Magnetohydrodynamic simulations of the space weather in Proxima b: Habitability conditions and radio emission

Context. The habitability of exoplanets hosted by M dwarf stars dramatically depends on the space weather, where the magnetic and ram pressure of the stellar wind, and the exoplanet magnetic field are the three main players. These three parameters also likely drive the radio emission arising close t...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 688; p. A138
Main Authors Peña-Moñino, L., Pérez-Torres, M., Varela, J., Zarka, P.
Format Journal Article
LanguageEnglish
Published Heidelberg EDP Sciences 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Context. The habitability of exoplanets hosted by M dwarf stars dramatically depends on the space weather, where the magnetic and ram pressure of the stellar wind, and the exoplanet magnetic field are the three main players. These three parameters also likely drive the radio emission arising close to the planet. Aims. Our aim is to characterize the magneto-plasma environment and thus the habitability of the Earth-like planet Proxima b, which is inside the habitable zone of its host M dwarf star Proxima, when it is subject to average calm space weather conditions, and to more extreme space weather conditions, for example a coronal mass ejection (CME) event. We study the role of the stellar wind and planetary magnetic field, and their mutual orientation. We also determine the radio emission arising from the interaction between the stellar wind of Proxima and the magnetosphere of its planet Proxima b, which is relevant to guiding radio observations aimed at unveiling planets. Methods. We used the PLUTO code to run a set of 3D magneto-hydrodynamic simulations focused on the space weather around planet Proxima b. We considered both calm and space weather conditions for Proxima b, under three different scenarios: (a) Proxima b subject to calm space weather in a sub-Alfvénic regime, where the stellar wind magnetic pressure dominates over the wind’s ram pressure; (b) Proxima b subject to calm space weather in a super-Alfvénic regime, where the ram pressure of the wind dominates, and a bow shock is formed; and (c) Proxima b subject to a coronal mass ejection event, when the dynamical and magnetic pressure of the stellar wind from its host star are increased enormously for a short period of time. Results. We find that if Proxima b has a magnetic field similar to that of the Earth ( B p = B ⊕ ≈ 0.32 G) or larger, the magnetopause standoff distance is large enough to shield the surface from the stellar wind for essentially any planetary tilt but the most extreme values (close to 90°) under a calm space weather. Even if Proxima b is subject to more extreme space weather conditions, for example a CME event from its host star, the planet is well shielded by an Earth-like magnetosphere ( B p ≈ B ⊕ ; i ≈ 23.5°), or if it has a tilt smaller than that of the Earth. Otherwise, the planetary magnetic field must be larger to shield the planet from particle precipitation on the surface. For calm space weather conditions, the radio emission caused by the day-side reconnection regions can be as high as 7×10 19 erg s −1 in the super-Alfvénic regime, and is on average almost an order of magnitude larger than the radio emission in the sub-Alfvénic cases, due to the much larger contribution of the bow shock, which is not formed in the sub-Alfvénic regime. We also find that the energy dissipation at the bow shock is essentially independent of the angle between the planet’s magnetic dipole and the incident stellar wind flow. If Proxima b is subject to extreme space weather conditions, the radio emission is more than two orders of magnitude larger than when under calm space weather conditions. This result yields expectations for a direct detection (from Earth) in radio of giant planets in close-in orbits as they are expected to have magnetic fields large enough, so that their electron-cyclotron frequency exceeds the ionosphere cutoff.
AbstractList Context. The habitability of exoplanets hosted by M dwarf stars dramatically depends on the space weather, where the magnetic and ram pressure of the stellar wind, and the exoplanet magnetic field are the three main players. These three parameters also likely drive the radio emission arising close to the planet. Aims. Our aim is to characterize the magneto-plasma environment and thus the habitability of the Earth-like planet Proxima b, which is inside the habitable zone of its host M dwarf star Proxima, when it is subject to average calm space weather conditions, and to more extreme space weather conditions, for example a coronal mass ejection (CME) event. We study the role of the stellar wind and planetary magnetic field, and their mutual orientation. We also determine the radio emission arising from the interaction between the stellar wind of Proxima and the magnetosphere of its planet Proxima b, which is relevant to guiding radio observations aimed at unveiling planets. Methods. We used the PLUTO code to run a set of 3D magneto-hydrodynamic simulations focused on the space weather around planet Proxima b. We considered both calm and space weather conditions for Proxima b, under three different scenarios: (a) Proxima b subject to calm space weather in a sub-Alfvénic regime, where the stellar wind magnetic pressure dominates over the wind’s ram pressure; (b) Proxima b subject to calm space weather in a super-Alfvénic regime, where the ram pressure of the wind dominates, and a bow shock is formed; and (c) Proxima b subject to a coronal mass ejection event, when the dynamical and magnetic pressure of the stellar wind from its host star are increased enormously for a short period of time. Results. We find that if Proxima b has a magnetic field similar to that of the Earth (Bp = B⊕ ≈ 0.32 G) or larger, the magnetopause standoff distance is large enough to shield the surface from the stellar wind for essentially any planetary tilt but the most extreme values (close to 90°) under a calm space weather. Even if Proxima b is subject to more extreme space weather conditions, for example a CME event from its host star, the planet is well shielded by an Earth-like magnetosphere (Bp ≈ B⊕; i ≈ 23.5°), or if it has a tilt smaller than that of the Earth. Otherwise, the planetary magnetic field must be larger to shield the planet from particle precipitation on the surface. For calm space weather conditions, the radio emission caused by the day-side reconnection regions can be as high as 7×1019 erg s−1 in the super-Alfvénic regime, and is on average almost an order of magnitude larger than the radio emission in the sub-Alfvénic cases, due to the much larger contribution of the bow shock, which is not formed in the sub-Alfvénic regime. We also find that the energy dissipation at the bow shock is essentially independent of the angle between the planet’s magnetic dipole and the incident stellar wind flow. If Proxima b is subject to extreme space weather conditions, the radio emission is more than two orders of magnitude larger than when under calm space weather conditions. This result yields expectations for a direct detection (from Earth) in radio of giant planets in close-in orbits as they are expected to have magnetic fields large enough, so that their electron-cyclotron frequency exceeds the ionosphere cutoff.
Context. The habitability of exoplanets hosted by M dwarf stars dramatically depends on the space weather, where the magnetic and ram pressure of the stellar wind, and the exoplanet magnetic field are the three main players. These three parameters also likely drive the radio emission arising close to the planet. Aims: Our aim is to characterize the magneto-plasma environment and thus the habitability of the Earth-like planet Proxima b, which is inside the habitable zone of its host M dwarf star Proxima, when it is subject to average calm space weather conditions, and to more extreme space weather conditions, for example a coronal mass ejection (CME) event. We study the role of the stellar wind and planetary magnetic field, and their mutual orientation. We also determine the radio emission arising from the interaction between the stellar wind of Proxima and the magnetosphere of its planet Proxima b, which is relevant to guiding radio observations aimed at unveiling planets. Methods: We used the PLUTO code to run a set of 3D magneto-hydrodynamic simulations focused on the space weather around planet Proxima b. We considered both calm and space weather conditions for Proxima b, under three different scenarios: (a) Proxima b subject to calm space weather in a sub-Alfvénic regime, where the stellar wind magnetic pressure dominates over the wind's ram pressure; (b) Proxima b subject to calm space weather in a super-Alfvénic regime, where the ram pressure of the wind dominates, and a bow shock is formed; and (c) Proxima b subject to a coronal mass ejection event, when the dynamical and magnetic pressure of the stellar wind from its host star are increased enormously for a short period of time. Results: We find that if Proxima b has a magnetic field similar to that of the Earth (Bp = B⊕ ≈ 0.32 G) or larger, the magnetopause standoff distance is large enough to shield the surface from the stellar wind for essentially any planetary tilt but the most extreme values (close to 90°) under a calm space weather. Even if Proxima b is subject to more extreme space weather conditions, for example a CME event from its host star, the planet is well shielded by an Earth-like magnetosphere (Bp ≈ B⊕; i ≈ 23.5°), or if it has a tilt smaller than that of the Earth. Otherwise, the planetary magnetic field must be larger to shield the planet from particle precipitation on the surface. For calm space weather conditions, the radio emission caused by the day-side reconnection regions can be as high as 7×1019 erg s−1 in the super-Alfvénic regime, and is on average almost an order of magnitude larger than the radio emission in the sub-Alfvénic cases, due to the much larger contribution of the bow shock, which is not formed in the sub-Alfvénic regime. We also find that the energy dissipation at the bow shock is essentially independent of the angle between the planet's magnetic dipole and the incident stellar wind flow. If Proxima b is subject to extreme space weather conditions, the radio emission is more than two orders of magnitude larger than when under calm space weather conditions. This result yields expectations for a direct detection (from Earth) in radio of giant planets in close-in orbits as they are expected to have magnetic fields large enough, so that their electron-cyclotron frequency exceeds the ionosphere cutoff. The movies associated to Fig. 2 are available at https://www.aanda.org
Context. The habitability of exoplanets hosted by M dwarf stars dramatically depends on the space weather, where the magnetic and ram pressure of the stellar wind, and the exoplanet magnetic field are the three main players. These three parameters also likely drive the radio emission arising close to the planet. Aims. Our aim is to characterize the magneto-plasma environment and thus the habitability of the Earth-like planet Proxima b, which is inside the habitable zone of its host M dwarf star Proxima, when it is subject to average calm space weather conditions, and to more extreme space weather conditions, for example a coronal mass ejection (CME) event. We study the role of the stellar wind and planetary magnetic field, and their mutual orientation. We also determine the radio emission arising from the interaction between the stellar wind of Proxima and the magnetosphere of its planet Proxima b, which is relevant to guiding radio observations aimed at unveiling planets. Methods. We used the PLUTO code to run a set of 3D magneto-hydrodynamic simulations focused on the space weather around planet Proxima b. We considered both calm and space weather conditions for Proxima b, under three different scenarios: (a) Proxima b subject to calm space weather in a sub-Alfvénic regime, where the stellar wind magnetic pressure dominates over the wind’s ram pressure; (b) Proxima b subject to calm space weather in a super-Alfvénic regime, where the ram pressure of the wind dominates, and a bow shock is formed; and (c) Proxima b subject to a coronal mass ejection event, when the dynamical and magnetic pressure of the stellar wind from its host star are increased enormously for a short period of time. Results. We find that if Proxima b has a magnetic field similar to that of the Earth ( B p = B ⊕ ≈ 0.32 G) or larger, the magnetopause standoff distance is large enough to shield the surface from the stellar wind for essentially any planetary tilt but the most extreme values (close to 90°) under a calm space weather. Even if Proxima b is subject to more extreme space weather conditions, for example a CME event from its host star, the planet is well shielded by an Earth-like magnetosphere ( B p ≈ B ⊕ ; i ≈ 23.5°), or if it has a tilt smaller than that of the Earth. Otherwise, the planetary magnetic field must be larger to shield the planet from particle precipitation on the surface. For calm space weather conditions, the radio emission caused by the day-side reconnection regions can be as high as 7×10 19 erg s −1 in the super-Alfvénic regime, and is on average almost an order of magnitude larger than the radio emission in the sub-Alfvénic cases, due to the much larger contribution of the bow shock, which is not formed in the sub-Alfvénic regime. We also find that the energy dissipation at the bow shock is essentially independent of the angle between the planet’s magnetic dipole and the incident stellar wind flow. If Proxima b is subject to extreme space weather conditions, the radio emission is more than two orders of magnitude larger than when under calm space weather conditions. This result yields expectations for a direct detection (from Earth) in radio of giant planets in close-in orbits as they are expected to have magnetic fields large enough, so that their electron-cyclotron frequency exceeds the ionosphere cutoff.
Author Peña-Moñino, L.
Zarka, P.
Pérez-Torres, M.
Varela, J.
Author_xml – sequence: 1
  givenname: L.
  orcidid: 0000-0001-6735-1655
  surname: Peña-Moñino
  fullname: Peña-Moñino, L.
– sequence: 2
  givenname: M.
  orcidid: 0000-0001-5654-0266
  surname: Pérez-Torres
  fullname: Pérez-Torres, M.
– sequence: 3
  givenname: J.
  orcidid: 0000-0002-6114-0539
  surname: Varela
  fullname: Varela, J.
– sequence: 4
  givenname: P.
  orcidid: 0000-0003-1672-9878
  surname: Zarka
  fullname: Zarka, P.
BackLink https://insu.hal.science/insu-04853429$$DView record in HAL
BookMark eNp9kU1LAzEQhoMoWKu_wEvAm7Car-6Ht1LUChU96DnMZhMb2U1qsqv235ul0oMHD8Mww_MOL--coEPnnUbonJIrSmb0mhAispzn9JoRxkVFBDtAEyo4y0gh8kM02RPH6CTG9zQyWvIJ6h7hzener7dN8M3WQWcVjrYbWuitdxF7g_u1xnEDSuMvDWkI2Dr8HPy37QDXN3gJte1TtbbfYuVdY3dScA0O0FiPdWdjTLtTdGSgjfrst0_R693ty2KZrZ7uHxbzVab4rOgzKLXhWjeiLrigbFZBDo1hhtSmLIESDkWu6ppRlVeKcJXzWjdVqUAwI4rc8Cm63N1dQys3IfkMW-nByuV8Ja2LgySinHHBqk-a4IsdvAn-Y9Cxl-9-CC75k5xUQpRFUY4U31Eq-BiDNvu7lMjxCXKMWI4Ry_0Tkqr6o1IpqjGePoBt_9X-ABfljp0
CitedBy_id crossref_primary_10_1051_0004_6361_202451835
crossref_primary_10_3847_1538_4357_ad8132
crossref_primary_10_1093_mnras_staf164
Cites_doi 10.1051/0004-6361/201628607
10.3847/2041-8213/aca487
10.1051/0004-6361:200810491
10.3847/1538-4357/abca90
10.1051/0004-6361/202141181
10.1029/2019SW002195
10.1051/0004-6361/201732091
10.3847/2041-8213/ad0f1f
10.1103/PhysRevLett.6.47
10.3847/2041-8205/833/1/L4
10.1002/2015GL065271
10.1051/0004-6361/201937201
10.1086/157120
10.3847/2041-8213/aa7eca
10.1089/ast.2006.0128
10.1002/asna.201211751
10.1093/mnras/stab929
10.1051/0004-6361/202039052
10.1029/2009JA014158
10.1086/318888
10.1016/j.pss.2006.05.045
10.1007/s10569-017-9783-7
10.1002/2016JA022471
10.1029/98JE01323
10.1017/CBO9780511524943
10.1007/s11214-005-3834-1
10.1016/j.physrep.2016.10.003
10.1051/0004-6361/201628586
10.1038/s41550-023-01914-0
10.1029/2000GL012725
10.1093/mnras/stad2519
10.1029/2007JA012745
10.1016/j.pss.2016.01.008
10.1093/mnras/staa3396
10.1086/513316
10.1089/ast.2006.0127
10.1089/ast.2006.0125
10.1017/S1473550419000132
10.1089/ast.2005.5.587
10.1002/2013JA019480
10.1006/jcph.2001.6961
10.1051/0004-6361/201116510
10.1029/2000JA000295
10.5047/eps.2013.09.006
10.1051/0004-6361:20035684
10.1029/2022SW003164
10.1038/s41550-020-1011-9
10.3847/2041-8213/833/2/L28
10.1088/0004-637X/790/1/57
10.1029/2000JA004015
10.1016/j.asr.2006.06.010
10.1016/j.pss.2016.02.015
10.1016/j.pss.2015.11.011
10.1051/0004-6361/201629576
10.5194/angeo-37-347-2019
10.1016/j.pss.2016.06.009
10.1029/2018SW001944
10.1073/pnas.2000614117
10.1016/j.pss.2015.10.004
10.1007/3-540-36530-3
10.1029/RG022i004p00373
10.1051/0004-6361/201629577
10.1051/0004-6361/201833586
10.1038/nature19106
ContentType Journal Article
Copyright 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID AAYXX
CITATION
8FD
H8D
L7M
1XC
VOOES
DOI 10.1051/0004-6361/202349042
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID oai_HAL_insu_04853429v1
10_1051_0004_6361_202349042
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AEILP
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
8FD
H8D
L7M
1XC
VOOES
ID FETCH-LOGICAL-c357t-a8ef3eed4b7341259a6adf2f0bf88a103a76cbb21c69c03c63bed98ca42f476f3
ISSN 0004-6361
IngestDate Sat Aug 23 06:30:55 EDT 2025
Mon Jun 30 16:59:51 EDT 2025
Tue Jul 01 03:54:20 EDT 2025
Thu Apr 24 23:04:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords planets and satellites: magnetic fields
planetary systems
Astrophysics - Earth and Planetary Astrophysics
magnetohydrodynamics (MHD)
magnetic reconnection
Language English
License https://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c357t-a8ef3eed4b7341259a6adf2f0bf88a103a76cbb21c69c03c63bed98ca42f476f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5654-0266
0000-0002-6114-0539
0000-0001-6735-1655
0000-0003-1672-9878
OpenAccessLink https://insu.hal.science/insu-04853429
PQID 3094487781
PQPubID 1796397
ParticipantIDs hal_primary_oai_HAL_insu_04853429v1
proquest_journals_3094487781
crossref_primary_10_1051_0004_6361_202349042
crossref_citationtrail_10_1051_0004_6361_202349042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2024
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Varela (R47) 2015; 119
Zhang (R68) 2020; 117
Mishra (R30) 2023; 959
Shume (R41) 2009; 114
Garraffo (R12) 2022; 941
Varela (R56) 2023; 525
Varela (R51) 2016; 125
Suzuki (R43) 2013; 334
Wood (R61) 2001; 547
R66
R25
De Keyser (R8) 2005; 118
Zarka (R65) 2007; 55
Waters (R59) 2001; 28
Kaiser (R21) 1984; 22
Reiners (R34) 2008; 489
R4
Garcia-Sage (R10) 2017; 844
Yadav (R63) 2016; 833
Jakosky (R20) 2015; 42
Dungey (R9) 1961; 6
Grießmeier (R15) 2005; 5
Varela (R49) 2016; 120
Ribas (R35) 2016; 596
Ridley (R36) 2006; 38
Hess (R18) 2011; 531
Turbet (R45) 2016; 596
Airapetian (R1) 2020; 19
Kilpua (R24) 2019; 17
Hapgood (R17) 2019; 17
Pérez-Torres (R32) 2021; 645
Varela (R48) 2016; 129
Vedantham (R57) 2020; 4
Varela (R50) 2016; 122
Varela (R52) 2016; 595
Varela (R53) 2018; 616
Khodachenko (R23) 2007; 7
Shields (R40) 2016; 663
Zarka (R64) 1998; 103
Varela (R55) 2022; 20
Turner (R46) 2021; 645
Zarka (R67) 2018; 618
Samsonov (R38) 2016; 121
Wu (R62) 1979; 230
Hess (R19) 2008; 113
R44
Scalo (R39) 2007; 7
Dedner (R7) 2002; 175
Cohen (R6) 2014; 790
Garraffo (R11) 2016; 833
Gronoff (R16) 2020; 125
Ritter (R37) 2013; 65
Klein (R26) 2021; 500
Watanabe (R58) 2014; 119
Weimer (R60) 2001; 106
Mignone (R29) 2007; 170
Bunescu (R5) 2019; 37
Suárez Mascareño (R42) 2016; 595
Anglada-Escudé (R2) 2016; 536
Low (R28) 2001; 106
Kavanagh (R22) 2021; 504
Barnes (R3) 2017; 129
Zic (R69) 2020; 905
Grießmeier (R14) 2004; 425
R13
Neugebauer (R31) 1997; 99
Pineda (R33) 2023; 7
Lammer (R27) 2007; 7
Varela (R54) 2022; 659
References_xml – volume: 595
  start-page: A69
  year: 2016
  ident: R52
  publication-title: A&A
  doi: 10.1051/0004-6361/201628607
– volume: 941
  start-page: L8
  year: 2022
  ident: R12
  publication-title: ApJ
  doi: 10.3847/2041-8213/aca487
– volume: 489
  start-page: L45
  year: 2008
  ident: R34
  publication-title: A&A
  doi: 10.1051/0004-6361:200810491
– volume: 905
  start-page: 23
  year: 2020
  ident: R69
  publication-title: ApJ
  doi: 10.3847/1538-4357/abca90
– volume: 659
  start-page: A10
  year: 2022
  ident: R54
  publication-title: A&A
  doi: 10.1051/0004-6361/202141181
– volume: 17
  start-page: 950
  year: 2019
  ident: R17
  publication-title: Space Weather
  doi: 10.1029/2019SW002195
– volume: 616
  start-page: A182
  year: 2018
  ident: R53
  publication-title: A&A
  doi: 10.1051/0004-6361/201732091
– volume: 959
  start-page: L13
  year: 2023
  ident: R30
  publication-title: ApJ
  doi: 10.3847/2041-8213/ad0f1f
– volume: 6
  start-page: 47
  year: 1961
  ident: R9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.6.47
– volume: 833
  start-page: L4
  year: 2016
  ident: R11
  publication-title: ApJ
  doi: 10.3847/2041-8205/833/1/L4
– volume: 42
  start-page: 8791
  year: 2015
  ident: R20
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2015GL065271
– volume: 645
  start-page: A59
  year: 2021
  ident: R46
  publication-title: A&A
  doi: 10.1051/0004-6361/201937201
– volume: 230
  start-page: 621
  year: 1979
  ident: R62
  publication-title: ApJ
  doi: 10.1086/157120
– volume: 844
  start-page: L13
  year: 2017
  ident: R10
  publication-title: ApJ
  doi: 10.3847/2041-8213/aa7eca
– volume: 7
  start-page: 185
  year: 2007
  ident: R27
  publication-title: Astrobiology
  doi: 10.1089/ast.2006.0128
– volume: 334
  start-page: 81
  year: 2013
  ident: R43
  publication-title: Astron. Nachr.
  doi: 10.1002/asna.201211751
– volume: 504
  start-page: 1511
  year: 2021
  ident: R22
  publication-title: MNRAS
  doi: 10.1093/mnras/stab929
– volume: 645
  start-page: A77
  year: 2021
  ident: R32
  publication-title: A&A
  doi: 10.1051/0004-6361/202039052
– volume: 114
  start-page: A06305
  year: 2009
  ident: R41
  publication-title: J. Geophys. Res.: Space Phys.
  doi: 10.1029/2009JA014158
– volume: 547
  start-page: L49
  year: 2001
  ident: R61
  publication-title: ApJ
  doi: 10.1086/318888
– volume: 55
  start-page: 598
  year: 2007
  ident: R65
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2006.05.045
– volume: 129
  start-page: 509
  year: 2017
  ident: R3
  publication-title: Celest. Mech. Dyn. Astron.
  doi: 10.1007/s10569-017-9783-7
– volume: 121
  start-page: 6493
  year: 2016
  ident: R38
  publication-title: J. Geophys. Res.: Space Phys.
  doi: 10.1002/2016JA022471
– volume: 103
  start-page: 20159
  year: 1998
  ident: R64
  publication-title: J. Geophys. Res.
  doi: 10.1029/98JE01323
– ident: R13
  doi: 10.1017/CBO9780511524943
– volume: 118
  start-page: 231
  year: 2005
  ident: R8
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-005-3834-1
– volume: 663
  start-page: 1
  year: 2016
  ident: R40
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2016.10.003
– volume: 595
  start-page: A12
  year: 2016
  ident: R42
  publication-title: A&A
  doi: 10.1051/0004-6361/201628586
– volume: 7
  start-page: 569
  year: 2023
  ident: R33
  publication-title: Nat. Astron.
  doi: 10.1038/s41550-023-01914-0
– volume: 125
  start-page: e27639
  year: 2020
  ident: R16
  publication-title: J. Geophys. Res. (Space Phys.)
– volume: 28
  start-page: 2165
  year: 2001
  ident: R59
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2000GL012725
– volume: 525
  start-page: 4008
  year: 2023
  ident: R56
  publication-title: MNRAS
  doi: 10.1093/mnras/stad2519
– volume: 113
  start-page: A03209
  year: 2008
  ident: R19
  publication-title: J. Geophys. Res. (Space Phys.)
  doi: 10.1029/2007JA012745
– volume: 122
  start-page: 46
  year: 2016
  ident: R50
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2016.01.008
– volume: 500
  start-page: 1844
  year: 2021
  ident: R26
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3396
– volume: 170
  start-page: 228
  year: 2007
  ident: R29
  publication-title: ApJS
  doi: 10.1086/513316
– volume: 7
  start-page: 167
  year: 2007
  ident: R23
  publication-title: Astrobiology
  doi: 10.1089/ast.2006.0127
– volume: 7
  start-page: 85
  year: 2007
  ident: R39
  publication-title: Astrobiology
  doi: 10.1089/ast.2006.0125
– volume: 99
  start-page: 245
  year: 1997
  ident: R31
  publication-title: Washington DC Am. Geophys. Union Geophys. Monogr. Ser.
– ident: R44
– volume: 19
  start-page: 136
  year: 2020
  ident: R1
  publication-title: Int. J. Astrobiol.
  doi: 10.1017/S1473550419000132
– volume: 5
  start-page: 587
  year: 2005
  ident: R15
  publication-title: Astrobiology
  doi: 10.1089/ast.2005.5.587
– volume: 119
  start-page: 6145
  year: 2014
  ident: R58
  publication-title: J. Geophys. Res.: Space Phys.
  doi: 10.1002/2013JA019480
– volume: 175
  start-page: 645
  year: 2002
  ident: R7
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6961
– volume: 531
  start-page: A29
  year: 2011
  ident: R18
  publication-title: A&A
  doi: 10.1051/0004-6361/201116510
– ident: R25
– volume: 106
  start-page: 12889
  year: 2001
  ident: R60
  publication-title: J. Geophys. Res.: Space Phys.
  doi: 10.1029/2000JA000295
– volume: 65
  start-page: 1285
  year: 2013
  ident: R37
  publication-title: Earth Planets Space
  doi: 10.5047/eps.2013.09.006
– volume: 425
  start-page: 753
  year: 2004
  ident: R14
  publication-title: A&A
  doi: 10.1051/0004-6361:20035684
– volume: 20
  start-page: e2022SW003164
  year: 2022
  ident: R55
  publication-title: Space Weather
  doi: 10.1029/2022SW003164
– volume: 4
  start-page: 577
  year: 2020
  ident: R57
  publication-title: Nat. Astron.
  doi: 10.1038/s41550-020-1011-9
– volume: 833
  start-page: L28
  year: 2016
  ident: R63
  publication-title: ApJ
  doi: 10.3847/2041-8213/833/2/L28
– volume: 790
  start-page: 57
  year: 2014
  ident: R6
  publication-title: ApJ
  doi: 10.1088/0004-637X/790/1/57
– volume: 106
  start-page: 25141
  year: 2001
  ident: R28
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JA004015
– volume: 38
  start-page: 263
  year: 2006
  ident: R36
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2006.06.010
– volume: 125
  start-page: 80
  year: 2016
  ident: R51
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2016.02.015
– volume: 120
  start-page: 78
  year: 2016
  ident: R49
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2015.11.011
– volume: 596
  start-page: A111
  year: 2016
  ident: R35
  publication-title: A&A
  doi: 10.1051/0004-6361/201629576
– volume: 37
  start-page: 347
  year: 2019
  ident: R5
  publication-title: Ann. Geophys.
  doi: 10.5194/angeo-37-347-2019
– volume: 129
  start-page: 74
  year: 2016
  ident: R48
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2016.06.009
– ident: R66
– volume: 17
  start-page: 498
  year: 2019
  ident: R24
  publication-title: Space Weather
  doi: 10.1029/2018SW001944
– volume: 117
  start-page: 16193
  year: 2020
  ident: R68
  publication-title: PNAS
  doi: 10.1073/pnas.2000614117
– volume: 119
  start-page: 264
  year: 2015
  ident: R47
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2015.10.004
– ident: R4
  doi: 10.1007/3-540-36530-3
– volume: 22
  start-page: 373
  year: 1984
  ident: R21
  publication-title: Rev. Geophys.
  doi: 10.1029/RG022i004p00373
– volume: 596
  start-page: A112
  year: 2016
  ident: R45
  publication-title: A&A
  doi: 10.1051/0004-6361/201629577
– volume: 618
  start-page: A84
  year: 2018
  ident: R67
  publication-title: A&A
  doi: 10.1051/0004-6361/201833586
– volume: 536
  start-page: 437
  year: 2016
  ident: R2
  publication-title: Nature
  doi: 10.1038/nature19106
SSID ssj0002183
Score 2.4705932
Snippet Context. The habitability of exoplanets hosted by M dwarf stars dramatically depends on the space weather, where the magnetic and ram pressure of the stellar...
Context. The habitability of exoplanets hosted by M dwarf stars dramatically depends on the space weather, where the magnetic and ram pressure of the stellar...
SourceID hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage A138
SubjectTerms Attitude (inclination)
Charged particles
Circumstellar habitable zone
Coronal mass ejection
Cyclotron frequency
Cyclotrons
Earth
Earth magnetosphere
Energy dissipation
Extrasolar planets
Extreme values
Habitability
Magnetic dipoles
Magnetic fields
Magnetohydrodynamic simulation
Magnetopause
Particle precipitation
Planet detection
Planetary magnetic fields
Radio astronomy
Radio emission
Ram pressure
Red dwarf stars
Sciences of the Universe
Space weather
Stellar coronas
Stellar magnetic fields
Stellar winds
Terrestrial planets
Title Magnetohydrodynamic simulations of the space weather in Proxima b: Habitability conditions and radio emission
URI https://www.proquest.com/docview/3094487781
https://insu.hal.science/insu-04853429
Volume 688
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe6ISQuCAZohYEsgbiUdEnsfHErCChoRT10aOIS2Y69RdAGtSmwHfh7-DN5thM3G9PEuESu6zpS38_PPz-_D4SeSSV5EnHqcSISD0AhPJaqyIv8Ak4rQqiU6ODkycd4fEg_HEVHvd7vjtfSuuZDcXZpXMn_SBX6QK46SvYaknWTQge0Qb7wBAnD859kPGHHC1lXJ6cFqEFbWn6wKufrjn-b5pWgNGD1_rBkTxs4psvqZzlnA67tAWPGy9pm6z7VTuiFdeKyjuesKKuBLgm3auXXZqxdaRt6Nbfpm5j-ZI0kxoprk2h1rAxTqW_kXwXMm1S2VZqa34ODoRti7-yX8sybmZIhxlbrvv7EdNiNAZ3r-8yWX0zXdNi1XoTU-c5tNDL1YmITsg-lVcKUaI_YxjTZaOnYVv9r9OwosDlh_toAQMdYj0k7q453AVZCM9_m8DqfcPvCRujcE83FfBToi3ma62lyN8kWuhHCgUTXynj3_pfb8zXRtAct-942v1UU7Lu-fTfJOQ60daI9cC8QAcNuZnfQ7eZYgkcWY3dRTy520K4TMn6ORx0R76CbU9u6h-aXgBB3QIgrhQF32IAQNyDE5QI3IMT8Je5CEG8giAFa2EAQtxC8jw7fvpm9HntNDQ9PkCipYeFLRYCHUZ4AX4KzNotZoULlc5WmLPAJS2LBeRiIOBM-ETHhsshSwWioaBIr8gBtL6qF3EVYBVIoP4o4iSUtMslpyhkQXJoWnMig6KOw_Vdz0SS413VWvuZXyLOPXrgffbP5Xa4e_hTE5Ubq3Ozj0UGu40Zy2AsjAvTue9BHe60480ZdrHLiZ5SmSZIGD6_3zkfo1mbl7KHtermWj4EJ1_yJAeEfRLqrZw
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetohydrodynamic+simulations+of+the+space+weather+in+Proxima+b%3A+Habitability+conditions+and+radio+emission&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Pe%C3%B1a-Mo%C3%B1ino%2C+L.&rft.au=P%C3%A9rez-Torres%2C+M.&rft.au=Varela%2C+J.&rft.au=Zarka%2C+P.&rft.date=2024-08-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=688&rft.spage=A138&rft_id=info:doi/10.1051%2F0004-6361%2F202349042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202349042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon