Thermal energy development in magnetohydrodynamic flow utilizing titanium dioxide, copper oxide and aluminum oxide nanoparticles: Thermal dispersion and heat generating formularization

Background: The main aim of this article heat transfer in thermal engineering deals with the production, use, transformation, and transfer of thermal energy. Engineering and industrial fields including food packaging, the production of food additives, electronic cooling, microturbines, etc. Heavily...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in energy research Vol. 10
Main Authors Bilal Hafeez, Muhammad, Krawczuk, Marek, Jamshed, Wasim, Tag El Din, El Sayed M., El-Wahed Khalifa, Hamiden Abd, Aziz ElSeabee, Fayza Abdel
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 11.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background: The main aim of this article heat transfer in thermal engineering deals with the production, use, transformation, and transfer of thermal energy. Engineering and industrial fields including food packaging, the production of food additives, electronic cooling, microturbines, etc. Heavily rely on heat transmission. Due to its intriguing potential in industries like the production of polymers, paper, crystal glass, etc., scientists from all over the world have endeavored to investigate the effect of heat transmission on fluid flows past an expandable surface. Purpose: The use of a single-phase technique to assess Newtonian nanofluid flow along stretched surfaces with heat transfer convective models is emphasized in this research. A mathematical formulation is used to do the numerical computations for copper oxide (CuO), aluminum oxide (Al 2 O 3 ), and titanium dioxide (TiO 2 ) nanoparticles using water (H 2 O) as the base fluid. Formulation: The fifth-order Runge-Kutta shooting method procedure with shelling performance are used to solve non-linear ordinary differential equations with boundary conditions numerically. Researched and analyzed for changes in several parameters, plots illustrating the effects of motivated and non-motivated MHD are given to explain the physical values. Finding: Dispersion of solid items in the working fluid is reported to significantly improve thermal performance. The Biot number determines how convective the border is. With an increase in the Biot number, the fluid’s temperature drops significantly. It has been demonstrated that Copper oxide (CuO), nanoparticles are more efficient than Titanium Dioxide (TiO 2 ) and Aluminum Oxide for thermal enhancement (Al 2 O 3 ). Novelty: As far as the authors are aware, no studies have been done on the steady MHD flow and convective heat transfer of nanofluids over a nonuniform stretched surface under the influence of a heat source and viscous dissipation.
AbstractList Background: The main aim of this article heat transfer in thermal engineering deals with the production, use, transformation, and transfer of thermal energy. Engineering and industrial fields including food packaging, the production of food additives, electronic cooling, microturbines, etc. Heavily rely on heat transmission. Due to its intriguing potential in industries like the production of polymers, paper, crystal glass, etc., scientists from all over the world have endeavored to investigate the effect of heat transmission on fluid flows past an expandable surface.Purpose: The use of a single-phase technique to assess Newtonian nanofluid flow along stretched surfaces with heat transfer convective models is emphasized in this research. A mathematical formulation is used to do the numerical computations for copper oxide (CuO), aluminum oxide (Al2O3), and titanium dioxide (TiO2) nanoparticles using water (H2O) as the base fluid.Formulation: The fifth-order Runge-Kutta shooting method procedure with shelling performance are used to solve non-linear ordinary differential equations with boundary conditions numerically. Researched and analyzed for changes in several parameters, plots illustrating the effects of motivated and non-motivated MHD are given to explain the physical values.Finding: Dispersion of solid items in the working fluid is reported to significantly improve thermal performance. The Biot number determines how convective the border is. With an increase in the Biot number, the fluid’s temperature drops significantly. It has been demonstrated that Copper oxide (CuO), nanoparticles are more efficient than Titanium Dioxide (TiO2) and Aluminum Oxide for thermal enhancement (Al2O3).Novelty: As far as the authors are aware, no studies have been done on the steady MHD flow and convective heat transfer of nanofluids over a nonuniform stretched surface under the influence of a heat source and viscous dissipation.
Background: The main aim of this article heat transfer in thermal engineering deals with the production, use, transformation, and transfer of thermal energy. Engineering and industrial fields including food packaging, the production of food additives, electronic cooling, microturbines, etc. Heavily rely on heat transmission. Due to its intriguing potential in industries like the production of polymers, paper, crystal glass, etc., scientists from all over the world have endeavored to investigate the effect of heat transmission on fluid flows past an expandable surface. Purpose: The use of a single-phase technique to assess Newtonian nanofluid flow along stretched surfaces with heat transfer convective models is emphasized in this research. A mathematical formulation is used to do the numerical computations for copper oxide (CuO), aluminum oxide (Al 2 O 3 ), and titanium dioxide (TiO 2 ) nanoparticles using water (H 2 O) as the base fluid. Formulation: The fifth-order Runge-Kutta shooting method procedure with shelling performance are used to solve non-linear ordinary differential equations with boundary conditions numerically. Researched and analyzed for changes in several parameters, plots illustrating the effects of motivated and non-motivated MHD are given to explain the physical values. Finding: Dispersion of solid items in the working fluid is reported to significantly improve thermal performance. The Biot number determines how convective the border is. With an increase in the Biot number, the fluid’s temperature drops significantly. It has been demonstrated that Copper oxide (CuO), nanoparticles are more efficient than Titanium Dioxide (TiO 2 ) and Aluminum Oxide for thermal enhancement (Al 2 O 3 ). Novelty: As far as the authors are aware, no studies have been done on the steady MHD flow and convective heat transfer of nanofluids over a nonuniform stretched surface under the influence of a heat source and viscous dissipation.
Author Aziz ElSeabee, Fayza Abdel
El-Wahed Khalifa, Hamiden Abd
Krawczuk, Marek
Tag El Din, El Sayed M.
Bilal Hafeez, Muhammad
Jamshed, Wasim
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Bilal Hafeez
  fullname: Bilal Hafeez, Muhammad
– sequence: 2
  givenname: Marek
  surname: Krawczuk
  fullname: Krawczuk, Marek
– sequence: 3
  givenname: Wasim
  surname: Jamshed
  fullname: Jamshed, Wasim
– sequence: 4
  givenname: El Sayed M.
  surname: Tag El Din
  fullname: Tag El Din, El Sayed M.
– sequence: 5
  givenname: Hamiden Abd
  surname: El-Wahed Khalifa
  fullname: El-Wahed Khalifa, Hamiden Abd
– sequence: 6
  givenname: Fayza Abdel
  surname: Aziz ElSeabee
  fullname: Aziz ElSeabee, Fayza Abdel
BookMark eNp9UctuFDEQtFCQCEt-gJM_gF382HlxQxGPSJFyCRI3q8duzzry2COPF9h8WT4Pz-5GQjlwsrtc1V3teksuQgxIyHvONlK23UeLIQ0bwYTYcMZY09WvyKUQXb2uuvbnxT_3N-Rqnh8Kh0tRbTm7JE_3O0wjeIoB03CgBn-hj9OIIVMX6AhDwBx3B5OiOQQYnabWx990n513jy4MNLsMwe1Halz84wx-oDpOEyZ6rCgEQ8HvRxcK5QQFCHGClJ32OH-izw6Mm4tsdjEcRTuETIfFFuRljo1p3HtI7rHUMbwjry34Ga_O54r8-Prl_vr7-vbu283159u1llWT19DKum8bri1a0TfAeWtMx2rTI9q-0tp0tex1I9oOKlNz0RQimoZL1jNjGrkiN6e-JsKDmpIbIR1UBKeOQEyDOq-imNjKqjaaaY3bRnaAla251cbyApTHFWlPvXSK85zQKl0-b9kmJ3BecaaWQNUxULUEqs6BFql4IX228h_RX9Lwr98
CitedBy_id crossref_primary_10_29121_shodhkosh_v3_i2_2022_2608
crossref_primary_10_1016_j_molliq_2023_123408
crossref_primary_10_1515_ntrev_2023_0145
Cites_doi 10.1016/j.csite.2021.101226
10.1063/1.5086247
10.1063/1.5127327
10.1039/c8ra09698h
10.1002/num.22743
10.1016/j.ijft.2020.100061
10.1016/j.aej.2021.10.051
10.1002/htj.22396
10.1108/hff-04-2017-0160
10.1007/s13369-019-03956-x
10.1007/s10973-019-08501-4
10.1016/j.csite.2018.11.007
10.1007/s13369-018-3598-z
10.1016/j.icheatmasstransfer.2020.104973
10.1016/j.ijft.2020.100044
10.1016/j.jtice.2014.05.018
10.1002/htj.21404
10.37418/amsj.9.12.59
10.1007/s10973-018-7335-3
10.1177/16878140211067420
10.1016/j.padiff.2020.100005
10.1088/1402-4896/ab36e1
10.1063/1.5050670
10.1016/j.csite.2021.101192
10.1002/er.6554
10.1016/j.aej.2020.04.048
10.1016/j.powtec.2018.07.045
10.1080/10407790.2019.1644924
10.1002/htj.22165
10.1016/j.csite.2021.101246
10.1088/1402-4896/abecc0
10.1140/epjp/i2018-12045-7
10.1016/j.csite.2020.100819
10.1039/c8ra03825b
10.1016/j.molliq.2018.12.104
10.1063/1.5120439
10.1016/j.cma.2019.02.025
10.1016/j.padiff.2021.100104
10.1166/jon.2018.1532
10.1016/j.ijthermalsci.2011.05.022
10.1016/j.csite.2020.100826
10.1016/j.ijheatmasstransfer.2011.11.042
10.1016/j.csite.2019.100460
10.1016/j.molliq.2018.02.106
10.1038/s41598-018-37267-2
10.1177/16878132221106577
10.1007/s00542-018-3996-x
10.1016/j.csite.2021.101714
10.1140/epjp/i2019-12406-8
10.1007/s40430-019-1752-5
10.1016/j.cma.2016.11.033
10.1002/num.22575
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fenrg.2022.1000796
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-598X
ExternalDocumentID oai_doaj_org_article_024356dc0cce4739ae5f61fcdf1ce424
10_3389_fenrg_2022_1000796
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c357t-a836b871cfef2b7a118dd906dbeefb5ccd963bc7289a5d6127fefed7130b0dd73
IEDL.DBID DOA
ISSN 2296-598X
IngestDate Wed Aug 27 01:32:00 EDT 2025
Tue Jul 01 03:00:32 EDT 2025
Thu Apr 24 22:56:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-a836b871cfef2b7a118dd906dbeefb5ccd963bc7289a5d6127fefed7130b0dd73
OpenAccessLink https://doaj.org/article/024356dc0cce4739ae5f61fcdf1ce424
ParticipantIDs doaj_primary_oai_doaj_org_article_024356dc0cce4739ae5f61fcdf1ce424
crossref_citationtrail_10_3389_fenrg_2022_1000796
crossref_primary_10_3389_fenrg_2022_1000796
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-11
PublicationDateYYYYMMDD 2022-10-11
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-11
  day: 11
PublicationDecade 2020
PublicationTitle Frontiers in energy research
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Sheikholeslami (B53); 349
Ghadikolaei (B11); 258
Hayat (B23) 2017; 315
Dogonchi (B8) 2019; 44
Hassan (B19) 2021
Jamshed (B28) 2021; 27
Kumar (B35) 2021; 24
Ramzan (B44) 2019; 9
Adnan (B1) 2021; 13
Nawaz (B40) 2019; 76
Hafeez (B16) 2021; 27
Goud (B15) 2020; 9
Goud (B14) 2021; 4
Alharbi (B5) 2019; 9
Rohni (B46) 2012; 55
Rizwan (B45) 2022
Saleem (B50) 2019; 9
Sadiq (B47) 2019; 9
Jamshed (B29) 2021; 120
Qureshi (B43) 2021; 61
Khan (B30) 2022
Goud (B13) 2020; 7
Afridi (B4) 2018; 7
Olatundun (B41) 2017
Dogonchi (B9) 2019; 41
Hanif (B17) 2019; 94
Nawaz (B38) 2018; 8
Khan (B31) 2022; 351
Li (B36) 2019; 134
Saleem (B49) 2019; 25
Khan (B32) 2011; 50
Sheikholeslami (B52); 277
Khashi'ie (B33) 2020; 59
Hassan (B21) 2018; 133
Maghsoudi (B37) 2019; 135
Vo (B56) 2019; 139
Gholinia (B12) 2019; 13
Srinivasulu (B55) 2021; 23
Bejawada (B6) 2021; 50
Adnan (B3) 2022
Saleem (B48) 2019; 44
Ghadikolaei (B10); 338
Shankar Goud (B51) 2022; 51
Nawaz (B39) 2018; 8
Chamkha (B7) 2019; 9
Hassan (B18) 2022; 29
Pramod Kumar (B42) 2020; 1
Kumar (B34) 2021; 9
Hatami (B22) 2014; 45
Sheikholeslami (B54) 2018; 28
Jamshed (B25) 2018; 8
Hassan (B20) 2021; 37
Adnan (B2) 2022; 14
Jamshed (B27) 2021; 45
Zangooee (B57) 2019; 14
Zhang (B58) 2021; 27
Hosseinzadeh (B24) 2019; 48
Jamshed (B26) 2021; 96
References_xml – volume: 27
  start-page: 101226
  year: 2021
  ident: B58
  article-title: Natural convection flow Maxwell fluids with generalized thermal transport and Newtonian heating
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.101226
– volume: 9
  start-page: 025103
  year: 2019
  ident: B7
  article-title: Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating
  publication-title: AIP Adv.
  doi: 10.1063/1.5086247
– volume: 9
  start-page: 115022
  year: 2019
  ident: B5
  article-title: Thermal analysis for hybrid nanofluid past a cylinder exposed to magnetic field
  publication-title: AIP Adv.
  doi: 10.1063/1.5127327
– volume: 9
  start-page: 4751
  year: 2019
  ident: B47
  article-title: Numerical simulation of oscillatory oblique stagnation point flow of a magneto micropolar nanofluid
  publication-title: RSC Adv.
  doi: 10.1039/c8ra09698h
– start-page: num.22743
  year: 2021
  ident: B19
  article-title: Assessment of boundary layer for flow of non‐Newtonian material induced by a moving belt with power law viscosity and thermal conductivity models
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.22743
– volume: 9
  start-page: 100061
  year: 2021
  ident: B34
  article-title: Effects of soret, dufour, hall current and rotation on MHD natural convective heat and mass transfer flow past an accelerated vertical plate through a porous medium
  publication-title: Int. J. Thermofluids
  doi: 10.1016/j.ijft.2020.100061
– volume: 61
  start-page: 5295
  year: 2021
  ident: B43
  article-title: Thermal capability and entropy optimization for Prandtl-Eyring hybrid nanofluid flow in solar aircraft implementation
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2021.10.051
– volume: 51
  start-page: 2201
  year: 2022
  ident: B51
  article-title: Induced magnetic field effect on MHD free convection flow in nonconducting and conducting vertical microchannel walls
  publication-title: Heat. Trans.
  doi: 10.1002/htj.22396
– volume: 28
  start-page: 641
  year: 2018
  ident: B54
  article-title: Numerical simulation of Fe3O4-water nanofluid flow in a non-Darcy porous media
  publication-title: Int. J. Numer. Methods Heat. Fluid Flow.
  doi: 10.1108/hff-04-2017-0160
– volume: 44
  start-page: 7919
  year: 2019
  ident: B8
  article-title: Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-019-03956-x
– volume: 139
  start-page: 1345
  year: 2019
  ident: B56
  article-title: Effectiveness of various shapes of Al2O3 nanoparticles on the MHD convective heat transportation in porous medium
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-019-08501-4
– volume: 13
  start-page: 100356
  year: 2019
  ident: B12
  article-title: Investigation of MHD Eyring–Powell fluid flow over a rotating disk under effect of homogeneous–heterogeneous reactions
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2018.11.007
– volume: 351
  year: 2022
  ident: B31
  article-title: Heat transfer evaluation in MgZn6Zr/C8H18 [(Magnesium-Zinc-Zirconium)/Engine oil] with non-linear solar thermal radiations and modified slip boundaries over 3-dimensional convectively heated surface
  publication-title: Front. Energy Res.
– volume: 44
  start-page: 1515
  year: 2019
  ident: B48
  article-title: Convective heat and mass transfer in magneto Walter’s B nanofluid flow induced by a rotating cone
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-018-3598-z
– volume: 120
  start-page: 104973
  year: 2021
  ident: B29
  article-title: Numerical investigation of MHD impact on maxwell nanofluid
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2020.104973
– start-page: 1
  volume-title: Thermal efficiency in hybrid (Al2O3-CuO/H2O) and ternary hybrid nanofluids (Al2O3-CuO-Cu/H2O) by considering the novel effects of imposed magnetic field and convective heat condition
  year: 2022
  ident: B3
– volume: 7
  start-page: 100044
  year: 2020
  ident: B13
  article-title: Heat generation/absorption influence on steady stretched permeable surface on MHD flow of a micropolar fluid through a porous medium in the presence of variable suction/injection
  publication-title: Int. J. Thermofluids
  doi: 10.1016/j.ijft.2020.100044
– volume: 45
  start-page: 2238
  year: 2014
  ident: B22
  article-title: Numerical study of MHD two-phase Couette flow analysis for fluid-particle suspension between moving parallel plates
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2014.05.018
– volume: 48
  start-page: 744
  year: 2019
  ident: B24
  article-title: Nonlinear thermal radiation and chemical reaction effects on Maxwell fluid flow with convectively heated plate in a porous medium
  publication-title: Heat. Trans. Res.
  doi: 10.1002/htj.21404
– volume: 9
  start-page: 10755
  year: 2020
  ident: B15
  article-title: Radiation effect on MHD boundary layer flow due to an exponentially stretching sheet
  publication-title: Adv. Math. Sci. J.
  doi: 10.37418/amsj.9.12.59
– volume: 135
  start-page: 947
  year: 2019
  ident: B37
  article-title: Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-018-7335-3
– volume: 13
  start-page: 168781402110674
  year: 2021
  ident: B1
  article-title: Impacts of various shaped Cu-nanomaterial on the heat transfer over a bilateral stretchable surface: Numerical investigation
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/16878140211067420
– volume: 1
  start-page: 100005
  year: 2020
  ident: B42
  article-title: Finite element study of Soret number effects on MHD flow of Jeffrey fluid through a vertical permeable moving plate
  publication-title: Partial Differ. Equ. Appl. Math.
  doi: 10.1016/j.padiff.2020.100005
– volume: 94
  start-page: 125208
  year: 2019
  ident: B17
  article-title: MHD natural convection in cadmium telluride nanofluid over a vertical cone embedded in a porous medium
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab36e1
– volume: 8
  start-page: 105109
  year: 2018
  ident: B39
  article-title: Three-dimensional heat transfer in the mixture of nanoparticles and micropolar MHD plasma with Hall and ion slip effects
  publication-title: AIP Adv.
  doi: 10.1063/1.5050670
– volume: 27
  start-page: 101192
  year: 2021
  ident: B16
  article-title: Heat transfer enhancement through nanofluids with applications in automobile radiator
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.101192
– volume: 45
  start-page: 10696
  year: 2021
  ident: B27
  article-title: Computational single‐phase comparative study of a Williamson nanofluid in a parabolic trough solar collector via the Keller box method
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6554
– volume: 8
  start-page: 01
  year: 2018
  ident: B25
  article-title: Entropy analysis of TiO2-CuO/EG casson hybrid nanofluid via cattaneo-christov heat flux model
  publication-title: Appl. Nanosci.
– volume: 59
  start-page: 1787
  year: 2020
  ident: B33
  article-title: Flow and heat transfer of hybrid nanofluid over a permeable shrinking cylinder with joule heating: A comparative analysis
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2020.04.048
– volume: 338
  start-page: 425
  ident: B10
  article-title: RETRACTED: MHD raviative boundary layer analysis of micropolar dusty fluid with graphene oxide (go)- engine oil nanoparticles in a porous medium over a stretching sheet with joule heating effect
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.07.045
– volume: 76
  start-page: 152
  year: 2019
  ident: B40
  article-title: Keller-Box shooting method and its application to nanofluid flow over convectively heated sheet with stability and convergence
  publication-title: Numer. Heat. Transf. Part B Fundam.
  doi: 10.1080/10407790.2019.1644924
– volume: 50
  start-page: 6129
  year: 2021
  ident: B6
  article-title: Heat generation/absorption on MHD flow of a micropolar fluid over a heated stretching surface in the presence of the boundary parameter
  publication-title: Heat. Transf.
  doi: 10.1002/htj.22165
– volume: 27
  start-page: 101246
  year: 2021
  ident: B28
  article-title: Computational case study on tangent hyperbolic hybrid nanofluid flow: Single phase thermal investigation
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.101246
– volume: 96
  start-page: 065202
  year: 2021
  ident: B26
  article-title: Single phase-based study of Ag-Cu/EO Williamson hybrid nanofluid flow over a stretching surface with shape factor
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/abecc0
– volume: 133
  start-page: 230
  year: 2018
  ident: B21
  article-title: Impact of iron oxide particles concentration under a highly oscillating magnetic field on ferrofluid flow
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2018-12045-7
– volume: 23
  start-page: 100819
  year: 2021
  ident: B55
  article-title: Effect of inclined magnetic field on flow, heat and mass transfer of Williamson nanofluid over a stretching sheet
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2020.100819
– volume: 8
  start-page: 38324
  year: 2018
  ident: B38
  article-title: Computational fluid dynamic simulations for dispersion of nanoparticles in a magnetohydrodynamic liquid: A galerkin finite element method
  publication-title: RSC Adv.
  doi: 10.1039/c8ra03825b
– start-page: 1
  volume-title: Comparative thermal transport mechanism in Cu-H2O and Cu-Al2O3/H2O nanofluids: Numerical investigation
  year: 2022
  ident: B30
– volume: 277
  start-page: 388
  ident: B52
  article-title: Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.12.104
– volume: 9
  start-page: 095107
  year: 2019
  ident: B50
  article-title: Heat transfer in a permeable cavity filled with a ferrofluid under electric force and radiation effects
  publication-title: AIP Adv.
  doi: 10.1063/1.5120439
– volume: 349
  start-page: 839
  ident: B53
  article-title: Mesoscopic investigation for alumina nanofluid heat transfer in permeable medium influenced by Lorentz forces
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.02.025
– volume: 4
  start-page: 100104
  year: 2021
  ident: B14
  article-title: Ohmic heating and chemical reaction effect on MHD flow of micropolar fluid past a stretching surface
  publication-title: Partial Differ. Equations Appl. Math.
  doi: 10.1016/j.padiff.2021.100104
– volume: 7
  start-page: 1272
  year: 2018
  ident: B4
  article-title: Second law analysis of three dimensional dissipative flow of hybrid nanofluid
  publication-title: J. nanofluids
  doi: 10.1166/jon.2018.1532
– volume: 50
  start-page: 2154
  year: 2011
  ident: B32
  article-title: Double-diffusive natural convective boundary layer flow in a porous medium saturated with a nanofluid over a vertical plate: Prescribed surface heat, solute and nanoparticle fluxes
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2011.05.022
– volume: 24
  start-page: 100826
  year: 2021
  ident: B35
  article-title: Thermal radiation impact on MHD heat transfer natural convective nano fluid flow over an impulsively started vertical plate
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2020.100826
– volume: 55
  start-page: 1888
  year: 2012
  ident: B46
  article-title: Flow and heat transfer over an unsteady shrinking sheet with suction in nanofluids
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.11.042
– volume: 14
  start-page: 100460
  year: 2019
  ident: B57
  article-title: Hydrothermal analysis of MHD nanofluid (TiO2-GO) flow between two radiative stretchable rotating disks using AGM
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2019.100460
– volume: 258
  start-page: 172
  ident: B11
  article-title: Fe3O4–(CH2OH)2 nanofluid analysis in a porous medium under MHD radiative boundary layer and dusty fluid
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.02.106
– volume: 9
  start-page: 562
  year: 2019
  ident: B44
  article-title: On the convective heat and zero nanoparticle mass flux conditions in the flow of 3D MHD Couple Stress nanofluid over an exponentially stretched surface
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37267-2
– start-page: 1
  volume-title: Feature of metallic oxide nanoparticles in the thermal efficiency and flow structure of non-Newtonian homogeneous nanofluid: Experimental data-based mathematical approach
  year: 2022
  ident: B45
– volume: 14
  start-page: 168781322211065
  year: 2022
  ident: B2
  article-title: Numerical thermal featuring in γAl2O3-C2H6O2 nanofluid under the influence of thermal radiation and convective heat condition by inducing novel effects of effective Prandtl number model (EPNM)
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/16878132221106577
– volume: 25
  start-page: 683
  year: 2019
  ident: B49
  article-title: An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-018-3996-x
– volume: 29
  start-page: 101714
  year: 2022
  ident: B18
  article-title: Transport pattern of Non-Newtonian mass and thermal energy under two diverse flow conditions by using modified models for thermodynamics properties
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.101714
– volume: 134
  start-page: 30
  year: 2019
  ident: B36
  article-title: Nanofluid heat transfer in a porous duct in the presence of Lorentz forces using the lattice Boltzmann method
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2019-12406-8
– start-page: 29
  volume-title: Defect and diffusion forum
  year: 2017
  ident: B41
  article-title: Analysis of Blasius flow of hybrid nanofluids over a convectively heated surface
– volume: 41
  start-page: 249
  year: 2019
  ident: B9
  article-title: Numerical simulation for thermal radiation and porous medium characteristics in flow of CuO-H 2 O nanofluid
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-019-1752-5
– volume: 315
  start-page: 1011
  year: 2017
  ident: B23
  article-title: Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon–water nanofluid
  publication-title: Comput. methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.11.033
– volume: 37
  start-page: 1234
  year: 2021
  ident: B20
  article-title: Boundary layer flow pattern of heat and mass for homogenous shear thinning hybrid‐nanofluid: An experimental data base modeling
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.22575
SSID ssj0001325410
Score 2.2199118
Snippet Background: The main aim of this article heat transfer in thermal engineering deals with the production, use, transformation, and transfer of thermal energy....
Background: The main aim of this article heat transfer in thermal engineering deals with the production, use, transformation, and transfer of thermal energy....
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms magnetohydrodynamic flow
nanoparticles
porous medium
thermal jump conditions
thermal performance
Title Thermal energy development in magnetohydrodynamic flow utilizing titanium dioxide, copper oxide and aluminum oxide nanoparticles: Thermal dispersion and heat generating formularization
URI https://doaj.org/article/024356dc0cce4739ae5f61fcdf1ce424
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDI5QT-WAoIAoj8oHbjDqvJLscANEVSHBiUq9jZI4XkbaZlbVVgV-GT-vdmZa5gQXjhMlURR7bH-R_Vmp1w069lPBFFGvXNESUtE1JBkAUsXpYmdIgOKXr-b0rP18rs8Xrb4kJ2yiB54u7lgY87TBUIYQW9t0LmoyFQWkigfqzATKPm8BpvLrSsPApyqnKhlGYd0xsTjWjAfrWhIDSiss_QtPtCDsz57l5KF6MIeE8H46yiN1L6YDdX9BFPhY_WZpsgXdQMyleoB_Un1gSHDh1inuxu8_kc3h1GIeaDNeA2vVZvjFW4DUkqXh6gJwGH8MGN9CGLfbeAn5C1xCcGynhsRTpqHkEgPqOW_uHdyeAAfhFpc3trxIbDmsM3e1JFCDxMCS2TqXdz5RZyefvn08LeaeC0VotN0VbtUYzyAqUKTaW8f4A7ErDfoYyesQkP9YHyzjNKeRwyPLEyMy1C19iWibp2ovjSk-U9BaIbvT1te-aqlaeWrI6M4gdR2toj1U1e3992EmJJe-GJuegYnIrM8y60Vm_SyzQ_Xmbs12ouP46-wPIta7mUKlnQdYwfr5Avt_Kdjz_7HJC7UvBxOnV1Uv1d7u8iq-4mhm54-y4t4AyHj6uw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+energy+development+in+magnetohydrodynamic+flow+utilizing+titanium+dioxide%2C+copper+oxide+and+aluminum+oxide+nanoparticles%3A+Thermal+dispersion+and+heat+generating+formularization&rft.jtitle=Frontiers+in+energy+research&rft.au=Bilal+Hafeez%2C+Muhammad&rft.au=Krawczuk%2C+Marek&rft.au=Jamshed%2C+Wasim&rft.au=Tag+El+Din%2C+El+Sayed+M.&rft.date=2022-10-11&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=10&rft_id=info:doi/10.3389%2Ffenrg.2022.1000796&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2022_1000796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon