol 1-3
  year: 2005
  ident: 2598_CR33
– ident: 2598_CR4
– volume: 27
  start-page: 27
  issue: 1–2
  year: 2004
  ident: 2598_CR20
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-003-0362-z
– volume: 56
  start-page: 3307
  issue: 8
  year: 2018
  ident: 2598_CR29
  publication-title: AIIA J
  doi: 10.2514/1.J056748
– volume: 49
  start-page: 1
  year: 2014
  ident: 2598_CR8
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-013-0956-z
– volume: 60
  start-page: 1313
  year: 2019
  ident: 2598_CR24
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-019-02339-y
– volume: 139
  start-page: 49
  year: 2018
  ident: 2598_CR26
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2017.10.006
– volume: 317
  start-page: 557
  year: 2008
  ident: 2598_CR9
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2008.03.042
– volume: 278
  start-page: 499
  year: 2014
  ident: 2598_CR32
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2014.05.021
– ident: 2598_CR21
  doi: 10.1016/S1874-5652(98)80003-3
– volume: 135
  start-page: 44
  year: 2017
  ident: 2598_CR23
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2017.07.005
SSID ssj0008049
Score 2.487574
Snippet A current challenge for the structural topology optimization methods is the development of trustful techniques to account for different physics interactions....
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 2101
SubjectTerms Computational Mathematics and Numerical Analysis
Engineering
Engineering Design
Research Paper
Theoretical and Applied Mechanics
Title Topology optimization of binary structures under design-dependent fluid-structure interaction loads
URI https://link.springer.com/article/10.1007/s00158-020-02598-0
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5se9GD-MT6KHvwpgvZZLebHIv0gaKnFuopZF8g1Eb6OPjv3d1sggUpeJ8Edibzys73DcC90UwqlnBsOx2Bbb4VWDCdYsN1kbEi0cb_Gnh9609m9HnO5gEUtq6n3esrSR-pG7CbS-8pdu2OzdMOGNaCDrO9uxvkmsWDJv6mVdHrShlMKJ8HqMzf79hNR7t3oT7FjE7gONSGaFAZ8xQO9PIMjn4xBp6DnFZLDb5RaX39M4AoUWmQ8MBaVPHBbm0TjRw8bIWUH9HA9bLbDTKL7YfCjRxyhBGrCt6AFmWh1hcwGw2nTxMc9iRgmTC-wYUgghiTqUjaoxuujKs7YiZ01M8IlQlRWslUJoUmIjaiTzMpUiKlMpRpG2Auob0sl_oKEEtoxm2N4ChqKKPW3zXhRjpeM24iyrtAanXlMpCIu10Wi7yhP_Yqzq2Kc6_iPOrCQ_PMV0WhsVf6sbZCHtxpvUf8-n_iN3AYO-v7abxbaFtd6ztbVWxED1rpaNyDzmD8_jLs-U_qB1MPxvs
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB5qPagH8Ylvc9CTBprdpNk9eChqaa321EJv6-YFQm3Ftkj_jz_UJPvAghQ89D67LJN5bub7BuDKaCYVCzm2nY7ANt8KLJiOsOE6jVkaauN_Dbx0660-fRqwQQW-CyyMn3YvriR9pC7Bbi69R9i1OzZPO2BYPkrZ0fMv26hN7toP9lSvg6D52Ltv4XyXAJYh41OcCiKIMbGqSVsTG66My80BE7pWjwmVIVFayUiGqSYiMKJOYykiIqUylGnrhPa9a7Bui4_I-U4_aJTxPsqKbFc6YUL5IIfm_P3Ni-lv8e7Vp7TmDmzntShqZMazCxU92oOtXwyF-yB72RKFORrb2PKegzbR2CDhgbwo45-d2aYdOTjaJ1J-JAQXy3WnyAxnbwqXcsgRVHxmcAo0HKdqcgD9lejyEKqj8UgfAWIhjbmtSRwlDmXUxhdNuJGOR42bGuXHQAp1JTInLXe7M4ZJSbfsVZxYFSdexUntGG7KZz4yyo6l0rfFKSS5-06WiJ_8T_wSNlq9l-fkud3tnMJm4CzBTwKeQdXqXZ_bimYqLrxBIXhdtQX_AKasA5U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JSwMxFH64gOhBXLGuOehJQ5uZpJk5eBBrUavFQwu9jZMNhNoR2yL9V_5Ek8yCBRE8eH8zDC9vnbzvewCnRjOpWMix7XQEtvlWYMF0hA3XaczSUBv_a-Cx27zt0_sBGyzAZ4mF8dPu5ZVkjmlwLE2jSf1NmXoFfHOpPsKu9bE524HEirHKjp592KZtfHnXsid8FgTtm971LS72CmAZMj7BqSCCGBOrhrT1seHKuDwdMKEbzZhQGRKllYxkmGoiAiOaNJYiIlIqQ5m2DmnfuwjL1KGPrQf1g6sq9kd5we3KKEwoHxQwnZ-_eT4Vzt_D-vTW3oD1oi5FV7khbcKCHm3B2je2wm2QvXyhwgxlNs68FgBOlBkkPKgX5Vy0U9vAIwdNe0fKj4fgctHuBJnh9EXhSg45sor3HFqBhlmqxjvQ_xdd7sLSKBvpPUAspDG39Ymjx6GM2lijCTfScapx06C8BqRUVyILAnO3R2OYVNTLXsWJVXHiVZw0anBePfOW03f8Kn1RnkJSuPL4F_H9v4mfwMpTq5083HU7B7AaOEPwQ4GHsGTVro9scTMRx96eEDz_twF_AdjjB8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+optimization+of+binary+structures+under+design-dependent+fluid-structure+interaction+loads&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Picelli%2C+R.&rft.au=Ranjbarzadeh%2C+S.&rft.au=Sivapuram%2C+R.&rft.au=Gioria%2C+R.+S.&rft.date=2020-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=62&rft.issue=4&rft.spage=2101&rft.epage=2116&rft_id=info:doi/10.1007%2Fs00158-020-02598-0&rft.externalDocID=10_1007_s00158_020_02598_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon