Topology optimization of binary structures under design-dependent fluid-structure interaction loads
A current challenge for the structural topology optimization methods is the development of trustful techniques to account for different physics interactions. This paper devises a technique that considers separate physics analysis and optimization within the context of fluid-structure interaction (FS...
Saved in:
Published in | Structural and multidisciplinary optimization Vol. 62; no. 4; pp. 2101 - 2116 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A current challenge for the structural topology optimization methods is the development of trustful techniques to account for different physics interactions. This paper devises a technique that considers separate physics analysis and optimization within the context of fluid-structure interaction (FSI) systems. Steady-state laminar flow and small structural displacements are assumed. We solve the compliance minimization problem subject to single or multiple volume constraints considering design-dependent FSI loads. For that, the TOBS (topology optimization of binary structures) method is applied. The TOBS approach uses binary {0,1} design variables, which can be advantageous when dealing with design-dependent physics interactions, e.g., in cases where fluid-structure boundaries are allowed to change during optimization. The COMSOL Multiphysics software is used to solve the fluid-structure equations and output the sensitivities using automatic differentiation. The TOBS optimizer provides a new set of {0,1} variables at every iteration. Numerical examples show smoothly converged solutions. |
---|---|
AbstractList | A current challenge for the structural topology optimization methods is the development of trustful techniques to account for different physics interactions. This paper devises a technique that considers separate physics analysis and optimization within the context of fluid-structure interaction (FSI) systems. Steady-state laminar flow and small structural displacements are assumed. We solve the compliance minimization problem subject to single or multiple volume constraints considering design-dependent FSI loads. For that, the TOBS (topology optimization of binary structures) method is applied. The TOBS approach uses binary {0,1} design variables, which can be advantageous when dealing with design-dependent physics interactions, e.g., in cases where fluid-structure boundaries are allowed to change during optimization. The COMSOL Multiphysics software is used to solve the fluid-structure equations and output the sensitivities using automatic differentiation. The TOBS optimizer provides a new set of {0,1} variables at every iteration. Numerical examples show smoothly converged solutions. |
Author | Sivapuram, R. Silva, E. C. N. Picelli, R. Ranjbarzadeh, S. Gioria, R. S. |
Author_xml | – sequence: 1 givenname: R. surname: Picelli fullname: Picelli, R. email: rpicelli@usp.br organization: Department of Mining and Petroleum Engineering, University of São Paulo – sequence: 2 givenname: S. surname: Ranjbarzadeh fullname: Ranjbarzadeh, S. organization: Department of Mechatronics and Mechanical Systems Engineering, University of São Paulo – sequence: 3 givenname: R. surname: Sivapuram fullname: Sivapuram, R. organization: Structural Engineering Department, University of California – sequence: 4 givenname: R. S. surname: Gioria fullname: Gioria, R. S. organization: Department of Mining and Petroleum Engineering, University of São Paulo – sequence: 5 givenname: E. C. N. surname: Silva fullname: Silva, E. C. N. organization: Department of Mechatronics and Mechanical Systems Engineering, University of São Paulo |
BookMark | eNp9kMtKQzEQhoNUsK2-gKu8QHRy7mcpxRsU3FRwF3ItKafJIclZ1Kc3ttKFiy5CJpBvZv5vgWbOO43QPYUHCtA-RgBadwQKyKfuc3WF5rShNaFV183Odft1gxYx7gCgg6qfI7nxox_89oD9mOzefvNkvcPeYGEdDwccU5hkmoKOeHJKB6x0tFtHlB51fruEzTBZRc7_sHVJBy6PfQbPVbxF14YPUd_93Uv0-fK8Wb2R9cfr--ppTWRZt4lwQQU1plcg82qmVQaasi9qoaHpaSVLqrSSnSy5pqIwoql6KToqpTJVrdumXKLi1FcGH2PQho3B7nMIRoH9amInTSxrYkdNDDLU_YOkTUcJKXA7XEbLExrzHLfVge38FFyOeIn6AbY8gu0 |
CitedBy_id | crossref_primary_10_1007_s00158_022_03442_3 crossref_primary_10_1007_s00158_023_03718_2 crossref_primary_10_1007_s00158_021_02910_6 crossref_primary_10_1016_j_finel_2021_103690 crossref_primary_10_1007_s10915_021_01695_6 crossref_primary_10_1016_j_finel_2021_103650 crossref_primary_10_1016_j_apacoust_2024_110347 crossref_primary_10_1017_jfm_2024_170 crossref_primary_10_1007_s00158_024_03762_6 crossref_primary_10_1016_j_engstruct_2023_116843 crossref_primary_10_1007_s00158_021_03117_5 crossref_primary_10_1007_s00158_021_03118_4 crossref_primary_10_1007_s00158_024_03877_w crossref_primary_10_1016_j_ins_2023_119066 crossref_primary_10_1002_nme_6775 crossref_primary_10_1007_s00158_024_03894_9 crossref_primary_10_32604_cmes_2023_031538 crossref_primary_10_1002_zamm_202100086 crossref_primary_10_1016_j_apm_2021_08_021 crossref_primary_10_1016_j_cej_2024_149936 crossref_primary_10_1080_15376494_2024_2350680 crossref_primary_10_1016_j_advengsoft_2024_103599 crossref_primary_10_1016_j_cma_2021_114000 crossref_primary_10_1016_j_compstruc_2024_107471 crossref_primary_10_3390_app11115191 crossref_primary_10_1016_j_cma_2022_115334 crossref_primary_10_1080_0305215X_2024_2445653 crossref_primary_10_1177_09544062221150096 crossref_primary_10_1016_j_cma_2024_117350 crossref_primary_10_1007_s10957_023_02213_4 crossref_primary_10_7734_COSEIK_2024_37_6_417 crossref_primary_10_1016_j_apm_2023_11_024 crossref_primary_10_1007_s00158_025_03975_3 crossref_primary_10_1016_j_finel_2024_104137 crossref_primary_10_1007_s00158_020_02719_9 crossref_primary_10_1016_j_cma_2022_115729 crossref_primary_10_1016_j_compstruc_2021_106685 crossref_primary_10_1007_s00158_023_03546_4 crossref_primary_10_1080_0305215X_2024_2389281 crossref_primary_10_1016_j_isci_2024_110648 crossref_primary_10_1109_ACCESS_2022_3206368 |
Cites_doi | 10.1007/s00158-016-1467-5 10.1016/j.commatsci.2018.08.008 10.1007/3-540-34596-5 10.1119/1.16590 10.1007/s40324-018-00185-4 10.1007/s00158-019-02442-0 10.1007/978-1-4612-3172-1 10.1007/s00158-004-0508-7 10.4208/cicp.291210.290411s 10.1007/s40430-018-1097-5 10.1002/nme.2777 10.1002/9781118483565 10.1007/s00158-018-1940-4 10.1080/0305215X.2014.963069 10.1007/s00158-019-02443-z 10.1007/s11831-016-9203-2 10.1007/s00158-019-02396-3 10.1016/S0168-874X(00)00021-4 10.1007/s00158-003-0362-z 10.2514/1.J056748 10.1007/s00158-013-0956-z 10.1007/s00158-019-02339-y 10.1016/j.finel.2017.10.006 10.1016/j.jsv.2008.03.042 10.1016/j.cma.2014.05.021 10.1016/S1874-5652(98)80003-3 10.1016/j.finel.2017.07.005 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00158-020-02598-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1615-1488 |
EndPage | 2116 |
ExternalDocumentID | 10_1007_s00158_020_02598_0 |
GrantInformation_xml | – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo grantid: 2018/05797-8; 2019/01685-3 funderid: https://doi.org/10.13039/501100001807 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo grantid: 2014/50279-4 funderid: https://doi.org/10.13039/501100001807 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 302658/2018-1 funderid: https://doi.org/10.13039/501100003593 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 2.D 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR _50 ~02 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c357t-ab1b1ff9d0c049f7df063925be06914c31dedc8c3ae1b2fb649cb81ccdf45e763 |
IEDL.DBID | U2A |
ISSN | 1615-147X |
IngestDate | Tue Jul 01 01:31:44 EDT 2025 Thu Apr 24 23:09:13 EDT 2025 Fri Feb 21 02:35:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Laminar flow Small displacements Topology optimization Binary variables Fluid-structure interaction Design-dependent loads COMSOL multiphysics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-ab1b1ff9d0c049f7df063925be06914c31dedc8c3ae1b2fb649cb81ccdf45e763 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1007_s00158_020_02598_0 crossref_citationtrail_10_1007_s00158_020_02598_0 springer_journals_10_1007_s00158_020_02598_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationTitle | Structural and multidisciplinary optimization |
PublicationTitleAbbrev | Struct Multidisc Optim |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | PicelliRNeofytouAKimHATopology optimization for design-dependent hydrostatic pressure loading via the level-set methodStruct Multidiscip Optim20196013131326402655510.1007/s00158-019-02339-y SivapuramRPicelliRTopology design of binary structures subjected to design-dependent thermal expansion and fluid pressure loadsStruct Multidiscip Optim20206118771895411760310.1007/s00158-019-02443-z YoonGHTopology optimization for stationary fluid-structure interaction problems using a new monolithic formulationInt J Numer Methods Eng20108259161610.1002/nme.2777 BrezziFFortinMMixed and hybrid finite element methods1991BerlinSpringer10.1007/978-1-4612-3172-1 Sivapuram R, Picelli R, Xie YM (2018b) Topology optimization of binary microstructures involving various non-volume constraints. Computat Mater Sci 154:405–425. https://doi.org/10.1016/j.commatsci.2018.08.008 BillahKYScanlanRHResonance, Tacoma Narrows bridge failure, and undergraduate physics textbooksAm J Phys199159211812410.1119/1.16590 Bungartz HJ, Schȧfer M (2006) Fluid-structure interaction: modelling, simulation, optimization, Berlin XiaLXiaQHuangXXieYMBi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive reviewArchives of Computational Methods in Engineering2018252437478377647710.1007/s11831-016-9203-2 Gersborg-HansenASigmundOHarberRBTopology optimization of channel flow problemsStruct Multidiscip Optim200530181192216571910.1007/s00158-004-0508-7 LiangYChengGFurther elaborations on topology optimization via sequential integer programming and Canonical relaxation algorithm and 128-line MATLAB codeStruct Multidiscip Optim202061141143110.1007/s00158-019-02396-3 FepponFAllaireGBordeuFCortialJDapognyCShape optimization of a coupled thermal fluid-structure problem in a level set mesh evolution frameworkSeMA J2019763413458399099810.1007/s40324-018-00185-4 Païdoussis MP (1998) Fluid-structure interactions: slender structures and axial flow, vol 1. Academic Press HouGWangJLaytonANumerical methods for fluid-structure interaction – a reviewCommun Comput Phys201212337377289714310.4208/cicp.291210.290411s PicelliRVicenteWMPavanelloREvolutionary topology optimization for structural compliance minimization considering design-dependent fsi loadsFinite Elem Anal Des2017135445510.1016/j.finel.2017.07.005 YoonGHStress-based topology optimization method for steady-state fluid-structure interaction problemsComput Methods Appl Mech Eng2014278499523323186910.1016/j.cma.2014.05.021 ChenBCKikuchiNTopology optimization with design-dependent loadsFinite Elem Anal Des200137577010.1016/S0168-874X(00)00021-4 TownsendSPicelliRStanfordBKimHAStructural optimization of platelike aircraft wings under flutter and divergence constraintsAIIA J20185683307331910.2514/1.J056748 Haftka RT, G urdal Z (1991) Elements of Structural Optimization, 3rd edn. Kluwer Academic Publishers KumarPFrouwsJSLangelaarMTopology optimization of fluidic pressure loaded structures and compliant mechanisms using the Darcy methodStruct Multidiscip Optim20206116371655408109010.1007/s00158-019-02442-0 SivapuramRPicelliRTopology optimization of binary structures using integer linear programmingFinite Elem Anal Des20181394961372617010.1016/j.finel.2017.10.006 MauteKAllenMConceptual design of aeroelastic structures by topology optimizationStruct Multidiscip Optim2004271–2274210.1007/s00158-003-0362-z DuhringMBJensenJSSigmundOAcoustic design by topology optimizationJ Sound Vib200831755757510.1016/j.jsv.2008.03.042 JenkinsNMauteKAn immersed boundary approach for shape and topology optimization of stationary fluid-structure interaction problemsStruct Multidiscip Optim20165411911208357116810.1007/s00158-016-1467-5 PintoHFda CruzAGBRanjbarzadehSDudaFPPredicting simulation of flow induced by ipmc oscillation in fluid environmentJ Braz Soc Mech Sci Eng201840420310.1007/s40430-018-1097-5 Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, New York LundgaardCAlexandersenJZhouMAndreasenCSigmundORevisiting density-based topology optimization for fluid-structure-interaction problemsStruct Multidiscip Optim2018583969995384386210.1007/s00158-018-1940-4 Nocedal J, Wright SJ (2006) Numerical Optimization, 2nd edn. Springer-Verlag, Berlin, New York DeatonJDGrandhiRVA survey of structural and multidisciplinary continuum topology optimization: post 2000Struct Multidiscip Optim201449138318245010.1007/s00158-013-0956-z ZienkiewiczOCTaylorRLThe finite element method, vol 1-320056OxfordElsevier Butterworth Heinemann Gresho PM, Sani RL (2000) Incompressible flow and the finite element method. Wiley, New York PicelliRVicenteWMPavanelloRBi-directional evolutionary structural optimization for design-dependent fluid pressure loading problemsEng Optim2015471013241342337619210.1080/0305215X.2014.963069 Bosma T (2013) Levelset based fluid-structure interaction modeling with the extended finite element method. Master of sciences thesis, Faculty of Mechanical, Maritime and Materials Engineering (3mE), Delft University of Technology BendsøeMPSigmundOTopology optimization - theory methods and applications2003BerlinSpringer1059.74001 2598_CR21 S Townsend (2598_CR29) 2018; 56 N Jenkins (2598_CR15) 2016; 54 C Lundgaard (2598_CR18) 2018; 58 R Picelli (2598_CR22) 2015; 47 R Picelli (2598_CR24) 2019; 60 F Brezzi (2598_CR5) 1991 R Sivapuram (2598_CR28) 2020; 61 P Kumar (2598_CR16) 2020; 61 OC Zienkiewicz (2598_CR33) 2005 A Gersborg-Hansen (2598_CR11) 2005; 30 Y Liang (2598_CR17) 2020; 61 BC Chen (2598_CR7) 2001; 37 2598_CR27 L Xia (2598_CR30) 2018; 25 GH Yoon (2598_CR32) 2014; 278 2598_CR6 F Feppon (2598_CR10) 2019; 76 2598_CR4 2598_CR12 2598_CR13 R Picelli (2598_CR23) 2017; 135 MB Duhring (2598_CR9) 2008; 317 HF Pinto (2598_CR25) 2018; 40 GH Yoon (2598_CR31) 2010; 82 2598_CR1 R Sivapuram (2598_CR26) 2018; 139 JD Deaton (2598_CR8) 2014; 49 KY Billah (2598_CR3) 1991; 59 MP Bendsøe (2598_CR2) 2003 2598_CR19 G Hou (2598_CR14) 2012; 12 K Maute (2598_CR20) 2004; 27 |
References_xml | – reference: PintoHFda CruzAGBRanjbarzadehSDudaFPPredicting simulation of flow induced by ipmc oscillation in fluid environmentJ Braz Soc Mech Sci Eng201840420310.1007/s40430-018-1097-5 – reference: SivapuramRPicelliRTopology optimization of binary structures using integer linear programmingFinite Elem Anal Des20181394961372617010.1016/j.finel.2017.10.006 – reference: Bosma T (2013) Levelset based fluid-structure interaction modeling with the extended finite element method. Master of sciences thesis, Faculty of Mechanical, Maritime and Materials Engineering (3mE), Delft University of Technology – reference: FepponFAllaireGBordeuFCortialJDapognyCShape optimization of a coupled thermal fluid-structure problem in a level set mesh evolution frameworkSeMA J2019763413458399099810.1007/s40324-018-00185-4 – reference: PicelliRNeofytouAKimHATopology optimization for design-dependent hydrostatic pressure loading via the level-set methodStruct Multidiscip Optim20196013131326402655510.1007/s00158-019-02339-y – reference: BendsøeMPSigmundOTopology optimization - theory methods and applications2003BerlinSpringer1059.74001 – reference: Bungartz HJ, Schȧfer M (2006) Fluid-structure interaction: modelling, simulation, optimization, Berlin – reference: KumarPFrouwsJSLangelaarMTopology optimization of fluidic pressure loaded structures and compliant mechanisms using the Darcy methodStruct Multidiscip Optim20206116371655408109010.1007/s00158-019-02442-0 – reference: PicelliRVicenteWMPavanelloREvolutionary topology optimization for structural compliance minimization considering design-dependent fsi loadsFinite Elem Anal Des2017135445510.1016/j.finel.2017.07.005 – reference: Païdoussis MP (1998) Fluid-structure interactions: slender structures and axial flow, vol 1. Academic Press – reference: SivapuramRPicelliRTopology design of binary structures subjected to design-dependent thermal expansion and fluid pressure loadsStruct Multidiscip Optim20206118771895411760310.1007/s00158-019-02443-z – reference: ChenBCKikuchiNTopology optimization with design-dependent loadsFinite Elem Anal Des200137577010.1016/S0168-874X(00)00021-4 – reference: Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, New York – reference: YoonGHTopology optimization for stationary fluid-structure interaction problems using a new monolithic formulationInt J Numer Methods Eng20108259161610.1002/nme.2777 – reference: LundgaardCAlexandersenJZhouMAndreasenCSigmundORevisiting density-based topology optimization for fluid-structure-interaction problemsStruct Multidiscip Optim2018583969995384386210.1007/s00158-018-1940-4 – reference: TownsendSPicelliRStanfordBKimHAStructural optimization of platelike aircraft wings under flutter and divergence constraintsAIIA J20185683307331910.2514/1.J056748 – reference: XiaLXiaQHuangXXieYMBi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive reviewArchives of Computational Methods in Engineering2018252437478377647710.1007/s11831-016-9203-2 – reference: YoonGHStress-based topology optimization method for steady-state fluid-structure interaction problemsComput Methods Appl Mech Eng2014278499523323186910.1016/j.cma.2014.05.021 – reference: JenkinsNMauteKAn immersed boundary approach for shape and topology optimization of stationary fluid-structure interaction problemsStruct Multidiscip Optim20165411911208357116810.1007/s00158-016-1467-5 – reference: DeatonJDGrandhiRVA survey of structural and multidisciplinary continuum topology optimization: post 2000Struct Multidiscip Optim201449138318245010.1007/s00158-013-0956-z – reference: MauteKAllenMConceptual design of aeroelastic structures by topology optimizationStruct Multidiscip Optim2004271–2274210.1007/s00158-003-0362-z – reference: PicelliRVicenteWMPavanelloRBi-directional evolutionary structural optimization for design-dependent fluid pressure loading problemsEng Optim2015471013241342337619210.1080/0305215X.2014.963069 – reference: BillahKYScanlanRHResonance, Tacoma Narrows bridge failure, and undergraduate physics textbooksAm J Phys199159211812410.1119/1.16590 – reference: Gresho PM, Sani RL (2000) Incompressible flow and the finite element method. Wiley, New York – reference: Haftka RT, G urdal Z (1991) Elements of Structural Optimization, 3rd edn. Kluwer Academic Publishers – reference: HouGWangJLaytonANumerical methods for fluid-structure interaction – a reviewCommun Comput Phys201212337377289714310.4208/cicp.291210.290411s – reference: Sivapuram R, Picelli R, Xie YM (2018b) Topology optimization of binary microstructures involving various non-volume constraints. Computat Mater Sci 154:405–425. https://doi.org/10.1016/j.commatsci.2018.08.008 – reference: ZienkiewiczOCTaylorRLThe finite element method, vol 1-320056OxfordElsevier Butterworth Heinemann – reference: DuhringMBJensenJSSigmundOAcoustic design by topology optimizationJ Sound Vib200831755757510.1016/j.jsv.2008.03.042 – reference: BrezziFFortinMMixed and hybrid finite element methods1991BerlinSpringer10.1007/978-1-4612-3172-1 – reference: LiangYChengGFurther elaborations on topology optimization via sequential integer programming and Canonical relaxation algorithm and 128-line MATLAB codeStruct Multidiscip Optim202061141143110.1007/s00158-019-02396-3 – reference: Gersborg-HansenASigmundOHarberRBTopology optimization of channel flow problemsStruct Multidiscip Optim200530181192216571910.1007/s00158-004-0508-7 – reference: Nocedal J, Wright SJ (2006) Numerical Optimization, 2nd edn. Springer-Verlag, Berlin, New York – volume: 54 start-page: 1191 year: 2016 ident: 2598_CR15 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-016-1467-5 – ident: 2598_CR27 doi: 10.1016/j.commatsci.2018.08.008 – ident: 2598_CR6 doi: 10.1007/3-540-34596-5 – volume: 59 start-page: 118 issue: 2 year: 1991 ident: 2598_CR3 publication-title: Am J Phys doi: 10.1119/1.16590 – volume: 76 start-page: 413 issue: 3 year: 2019 ident: 2598_CR10 publication-title: SeMA J doi: 10.1007/s40324-018-00185-4 – volume: 61 start-page: 1637 year: 2020 ident: 2598_CR16 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-019-02442-0 – ident: 2598_CR13 – volume-title: Mixed and hybrid finite element methods year: 1991 ident: 2598_CR5 doi: 10.1007/978-1-4612-3172-1 – ident: 2598_CR19 – volume: 30 start-page: 181 year: 2005 ident: 2598_CR11 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-004-0508-7 – volume: 12 start-page: 337 year: 2012 ident: 2598_CR14 publication-title: Commun Comput Phys doi: 10.4208/cicp.291210.290411s – volume: 40 start-page: 203 issue: 4 year: 2018 ident: 2598_CR25 publication-title: J Braz Soc Mech Sci Eng doi: 10.1007/s40430-018-1097-5 – volume: 82 start-page: 591 year: 2010 ident: 2598_CR31 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.2777 – ident: 2598_CR1 doi: 10.1002/9781118483565 – volume: 58 start-page: 969 issue: 3 year: 2018 ident: 2598_CR18 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-018-1940-4 – volume: 47 start-page: 1324 issue: 10 year: 2015 ident: 2598_CR22 publication-title: Eng Optim doi: 10.1080/0305215X.2014.963069 – volume: 61 start-page: 1877 year: 2020 ident: 2598_CR28 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-019-02443-z – volume: 25 start-page: 437 issue: 2 year: 2018 ident: 2598_CR30 publication-title: Archives of Computational Methods in Engineering doi: 10.1007/s11831-016-9203-2 – ident: 2598_CR12 – volume: 61 start-page: 411 issue: 1 year: 2020 ident: 2598_CR17 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-019-02396-3 – volume: 37 start-page: 57 year: 2001 ident: 2598_CR7 publication-title: Finite Elem Anal Des doi: 10.1016/S0168-874X(00)00021-4 – volume-title: Topology optimization - theory methods and applications year: 2003 ident: 2598_CR2 – volume-title: The finite element method, vol 1-3 year: 2005 ident: 2598_CR33 – ident: 2598_CR4 – volume: 27 start-page: 27 issue: 1–2 year: 2004 ident: 2598_CR20 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-003-0362-z – volume: 56 start-page: 3307 issue: 8 year: 2018 ident: 2598_CR29 publication-title: AIIA J doi: 10.2514/1.J056748 – volume: 49 start-page: 1 year: 2014 ident: 2598_CR8 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-013-0956-z – volume: 60 start-page: 1313 year: 2019 ident: 2598_CR24 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-019-02339-y – volume: 139 start-page: 49 year: 2018 ident: 2598_CR26 publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2017.10.006 – volume: 317 start-page: 557 year: 2008 ident: 2598_CR9 publication-title: J Sound Vib doi: 10.1016/j.jsv.2008.03.042 – volume: 278 start-page: 499 year: 2014 ident: 2598_CR32 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2014.05.021 – ident: 2598_CR21 doi: 10.1016/S1874-5652(98)80003-3 – volume: 135 start-page: 44 year: 2017 ident: 2598_CR23 publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2017.07.005 |
SSID | ssj0008049 |
Score | 2.487574 |
Snippet | A current challenge for the structural topology optimization methods is the development of trustful techniques to account for different physics interactions.... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2101 |
SubjectTerms | Computational Mathematics and Numerical Analysis Engineering Engineering Design Research Paper Theoretical and Applied Mechanics |
Title | Topology optimization of binary structures under design-dependent fluid-structure interaction loads |
URI | https://link.springer.com/article/10.1007/s00158-020-02598-0 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5se9GD-MT6KHvwpgvZZLebHIv0gaKnFuopZF8g1Eb6OPjv3d1sggUpeJ8Edibzys73DcC90UwqlnBsOx2Bbb4VWDCdYsN1kbEi0cb_Gnh9609m9HnO5gEUtq6n3esrSR-pG7CbS-8pdu2OzdMOGNaCDrO9uxvkmsWDJv6mVdHrShlMKJ8HqMzf79hNR7t3oT7FjE7gONSGaFAZ8xQO9PIMjn4xBp6DnFZLDb5RaX39M4AoUWmQ8MBaVPHBbm0TjRw8bIWUH9HA9bLbDTKL7YfCjRxyhBGrCt6AFmWh1hcwGw2nTxMc9iRgmTC-wYUgghiTqUjaoxuujKs7YiZ01M8IlQlRWslUJoUmIjaiTzMpUiKlMpRpG2Auob0sl_oKEEtoxm2N4ChqKKPW3zXhRjpeM24iyrtAanXlMpCIu10Wi7yhP_Yqzq2Kc6_iPOrCQ_PMV0WhsVf6sbZCHtxpvUf8-n_iN3AYO-v7abxbaFtd6ztbVWxED1rpaNyDzmD8_jLs-U_qB1MPxvs |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB5qPagH8Ylvc9CTBprdpNk9eChqaa321EJv6-YFQm3Ftkj_jz_UJPvAghQ89D67LJN5bub7BuDKaCYVCzm2nY7ANt8KLJiOsOE6jVkaauN_Dbx0660-fRqwQQW-CyyMn3YvriR9pC7Bbi69R9i1OzZPO2BYPkrZ0fMv26hN7toP9lSvg6D52Ltv4XyXAJYh41OcCiKIMbGqSVsTG66My80BE7pWjwmVIVFayUiGqSYiMKJOYykiIqUylGnrhPa9a7Bui4_I-U4_aJTxPsqKbFc6YUL5IIfm_P3Ni-lv8e7Vp7TmDmzntShqZMazCxU92oOtXwyF-yB72RKFORrb2PKegzbR2CDhgbwo45-d2aYdOTjaJ1J-JAQXy3WnyAxnbwqXcsgRVHxmcAo0HKdqcgD9lejyEKqj8UgfAWIhjbmtSRwlDmXUxhdNuJGOR42bGuXHQAp1JTInLXe7M4ZJSbfsVZxYFSdexUntGG7KZz4yyo6l0rfFKSS5-06WiJ_8T_wSNlq9l-fkud3tnMJm4CzBTwKeQdXqXZ_bimYqLrxBIXhdtQX_AKasA5U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JSwMxFH64gOhBXLGuOehJQ5uZpJk5eBBrUavFQwu9jZMNhNoR2yL9V_5Ek8yCBRE8eH8zDC9vnbzvewCnRjOpWMix7XQEtvlWYMF0hA3XaczSUBv_a-Cx27zt0_sBGyzAZ4mF8dPu5ZVkjmlwLE2jSf1NmXoFfHOpPsKu9bE524HEirHKjp592KZtfHnXsid8FgTtm971LS72CmAZMj7BqSCCGBOrhrT1seHKuDwdMKEbzZhQGRKllYxkmGoiAiOaNJYiIlIqQ5m2DmnfuwjL1KGPrQf1g6sq9kd5we3KKEwoHxQwnZ-_eT4Vzt_D-vTW3oD1oi5FV7khbcKCHm3B2je2wm2QvXyhwgxlNs68FgBOlBkkPKgX5Vy0U9vAIwdNe0fKj4fgctHuBJnh9EXhSg45sor3HFqBhlmqxjvQ_xdd7sLSKBvpPUAspDG39Ymjx6GM2lijCTfScapx06C8BqRUVyILAnO3R2OYVNTLXsWJVXHiVZw0anBePfOW03f8Kn1RnkJSuPL4F_H9v4mfwMpTq5083HU7B7AaOEPwQ4GHsGTVro9scTMRx96eEDz_twF_AdjjB8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+optimization+of+binary+structures+under+design-dependent+fluid-structure+interaction+loads&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Picelli%2C+R.&rft.au=Ranjbarzadeh%2C+S.&rft.au=Sivapuram%2C+R.&rft.au=Gioria%2C+R.+S.&rft.date=2020-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=62&rft.issue=4&rft.spage=2101&rft.epage=2116&rft_id=info:doi/10.1007%2Fs00158-020-02598-0&rft.externalDocID=10_1007_s00158_020_02598_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon |