Novel Method Based on Variational Mode Decomposition and a Random Discriminative Projection Extreme Learning Machine for Multiple Power Quality Disturbance Recognition
Power quality events are usually associated with more than one disturbance and their recognition is typically based on multilabel learning. In this study, we propose a new method for recognizing multiple power quality disturbances (MPQDs) based on variational mode decomposition (VMD) and a random di...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 15; no. 5; pp. 2915 - 2926 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Power quality events are usually associated with more than one disturbance and their recognition is typically based on multilabel learning. In this study, we propose a new method for recognizing multiple power quality disturbances (MPQDs) based on variational mode decomposition (VMD) and a random discriminative projection extreme learning machine for multilabel learning (RDPEML). First, VMD is employed to decompose the MPQDs into several intrinsic mode functions and the standard energy differences of each mode are extracted as features that form the input vectors of the classifier. Second, a novel multilabel classifier called RDPEML is constructed by combining a random discriminative projection multiclass extreme learning machine (ELM) and a thresholding learning method-based kernel ELM. In order to obtain better classification performance, a tenfold cross-validation embedded particle swarm optimization approach is utilized to search for the optimal values of the structural parameters. Finally, a test study was conducted using MATLAB synthetic signals and real signals sampled from a three-phase standard source under different noise conditions. Compared with the several recent state-of-the-art multilabel learning algorithms, RDPEML achieved better classification performance with superior computational speed. |
---|---|
AbstractList | Power quality events are usually associated with more than one disturbance and their recognition is typically based on multilabel learning. In this study, we propose a new method for recognizing multiple power quality disturbances (MPQDs) based on variational mode decomposition (VMD) and a random discriminative projection extreme learning machine for multilabel learning (RDPEML). First, VMD is employed to decompose the MPQDs into several intrinsic mode functions and the standard energy differences of each mode are extracted as features that form the input vectors of the classifier. Second, a novel multilabel classifier called RDPEML is constructed by combining a random discriminative projection multiclass extreme learning machine (ELM) and a thresholding learning method-based kernel ELM. In order to obtain better classification performance, a tenfold cross-validation embedded particle swarm optimization approach is utilized to search for the optimal values of the structural parameters. Finally, a test study was conducted using MATLAB synthetic signals and real signals sampled from a three-phase standard source under different noise conditions. Compared with the several recent state-of-the-art multilabel learning algorithms, RDPEML achieved better classification performance with superior computational speed. |
Author | Zhao, Chen Ding, Xiaojun Wang, Lingyun Li, Kaicheng Li, Yuanzheng Luo, Yi Xu, Xuebin Meng, Qingxu |
Author_xml | – sequence: 1 givenname: Chen orcidid: 0000-0002-6200-8142 surname: Zhao fullname: Zhao, Chen email: fauzhao@gmail.com organization: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: Kaicheng orcidid: 0000-0001-5500-7523 surname: Li fullname: Li, Kaicheng email: likaicheng@hust.edu.cn organization: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China – sequence: 3 givenname: Yuanzheng orcidid: 0000-0001-8052-1233 surname: Li fullname: Li, Yuanzheng email: Yuanzheng_Li@hust.edu.cn organization: Key Laboratory of Ministry of Education for Image Processing and Intelligence Control, School of Automation, Huazhong University of Science and Technology, Wuhan, China – sequence: 4 givenname: Lingyun surname: Wang fullname: Wang, Lingyun email: vth000@icloud.com organization: Ningbo Electric Power Design Institute, Ningbo, China – sequence: 5 givenname: Yi orcidid: 0000-0003-0957-8805 surname: Luo fullname: Luo, Yi email: luoyi1@csg.cn organization: Electric Power Research Institute, China Southern Power Grid, Guangzhou, China – sequence: 6 givenname: Xuebin surname: Xu fullname: Xu, Xuebin email: 271372699@qq.com organization: Xi'an Jiaotong University Guangdong Province Shunde Research Institute, Xi'an, China – sequence: 7 givenname: Xiaojun surname: Ding fullname: Ding, Xiaojun email: dingxiaojun2016@gmail.com organization: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China – sequence: 8 givenname: Qingxu orcidid: 0000-0001-7669-2080 surname: Meng fullname: Meng, Qingxu email: mqx@hust.edu.cn organization: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China |
BookMark | eNp9kUtv1DAUhS1UJNrCHomNJdYZ_IgTZwltoSPN8KhGbKOLfdN6lLEH2yn0F_Vv4sxULFiwupbv-e6RzjkjJz54JOQ1ZwvOWfdus1wuBON6IXTLhZLPyCnval4xpthJeSvFKymYfEHOUtoyJlsmu1Py-Dnc40jXmO-CpR8goaXB0-8QHWQXPJRdsEgv0YTdPiQ3f1LwlgK9KSPs6KVLJrqd8wW4R_o1hi2ag-zqd464Q7pCiN75W7oGc-c80iFEup7G7PZjAcIvjPTbBKPLD_O1PMUf4A3Sm2J66w-WL8nzAcaEr57mOdl8vNpcXFerL5-WF-9XlZGqzRVo3jLdmsZibcXQKS67RlqBCIOCQdTa1kYIidCCNUo3umtqaxsjWKeslufk7fHsPoafE6bcb8MUSwqpF6Kk12nNZhU7qkwMKUUc-n0JAOJDz1k_t9GXNvq5jf6pjYI0_yDG5UPCOYIb_we-OYIOEf_66LrRrOnkH_UanFs |
CODEN | ITIICH |
CitedBy_id | crossref_primary_10_1016_j_rser_2023_114088 crossref_primary_10_1109_TII_2023_3285030 crossref_primary_10_1016_j_ijepes_2022_108797 crossref_primary_10_1049_iet_gtd_2019_0812 crossref_primary_10_1016_j_rineng_2024_103873 crossref_primary_10_1016_j_epsr_2023_109939 crossref_primary_10_1016_j_epsr_2024_110283 crossref_primary_10_1080_15325008_2023_2207561 crossref_primary_10_1109_TIM_2021_3054673 crossref_primary_10_3390_en11113040 crossref_primary_10_1016_j_asoc_2024_111326 crossref_primary_10_1142_S0218348X24500592 crossref_primary_10_1109_ACCESS_2021_3124511 crossref_primary_10_1049_ell2_13312 crossref_primary_10_1109_JSYST_2021_3128213 crossref_primary_10_1109_TII_2020_2977980 crossref_primary_10_1109_TII_2022_3185293 crossref_primary_10_1016_j_epsr_2022_107866 crossref_primary_10_1109_TSG_2020_2990079 crossref_primary_10_1109_TIM_2025_3540138 crossref_primary_10_1016_j_epsr_2021_107682 crossref_primary_10_1016_j_epsr_2024_110413 crossref_primary_10_1109_TII_2023_3240929 crossref_primary_10_1109_TIM_2023_3312492 crossref_primary_10_1109_TII_2020_3016594 crossref_primary_10_1109_TNNLS_2020_3027984 crossref_primary_10_1016_j_compeleceng_2021_107100 crossref_primary_10_1016_j_epsr_2022_108664 crossref_primary_10_1109_TIE_2019_2952823 crossref_primary_10_2139_ssrn_4164374 crossref_primary_10_1109_TIM_2022_3204985 crossref_primary_10_1016_j_egyr_2022_09_068 crossref_primary_10_1016_j_measurement_2025_117358 crossref_primary_10_1016_j_suscom_2020_100417 crossref_primary_10_23919_PCMP_2023_000296 crossref_primary_10_3390_en16062685 crossref_primary_10_1109_TIE_2022_3189107 crossref_primary_10_1109_TIM_2021_3052554 crossref_primary_10_1016_j_measurement_2019_107453 crossref_primary_10_1109_TII_2020_2966223 crossref_primary_10_1049_gtd2_12407 crossref_primary_10_1109_TIE_2022_3194575 crossref_primary_10_3390_electronics10212725 crossref_primary_10_1109_TII_2021_3104008 crossref_primary_10_1109_TIM_2023_3265756 crossref_primary_10_3390_en13040935 crossref_primary_10_1016_j_rser_2020_110050 crossref_primary_10_1049_gtd2_12364 crossref_primary_10_1109_TIM_2025_3547128 crossref_primary_10_1016_j_epsr_2022_108695 crossref_primary_10_1109_TII_2024_3393497 crossref_primary_10_1088_1742_6596_1952_2_022057 crossref_primary_10_1109_TII_2021_3115567 crossref_primary_10_1109_TII_2023_3321024 crossref_primary_10_3389_fenrg_2024_1363028 crossref_primary_10_1109_TII_2023_3345451 crossref_primary_10_1002_ese3_1516 crossref_primary_10_1109_TIM_2023_3250220 crossref_primary_10_1049_gtd2_12378 crossref_primary_10_1049_gtd2_12056 crossref_primary_10_1109_ACCESS_2024_3350170 crossref_primary_10_1007_s00202_020_01075_7 crossref_primary_10_1016_j_prime_2025_100919 |
Cites_doi | 10.1016/j.ins.2009.06.010 10.1016/j.dsp.2013.02.012 10.1109/TNN.2011.2170220 10.24963/ijcai.2017/466 10.1109/TIE.2016.2521615 10.1016/j.neucom.2005.12.126 10.1016/S0378-7796(02)00035-4 10.1109/TIE.2015.2506619 10.1109/TSMCB.2011.2168604 10.1016/j.epsr.2012.09.007 10.1109/TIE.2013.2272276 10.1023/A:1007649029923 10.1016/j.patcog.2006.12.019 10.1109/TIM.2013.2258761 10.1109/TIM.2016.2578518 10.1109/JSEN.2014.2377775 10.1109/TSP.2013.2288675 10.1109/TNNLS.2011.2178124 10.1109/TKDE.2006.162 10.1109/TSG.2015.2397431 10.1049/iet-smt.2016.0194 10.1109/TIM.2014.2330493 10.1109/TSG.2016.2624313 10.1016/j.epsr.2014.10.028 10.3390/e18060225 10.1109/TSG.2016.2626469 10.1016/j.neucom.2015.12.050 10.1016/j.measurement.2016.10.013 10.1109/TII.2012.2210230 10.4304/jcp.8.8.2110-2117 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TII.2018.2871253 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0050 |
EndPage | 2926 |
ExternalDocumentID | 10_1109_TII_2018_2871253 8468069 |
Genre | orig-research |
GrantInformation_xml | – fundername: Major Science and Technology Foundation of Guangdong Province grantid: 2015B010104002 – fundername: State Key Laboratory of Synthetical Automation for Process grantid: PAL-N201806 – fundername: National Natural Science Foundation of China grantid: 51277080; 51707069 funderid: 10.13039/501100001809 – fundername: Youth Scholars Educational Commission of Fujian Province of China grantid: JT180147 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c357t-a817087c6de4d2f9513963d2eeaf5af248d4c223ea7adc5868964dd6c2095d83 |
IEDL.DBID | RIE |
ISSN | 1551-3203 |
IngestDate | Mon Jun 30 10:20:51 EDT 2025 Thu Apr 24 22:57:03 EDT 2025 Tue Jul 01 03:06:12 EDT 2025 Wed Aug 27 02:35:31 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-a817087c6de4d2f9513963d2eeaf5af248d4c223ea7adc5868964dd6c2095d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5500-7523 0000-0003-0957-8805 0000-0001-8052-1233 0000-0002-6200-8142 0000-0001-7669-2080 |
PQID | 2220398808 |
PQPubID | 85507 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TII_2018_2871253 ieee_primary_8468069 crossref_primary_10_1109_TII_2018_2871253 proquest_journals_2220398808 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on industrial informatics |
PublicationTitleAbbrev | TII |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref36 ref14 ref31 ref30 zhigang (ref23) 2015; 6 ref32 ref10 ref2 ref38 ref16 ref19 (ref1) 2009 ref18 shen (ref26) 0 thirumala (ref20) 2018; 9 shamachurn (ref11) 2017; 17 kennedy (ref33) 2011 ref25 ref21 ref28 elisseeff (ref24) 0 ref27 zhou (ref22) 2011; 31 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 tan (ref37) 2010; 43 kubendran (ref17) 2017; 27 |
References_xml | – ident: ref35 doi: 10.1016/j.ins.2009.06.010 – ident: ref16 doi: 10.1016/j.dsp.2013.02.012 – ident: ref28 doi: 10.1109/TNN.2011.2170220 – ident: ref25 doi: 10.24963/ijcai.2017/466 – ident: ref19 doi: 10.1109/TIE.2016.2521615 – ident: ref29 doi: 10.1016/j.neucom.2005.12.126 – start-page: 681 year: 0 ident: ref24 article-title: A kernel method for multi-labelled classification publication-title: Proc Conf Neural Inf Process Syst Natural Synth – start-page: 1c year: 2009 ident: ref1 – ident: ref2 doi: 10.1016/S0378-7796(02)00035-4 – ident: ref5 doi: 10.1109/TIE.2015.2506619 – ident: ref30 doi: 10.1109/TSMCB.2011.2168604 – ident: ref6 doi: 10.1016/j.epsr.2012.09.007 – ident: ref14 doi: 10.1109/TIE.2013.2272276 – ident: ref34 doi: 10.1023/A:1007649029923 – ident: ref21 doi: 10.1016/j.patcog.2006.12.019 – ident: ref12 doi: 10.1109/TIM.2013.2258761 – volume: 17 start-page: 1 year: 2017 ident: ref11 article-title: Assessing the performance of a modified S-transform with probabilistic neural network, support vector machine and nearest neighbour classifiers for single and multiple power quality disturbances identification publication-title: Neural Comput Appl – volume: 43 start-page: 30 year: 2010 ident: ref37 article-title: Numerical model framework of power quality events publication-title: Eur J Sci Res – ident: ref13 doi: 10.1109/TIM.2016.2578518 – volume: 27 year: 2017 ident: ref17 article-title: Detection and classification of complex power quality disturbances using S-transform amplitude matrix-based decision tree for different noise levels publication-title: International Transactions on Electrical Energy Systems – ident: ref18 doi: 10.1109/JSEN.2014.2377775 – ident: ref36 doi: 10.1109/TSP.2013.2288675 – start-page: 1 year: 0 ident: ref26 article-title: Compact multi-label learning publication-title: Proc AAAI Conf Artif Intell – ident: ref31 doi: 10.1109/TNNLS.2011.2178124 – ident: ref38 doi: 10.1109/TKDE.2006.162 – volume: 6 start-page: 1678 year: 2015 ident: ref23 article-title: A classification method for complex power quality disturbances using EEMD and rank wavelet SVM publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2015.2397431 – ident: ref8 doi: 10.1049/iet-smt.2016.0194 – ident: ref7 doi: 10.1109/TIM.2014.2330493 – volume: 9 start-page: 3018 year: 2018 ident: ref20 article-title: Tunable-Q wavelet transform and dual multiclass SVM for online automatic detection of power quality disturbances publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2016.2624313 – ident: ref15 doi: 10.1016/j.epsr.2014.10.028 – ident: ref27 doi: 10.3390/e18060225 – ident: ref9 doi: 10.1109/TSG.2016.2626469 – ident: ref4 doi: 10.1016/j.neucom.2015.12.050 – ident: ref3 doi: 10.1016/j.measurement.2016.10.013 – ident: ref10 doi: 10.1109/TII.2012.2210230 – volume: 31 start-page: 45 year: 2011 ident: ref22 article-title: Application of multi-label classification method to categorization of multiple power quality disturbances publication-title: Proc CSEE – start-page: 760 year: 2011 ident: ref33 publication-title: Particle Swarm Optimization – ident: ref32 doi: 10.4304/jcp.8.8.2110-2117 |
SSID | ssj0037039 |
Score | 2.502888 |
Snippet | Power quality events are usually associated with more than one disturbance and their recognition is typically based on multilabel learning. In this study, we... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2915 |
SubjectTerms | Algorithms Classification Classifiers Decomposition discriminative projection extreme learning machine (ELM) Feature extraction Machine learning multilabel multiple power quality disturbance (MPQD) Neural networks Particle swarm optimization Pattern classification Power engineering computing Power quality Power system faults Projection Recognition Support vector machines variational mode decomposition (VMD) |
Title | Novel Method Based on Variational Mode Decomposition and a Random Discriminative Projection Extreme Learning Machine for Multiple Power Quality Disturbance Recognition |
URI | https://ieeexplore.ieee.org/document/8468069 https://www.proquest.com/docview/2220398808 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuDAqyAWCpoDFySym8aJYx_7VIuUqqoW1FvkJ6ooCYIsAv5Q_yYzjrPiJcQpOdiWpRnPy5-_YezFrgkUpoqs0GWRlV6ZzARjMsFNQP-bB-vpgXNzJk7elK8vq8sN9mr9FsZ7H8Fnfk6_8S7f9XZFpbIF-kqZC7XJNjFxG99qTVaXo-aqyI1a7Wa8yPl0JZmrxfL0lDBcck7ZQVHxX1xQ7KnyhyGO3uX4LmumfY2gkvfz1WDm9vtvlI3_u_F77E4KM2Fv1Iv7bMN3D9jtn8gHt9nNWf_FX0MTW0jDPnozB30HbzF5TgVCoEZpcOgJdp6wXaA7Bxou8NN_gMMrMjoEpiGjCedjVYeGHX0dqPAIib71HTQRtOkBY2RoEogRzqlFG4w0Ht9oNfR_htQQLiZcU989ZMvjo-XBSZbaNmSWV_WQaeL8k7UVzpeuCBjCcTzlrvBeh0qHopSutBiVeF1rZysppBKlc8IWGO45yR-xra7v_GMGItScG6G906pUtlahcoRLtaqSwVX5jC0mQbY2UZpTZ43rNqY2uWpR9C2Jvk2in7GX6xkfRzqPf4zdJkmuxyUhztjOpCttOu-fW4yyUP_QFsonf5_1lN3CtdUIldxhW8OnlX-G4cxgnkc9_gHfqvT3 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOQAHXgWxUGAOXJDIbjaOnfgItNUuNKuqWlBvkZ8IURIEWQT8If4mM4mz4iXEKTnYiaUZz3y2P3_D2KO5CQRTZZLpPEtyr0xigjGJ5CZg_k2D9XTBuVrJxav8xZk422FPtndhvPc9-cxP6bU_y3et3dBW2QxzZZlKdYFdxLwv5sNtrTHucvRd1aujinnCs5SPh5Kpmq2XS2JxlVNaH2SC_5KE-qoqf4TiPr8cXWPVOLKBVvJuuunM1H77TbTxf4d-nV2NQBOeDp5xg-345ia78pP84B77vmo_-3Oo-iLS8AzzmYO2gde4fI5bhECl0uDAE_E8srtANw40nOKjfQ8HbynsEJ2GwiacDPs61OzwS0dbjxAFXN9A1dM2PSBKhirSGOGEirTBIOTxlb6GGdCQI8LpyGxqm1tsfXS4fr5IYuGGxHJRdIkm1b-ysNL53GUBQRzHee4y73UQOmR56XKLuMTrQjsrSlkqmTsnbYaAz5X8Nttt2sbfYSBDwbmR2jutcmULFYQjZqpVogxOpBM2Gw1Z2yhqTrU1zut-cZOqGk1fk-nraPoJe7zt8WEQ9PhH2z2y5LZdNOKE7Y--UscZ_6lGnIX-h9GwvPv3Xg_ZpcW6Oq6Pl6uX99hl_I8aiJP7bLf7uPH3Edx05kHv0z8Axpf4QA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Method+Based+on+Variational+Mode+Decomposition+and+a+Random+Discriminative+Projection+Extreme+Learning+Machine+for+Multiple+Power+Quality+Disturbance+Recognition&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Chen%2C+Zhao&rft.au=Li%2C+Kaicheng&rft.au=Li%2C+Yuanzheng&rft.au=Wang%2C+Lingyun&rft.date=2019-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=15&rft.issue=5&rft.spage=2915&rft_id=info:doi/10.1109%2FTII.2018.2871253&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |