Thermal energy development in magnetohydrodynamic flow utilizing titanium dioxide, copper oxide and aluminum oxide nanoparticles: Thermal dispersion and heat generating formularization
Background: The main aim of this article heat transfer in thermal engineering deals with the production, use, transformation, and transfer of thermal energy. Engineering and industrial fields including food packaging, the production of food additives, electronic cooling, microturbines, etc. Heavily...
Saved in:
Published in | Frontiers in energy research Vol. 10 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
11.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background:
The main aim of this article heat transfer in thermal engineering deals with the production, use, transformation, and transfer of thermal energy. Engineering and industrial fields including food packaging, the production of food additives, electronic cooling, microturbines, etc. Heavily rely on heat transmission. Due to its intriguing potential in industries like the production of polymers, paper, crystal glass, etc., scientists from all over the world have endeavored to investigate the effect of heat transmission on fluid flows past an expandable surface.
Purpose:
The use of a single-phase technique to assess Newtonian nanofluid flow along stretched surfaces with heat transfer convective models is emphasized in this research. A mathematical formulation is used to do the numerical computations for copper oxide (CuO), aluminum oxide (Al
2
O
3
), and titanium dioxide (TiO
2
) nanoparticles using water (H
2
O) as the base fluid.
Formulation:
The fifth-order Runge-Kutta shooting method procedure with shelling performance are used to solve non-linear ordinary differential equations with boundary conditions numerically. Researched and analyzed for changes in several parameters, plots illustrating the effects of motivated and non-motivated MHD are given to explain the physical values.
Finding:
Dispersion of solid items in the working fluid is reported to significantly improve thermal performance. The Biot number determines how convective the border is. With an increase in the Biot number, the fluid’s temperature drops significantly. It has been demonstrated that Copper oxide (CuO), nanoparticles are more efficient than Titanium Dioxide (TiO
2
) and Aluminum Oxide for thermal enhancement (Al
2
O
3
).
Novelty:
As far as the authors are aware, no studies have been done on the steady MHD flow and convective heat transfer of nanofluids over a nonuniform stretched surface under the influence of a heat source and viscous dissipation. |
---|---|
AbstractList | Background: The main aim of this article heat transfer in thermal engineering deals with the production, use, transformation, and transfer of thermal energy. Engineering and industrial fields including food packaging, the production of food additives, electronic cooling, microturbines, etc. Heavily rely on heat transmission. Due to its intriguing potential in industries like the production of polymers, paper, crystal glass, etc., scientists from all over the world have endeavored to investigate the effect of heat transmission on fluid flows past an expandable surface.Purpose: The use of a single-phase technique to assess Newtonian nanofluid flow along stretched surfaces with heat transfer convective models is emphasized in this research. A mathematical formulation is used to do the numerical computations for copper oxide (CuO), aluminum oxide (Al2O3), and titanium dioxide (TiO2) nanoparticles using water (H2O) as the base fluid.Formulation: The fifth-order Runge-Kutta shooting method procedure with shelling performance are used to solve non-linear ordinary differential equations with boundary conditions numerically. Researched and analyzed for changes in several parameters, plots illustrating the effects of motivated and non-motivated MHD are given to explain the physical values.Finding: Dispersion of solid items in the working fluid is reported to significantly improve thermal performance. The Biot number determines how convective the border is. With an increase in the Biot number, the fluid’s temperature drops significantly. It has been demonstrated that Copper oxide (CuO), nanoparticles are more efficient than Titanium Dioxide (TiO2) and Aluminum Oxide for thermal enhancement (Al2O3).Novelty: As far as the authors are aware, no studies have been done on the steady MHD flow and convective heat transfer of nanofluids over a nonuniform stretched surface under the influence of a heat source and viscous dissipation. Background: The main aim of this article heat transfer in thermal engineering deals with the production, use, transformation, and transfer of thermal energy. Engineering and industrial fields including food packaging, the production of food additives, electronic cooling, microturbines, etc. Heavily rely on heat transmission. Due to its intriguing potential in industries like the production of polymers, paper, crystal glass, etc., scientists from all over the world have endeavored to investigate the effect of heat transmission on fluid flows past an expandable surface. Purpose: The use of a single-phase technique to assess Newtonian nanofluid flow along stretched surfaces with heat transfer convective models is emphasized in this research. A mathematical formulation is used to do the numerical computations for copper oxide (CuO), aluminum oxide (Al 2 O 3 ), and titanium dioxide (TiO 2 ) nanoparticles using water (H 2 O) as the base fluid. Formulation: The fifth-order Runge-Kutta shooting method procedure with shelling performance are used to solve non-linear ordinary differential equations with boundary conditions numerically. Researched and analyzed for changes in several parameters, plots illustrating the effects of motivated and non-motivated MHD are given to explain the physical values. Finding: Dispersion of solid items in the working fluid is reported to significantly improve thermal performance. The Biot number determines how convective the border is. With an increase in the Biot number, the fluid’s temperature drops significantly. It has been demonstrated that Copper oxide (CuO), nanoparticles are more efficient than Titanium Dioxide (TiO 2 ) and Aluminum Oxide for thermal enhancement (Al 2 O 3 ). Novelty: As far as the authors are aware, no studies have been done on the steady MHD flow and convective heat transfer of nanofluids over a nonuniform stretched surface under the influence of a heat source and viscous dissipation. |
Author | Aziz ElSeabee, Fayza Abdel El-Wahed Khalifa, Hamiden Abd Krawczuk, Marek Tag El Din, El Sayed M. Bilal Hafeez, Muhammad Jamshed, Wasim |
Author_xml | – sequence: 1 givenname: Muhammad surname: Bilal Hafeez fullname: Bilal Hafeez, Muhammad – sequence: 2 givenname: Marek surname: Krawczuk fullname: Krawczuk, Marek – sequence: 3 givenname: Wasim surname: Jamshed fullname: Jamshed, Wasim – sequence: 4 givenname: El Sayed M. surname: Tag El Din fullname: Tag El Din, El Sayed M. – sequence: 5 givenname: Hamiden Abd surname: El-Wahed Khalifa fullname: El-Wahed Khalifa, Hamiden Abd – sequence: 6 givenname: Fayza Abdel surname: Aziz ElSeabee fullname: Aziz ElSeabee, Fayza Abdel |
BookMark | eNp9UctuFDEQtFCQCEt-gJM_gF382HlxQxGPSJFyCRI3q8duzzry2COPF9h8WT4Pz-5GQjlwsrtc1V3teksuQgxIyHvONlK23UeLIQ0bwYTYcMZY09WvyKUQXb2uuvbnxT_3N-Rqnh8Kh0tRbTm7JE_3O0wjeIoB03CgBn-hj9OIIVMX6AhDwBx3B5OiOQQYnabWx990n513jy4MNLsMwe1Halz84wx-oDpOEyZ6rCgEQ8HvRxcK5QQFCHGClJ32OH-izw6Mm4tsdjEcRTuETIfFFuRljo1p3HtI7rHUMbwjry34Ga_O54r8-Prl_vr7-vbu283159u1llWT19DKum8bri1a0TfAeWtMx2rTI9q-0tp0tex1I9oOKlNz0RQimoZL1jNjGrkiN6e-JsKDmpIbIR1UBKeOQEyDOq-imNjKqjaaaY3bRnaAla251cbyApTHFWlPvXSK85zQKl0-b9kmJ3BecaaWQNUxULUEqs6BFql4IX228h_RX9Lwr98 |
CitedBy_id | crossref_primary_10_29121_shodhkosh_v3_i2_2022_2608 crossref_primary_10_1016_j_molliq_2023_123408 crossref_primary_10_1515_ntrev_2023_0145 |
Cites_doi | 10.1016/j.csite.2021.101226 10.1063/1.5086247 10.1063/1.5127327 10.1039/c8ra09698h 10.1002/num.22743 10.1016/j.ijft.2020.100061 10.1016/j.aej.2021.10.051 10.1002/htj.22396 10.1108/hff-04-2017-0160 10.1007/s13369-019-03956-x 10.1007/s10973-019-08501-4 10.1016/j.csite.2018.11.007 10.1007/s13369-018-3598-z 10.1016/j.icheatmasstransfer.2020.104973 10.1016/j.ijft.2020.100044 10.1016/j.jtice.2014.05.018 10.1002/htj.21404 10.37418/amsj.9.12.59 10.1007/s10973-018-7335-3 10.1177/16878140211067420 10.1016/j.padiff.2020.100005 10.1088/1402-4896/ab36e1 10.1063/1.5050670 10.1016/j.csite.2021.101192 10.1002/er.6554 10.1016/j.aej.2020.04.048 10.1016/j.powtec.2018.07.045 10.1080/10407790.2019.1644924 10.1002/htj.22165 10.1016/j.csite.2021.101246 10.1088/1402-4896/abecc0 10.1140/epjp/i2018-12045-7 10.1016/j.csite.2020.100819 10.1039/c8ra03825b 10.1016/j.molliq.2018.12.104 10.1063/1.5120439 10.1016/j.cma.2019.02.025 10.1016/j.padiff.2021.100104 10.1166/jon.2018.1532 10.1016/j.ijthermalsci.2011.05.022 10.1016/j.csite.2020.100826 10.1016/j.ijheatmasstransfer.2011.11.042 10.1016/j.csite.2019.100460 10.1016/j.molliq.2018.02.106 10.1038/s41598-018-37267-2 10.1177/16878132221106577 10.1007/s00542-018-3996-x 10.1016/j.csite.2021.101714 10.1140/epjp/i2019-12406-8 10.1007/s40430-019-1752-5 10.1016/j.cma.2016.11.033 10.1002/num.22575 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fenrg.2022.1000796 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2296-598X |
ExternalDocumentID | oai_doaj_org_article_024356dc0cce4739ae5f61fcdf1ce424 10_3389_fenrg_2022_1000796 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c357t-a836b871cfef2b7a118dd906dbeefb5ccd963bc7289a5d6127fefed7130b0dd73 |
IEDL.DBID | DOA |
ISSN | 2296-598X |
IngestDate | Wed Aug 27 01:32:00 EDT 2025 Tue Jul 01 03:00:32 EDT 2025 Thu Apr 24 22:56:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-a836b871cfef2b7a118dd906dbeefb5ccd963bc7289a5d6127fefed7130b0dd73 |
OpenAccessLink | https://doaj.org/article/024356dc0cce4739ae5f61fcdf1ce424 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_024356dc0cce4739ae5f61fcdf1ce424 crossref_citationtrail_10_3389_fenrg_2022_1000796 crossref_primary_10_3389_fenrg_2022_1000796 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-11 |
PublicationDateYYYYMMDD | 2022-10-11 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-11 day: 11 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in energy research |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Sheikholeslami (B53); 349 Ghadikolaei (B11); 258 Hayat (B23) 2017; 315 Dogonchi (B8) 2019; 44 Hassan (B19) 2021 Jamshed (B28) 2021; 27 Kumar (B35) 2021; 24 Ramzan (B44) 2019; 9 Adnan (B1) 2021; 13 Nawaz (B40) 2019; 76 Hafeez (B16) 2021; 27 Goud (B15) 2020; 9 Goud (B14) 2021; 4 Alharbi (B5) 2019; 9 Rohni (B46) 2012; 55 Rizwan (B45) 2022 Saleem (B50) 2019; 9 Sadiq (B47) 2019; 9 Jamshed (B29) 2021; 120 Qureshi (B43) 2021; 61 Khan (B30) 2022 Goud (B13) 2020; 7 Afridi (B4) 2018; 7 Olatundun (B41) 2017 Dogonchi (B9) 2019; 41 Hanif (B17) 2019; 94 Nawaz (B38) 2018; 8 Khan (B31) 2022; 351 Li (B36) 2019; 134 Saleem (B49) 2019; 25 Khan (B32) 2011; 50 Sheikholeslami (B52); 277 Khashi'ie (B33) 2020; 59 Hassan (B21) 2018; 133 Maghsoudi (B37) 2019; 135 Vo (B56) 2019; 139 Gholinia (B12) 2019; 13 Srinivasulu (B55) 2021; 23 Bejawada (B6) 2021; 50 Adnan (B3) 2022 Saleem (B48) 2019; 44 Ghadikolaei (B10); 338 Shankar Goud (B51) 2022; 51 Nawaz (B39) 2018; 8 Chamkha (B7) 2019; 9 Hassan (B18) 2022; 29 Pramod Kumar (B42) 2020; 1 Kumar (B34) 2021; 9 Hatami (B22) 2014; 45 Sheikholeslami (B54) 2018; 28 Jamshed (B25) 2018; 8 Hassan (B20) 2021; 37 Adnan (B2) 2022; 14 Jamshed (B27) 2021; 45 Zangooee (B57) 2019; 14 Zhang (B58) 2021; 27 Hosseinzadeh (B24) 2019; 48 Jamshed (B26) 2021; 96 |
References_xml | – volume: 27 start-page: 101226 year: 2021 ident: B58 article-title: Natural convection flow Maxwell fluids with generalized thermal transport and Newtonian heating publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101226 – volume: 9 start-page: 025103 year: 2019 ident: B7 article-title: Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating publication-title: AIP Adv. doi: 10.1063/1.5086247 – volume: 9 start-page: 115022 year: 2019 ident: B5 article-title: Thermal analysis for hybrid nanofluid past a cylinder exposed to magnetic field publication-title: AIP Adv. doi: 10.1063/1.5127327 – volume: 9 start-page: 4751 year: 2019 ident: B47 article-title: Numerical simulation of oscillatory oblique stagnation point flow of a magneto micropolar nanofluid publication-title: RSC Adv. doi: 10.1039/c8ra09698h – start-page: num.22743 year: 2021 ident: B19 article-title: Assessment of boundary layer for flow of non‐Newtonian material induced by a moving belt with power law viscosity and thermal conductivity models publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.22743 – volume: 9 start-page: 100061 year: 2021 ident: B34 article-title: Effects of soret, dufour, hall current and rotation on MHD natural convective heat and mass transfer flow past an accelerated vertical plate through a porous medium publication-title: Int. J. Thermofluids doi: 10.1016/j.ijft.2020.100061 – volume: 61 start-page: 5295 year: 2021 ident: B43 article-title: Thermal capability and entropy optimization for Prandtl-Eyring hybrid nanofluid flow in solar aircraft implementation publication-title: Alexandria Eng. J. doi: 10.1016/j.aej.2021.10.051 – volume: 51 start-page: 2201 year: 2022 ident: B51 article-title: Induced magnetic field effect on MHD free convection flow in nonconducting and conducting vertical microchannel walls publication-title: Heat. Trans. doi: 10.1002/htj.22396 – volume: 28 start-page: 641 year: 2018 ident: B54 article-title: Numerical simulation of Fe3O4-water nanofluid flow in a non-Darcy porous media publication-title: Int. J. Numer. Methods Heat. Fluid Flow. doi: 10.1108/hff-04-2017-0160 – volume: 44 start-page: 7919 year: 2019 ident: B8 article-title: Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-019-03956-x – volume: 139 start-page: 1345 year: 2019 ident: B56 article-title: Effectiveness of various shapes of Al2O3 nanoparticles on the MHD convective heat transportation in porous medium publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-019-08501-4 – volume: 13 start-page: 100356 year: 2019 ident: B12 article-title: Investigation of MHD Eyring–Powell fluid flow over a rotating disk under effect of homogeneous–heterogeneous reactions publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2018.11.007 – volume: 351 year: 2022 ident: B31 article-title: Heat transfer evaluation in MgZn6Zr/C8H18 [(Magnesium-Zinc-Zirconium)/Engine oil] with non-linear solar thermal radiations and modified slip boundaries over 3-dimensional convectively heated surface publication-title: Front. Energy Res. – volume: 44 start-page: 1515 year: 2019 ident: B48 article-title: Convective heat and mass transfer in magneto Walter’s B nanofluid flow induced by a rotating cone publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-018-3598-z – volume: 120 start-page: 104973 year: 2021 ident: B29 article-title: Numerical investigation of MHD impact on maxwell nanofluid publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2020.104973 – start-page: 1 volume-title: Thermal efficiency in hybrid (Al2O3-CuO/H2O) and ternary hybrid nanofluids (Al2O3-CuO-Cu/H2O) by considering the novel effects of imposed magnetic field and convective heat condition year: 2022 ident: B3 – volume: 7 start-page: 100044 year: 2020 ident: B13 article-title: Heat generation/absorption influence on steady stretched permeable surface on MHD flow of a micropolar fluid through a porous medium in the presence of variable suction/injection publication-title: Int. J. Thermofluids doi: 10.1016/j.ijft.2020.100044 – volume: 45 start-page: 2238 year: 2014 ident: B22 article-title: Numerical study of MHD two-phase Couette flow analysis for fluid-particle suspension between moving parallel plates publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2014.05.018 – volume: 48 start-page: 744 year: 2019 ident: B24 article-title: Nonlinear thermal radiation and chemical reaction effects on Maxwell fluid flow with convectively heated plate in a porous medium publication-title: Heat. Trans. Res. doi: 10.1002/htj.21404 – volume: 9 start-page: 10755 year: 2020 ident: B15 article-title: Radiation effect on MHD boundary layer flow due to an exponentially stretching sheet publication-title: Adv. Math. Sci. J. doi: 10.37418/amsj.9.12.59 – volume: 135 start-page: 947 year: 2019 ident: B37 article-title: Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-018-7335-3 – volume: 13 start-page: 168781402110674 year: 2021 ident: B1 article-title: Impacts of various shaped Cu-nanomaterial on the heat transfer over a bilateral stretchable surface: Numerical investigation publication-title: Adv. Mech. Eng. doi: 10.1177/16878140211067420 – volume: 1 start-page: 100005 year: 2020 ident: B42 article-title: Finite element study of Soret number effects on MHD flow of Jeffrey fluid through a vertical permeable moving plate publication-title: Partial Differ. Equ. Appl. Math. doi: 10.1016/j.padiff.2020.100005 – volume: 94 start-page: 125208 year: 2019 ident: B17 article-title: MHD natural convection in cadmium telluride nanofluid over a vertical cone embedded in a porous medium publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab36e1 – volume: 8 start-page: 105109 year: 2018 ident: B39 article-title: Three-dimensional heat transfer in the mixture of nanoparticles and micropolar MHD plasma with Hall and ion slip effects publication-title: AIP Adv. doi: 10.1063/1.5050670 – volume: 27 start-page: 101192 year: 2021 ident: B16 article-title: Heat transfer enhancement through nanofluids with applications in automobile radiator publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101192 – volume: 45 start-page: 10696 year: 2021 ident: B27 article-title: Computational single‐phase comparative study of a Williamson nanofluid in a parabolic trough solar collector via the Keller box method publication-title: Int. J. Energy Res. doi: 10.1002/er.6554 – volume: 8 start-page: 01 year: 2018 ident: B25 article-title: Entropy analysis of TiO2-CuO/EG casson hybrid nanofluid via cattaneo-christov heat flux model publication-title: Appl. Nanosci. – volume: 59 start-page: 1787 year: 2020 ident: B33 article-title: Flow and heat transfer of hybrid nanofluid over a permeable shrinking cylinder with joule heating: A comparative analysis publication-title: Alexandria Eng. J. doi: 10.1016/j.aej.2020.04.048 – volume: 338 start-page: 425 ident: B10 article-title: RETRACTED: MHD raviative boundary layer analysis of micropolar dusty fluid with graphene oxide (go)- engine oil nanoparticles in a porous medium over a stretching sheet with joule heating effect publication-title: Powder Technol. doi: 10.1016/j.powtec.2018.07.045 – volume: 76 start-page: 152 year: 2019 ident: B40 article-title: Keller-Box shooting method and its application to nanofluid flow over convectively heated sheet with stability and convergence publication-title: Numer. Heat. Transf. Part B Fundam. doi: 10.1080/10407790.2019.1644924 – volume: 50 start-page: 6129 year: 2021 ident: B6 article-title: Heat generation/absorption on MHD flow of a micropolar fluid over a heated stretching surface in the presence of the boundary parameter publication-title: Heat. Transf. doi: 10.1002/htj.22165 – volume: 27 start-page: 101246 year: 2021 ident: B28 article-title: Computational case study on tangent hyperbolic hybrid nanofluid flow: Single phase thermal investigation publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101246 – volume: 96 start-page: 065202 year: 2021 ident: B26 article-title: Single phase-based study of Ag-Cu/EO Williamson hybrid nanofluid flow over a stretching surface with shape factor publication-title: Phys. Scr. doi: 10.1088/1402-4896/abecc0 – volume: 133 start-page: 230 year: 2018 ident: B21 article-title: Impact of iron oxide particles concentration under a highly oscillating magnetic field on ferrofluid flow publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2018-12045-7 – volume: 23 start-page: 100819 year: 2021 ident: B55 article-title: Effect of inclined magnetic field on flow, heat and mass transfer of Williamson nanofluid over a stretching sheet publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2020.100819 – volume: 8 start-page: 38324 year: 2018 ident: B38 article-title: Computational fluid dynamic simulations for dispersion of nanoparticles in a magnetohydrodynamic liquid: A galerkin finite element method publication-title: RSC Adv. doi: 10.1039/c8ra03825b – start-page: 1 volume-title: Comparative thermal transport mechanism in Cu-H2O and Cu-Al2O3/H2O nanofluids: Numerical investigation year: 2022 ident: B30 – volume: 277 start-page: 388 ident: B52 article-title: Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.12.104 – volume: 9 start-page: 095107 year: 2019 ident: B50 article-title: Heat transfer in a permeable cavity filled with a ferrofluid under electric force and radiation effects publication-title: AIP Adv. doi: 10.1063/1.5120439 – volume: 349 start-page: 839 ident: B53 article-title: Mesoscopic investigation for alumina nanofluid heat transfer in permeable medium influenced by Lorentz forces publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.02.025 – volume: 4 start-page: 100104 year: 2021 ident: B14 article-title: Ohmic heating and chemical reaction effect on MHD flow of micropolar fluid past a stretching surface publication-title: Partial Differ. Equations Appl. Math. doi: 10.1016/j.padiff.2021.100104 – volume: 7 start-page: 1272 year: 2018 ident: B4 article-title: Second law analysis of three dimensional dissipative flow of hybrid nanofluid publication-title: J. nanofluids doi: 10.1166/jon.2018.1532 – volume: 50 start-page: 2154 year: 2011 ident: B32 article-title: Double-diffusive natural convective boundary layer flow in a porous medium saturated with a nanofluid over a vertical plate: Prescribed surface heat, solute and nanoparticle fluxes publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.05.022 – volume: 24 start-page: 100826 year: 2021 ident: B35 article-title: Thermal radiation impact on MHD heat transfer natural convective nano fluid flow over an impulsively started vertical plate publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2020.100826 – volume: 55 start-page: 1888 year: 2012 ident: B46 article-title: Flow and heat transfer over an unsteady shrinking sheet with suction in nanofluids publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.11.042 – volume: 14 start-page: 100460 year: 2019 ident: B57 article-title: Hydrothermal analysis of MHD nanofluid (TiO2-GO) flow between two radiative stretchable rotating disks using AGM publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2019.100460 – volume: 258 start-page: 172 ident: B11 article-title: Fe3O4–(CH2OH)2 nanofluid analysis in a porous medium under MHD radiative boundary layer and dusty fluid publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.02.106 – volume: 9 start-page: 562 year: 2019 ident: B44 article-title: On the convective heat and zero nanoparticle mass flux conditions in the flow of 3D MHD Couple Stress nanofluid over an exponentially stretched surface publication-title: Sci. Rep. doi: 10.1038/s41598-018-37267-2 – start-page: 1 volume-title: Feature of metallic oxide nanoparticles in the thermal efficiency and flow structure of non-Newtonian homogeneous nanofluid: Experimental data-based mathematical approach year: 2022 ident: B45 – volume: 14 start-page: 168781322211065 year: 2022 ident: B2 article-title: Numerical thermal featuring in γAl2O3-C2H6O2 nanofluid under the influence of thermal radiation and convective heat condition by inducing novel effects of effective Prandtl number model (EPNM) publication-title: Adv. Mech. Eng. doi: 10.1177/16878132221106577 – volume: 25 start-page: 683 year: 2019 ident: B49 article-title: An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source publication-title: Microsyst. Technol. doi: 10.1007/s00542-018-3996-x – volume: 29 start-page: 101714 year: 2022 ident: B18 article-title: Transport pattern of Non-Newtonian mass and thermal energy under two diverse flow conditions by using modified models for thermodynamics properties publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101714 – volume: 134 start-page: 30 year: 2019 ident: B36 article-title: Nanofluid heat transfer in a porous duct in the presence of Lorentz forces using the lattice Boltzmann method publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2019-12406-8 – start-page: 29 volume-title: Defect and diffusion forum year: 2017 ident: B41 article-title: Analysis of Blasius flow of hybrid nanofluids over a convectively heated surface – volume: 41 start-page: 249 year: 2019 ident: B9 article-title: Numerical simulation for thermal radiation and porous medium characteristics in flow of CuO-H 2 O nanofluid publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-019-1752-5 – volume: 315 start-page: 1011 year: 2017 ident: B23 article-title: Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon–water nanofluid publication-title: Comput. methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.11.033 – volume: 37 start-page: 1234 year: 2021 ident: B20 article-title: Boundary layer flow pattern of heat and mass for homogenous shear thinning hybrid‐nanofluid: An experimental data base modeling publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.22575 |
SSID | ssj0001325410 |
Score | 2.2199118 |
Snippet | Background:
The main aim of this article heat transfer in thermal engineering deals with the production, use, transformation, and transfer of thermal energy.... Background: The main aim of this article heat transfer in thermal engineering deals with the production, use, transformation, and transfer of thermal energy.... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | magnetohydrodynamic flow nanoparticles porous medium thermal jump conditions thermal performance |
Title | Thermal energy development in magnetohydrodynamic flow utilizing titanium dioxide, copper oxide and aluminum oxide nanoparticles: Thermal dispersion and heat generating formularization |
URI | https://doaj.org/article/024356dc0cce4739ae5f61fcdf1ce424 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDI5QT-WAoIAoj8oHbjDqvJLscANEVSHBiUq9jZI4XkbaZlbVVgV-GT-vdmZa5gQXjhMlURR7bH-R_Vmp1w069lPBFFGvXNESUtE1JBkAUsXpYmdIgOKXr-b0rP18rs8Xrb4kJ2yiB54u7lgY87TBUIYQW9t0LmoyFQWkigfqzATKPm8BpvLrSsPApyqnKhlGYd0xsTjWjAfrWhIDSiss_QtPtCDsz57l5KF6MIeE8H46yiN1L6YDdX9BFPhY_WZpsgXdQMyleoB_Un1gSHDh1inuxu8_kc3h1GIeaDNeA2vVZvjFW4DUkqXh6gJwGH8MGN9CGLfbeAn5C1xCcGynhsRTpqHkEgPqOW_uHdyeAAfhFpc3trxIbDmsM3e1JFCDxMCS2TqXdz5RZyefvn08LeaeC0VotN0VbtUYzyAqUKTaW8f4A7ErDfoYyesQkP9YHyzjNKeRwyPLEyMy1C19iWibp2ovjSk-U9BaIbvT1te-aqlaeWrI6M4gdR2toj1U1e3992EmJJe-GJuegYnIrM8y60Vm_SyzQ_Xmbs12ouP46-wPIta7mUKlnQdYwfr5Avt_Kdjz_7HJC7UvBxOnV1Uv1d7u8iq-4mhm54-y4t4AyHj6uw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+energy+development+in+magnetohydrodynamic+flow+utilizing+titanium+dioxide%2C+copper+oxide+and+aluminum+oxide+nanoparticles%3A+Thermal+dispersion+and+heat+generating+formularization&rft.jtitle=Frontiers+in+energy+research&rft.au=Bilal+Hafeez%2C+Muhammad&rft.au=Krawczuk%2C+Marek&rft.au=Jamshed%2C+Wasim&rft.au=Tag+El+Din%2C+El+Sayed+M.&rft.date=2022-10-11&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=10&rft_id=info:doi/10.3389%2Ffenrg.2022.1000796&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2022_1000796 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon |