Novel Method Based on Variational Mode Decomposition and a Random Discriminative Projection Extreme Learning Machine for Multiple Power Quality Disturbance Recognition

Power quality events are usually associated with more than one disturbance and their recognition is typically based on multilabel learning. In this study, we propose a new method for recognizing multiple power quality disturbances (MPQDs) based on variational mode decomposition (VMD) and a random di...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 15; no. 5; pp. 2915 - 2926
Main Authors Zhao, Chen, Li, Kaicheng, Li, Yuanzheng, Wang, Lingyun, Luo, Yi, Xu, Xuebin, Ding, Xiaojun, Meng, Qingxu
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Power quality events are usually associated with more than one disturbance and their recognition is typically based on multilabel learning. In this study, we propose a new method for recognizing multiple power quality disturbances (MPQDs) based on variational mode decomposition (VMD) and a random discriminative projection extreme learning machine for multilabel learning (RDPEML). First, VMD is employed to decompose the MPQDs into several intrinsic mode functions and the standard energy differences of each mode are extracted as features that form the input vectors of the classifier. Second, a novel multilabel classifier called RDPEML is constructed by combining a random discriminative projection multiclass extreme learning machine (ELM) and a thresholding learning method-based kernel ELM. In order to obtain better classification performance, a tenfold cross-validation embedded particle swarm optimization approach is utilized to search for the optimal values of the structural parameters. Finally, a test study was conducted using MATLAB synthetic signals and real signals sampled from a three-phase standard source under different noise conditions. Compared with the several recent state-of-the-art multilabel learning algorithms, RDPEML achieved better classification performance with superior computational speed.
AbstractList Power quality events are usually associated with more than one disturbance and their recognition is typically based on multilabel learning. In this study, we propose a new method for recognizing multiple power quality disturbances (MPQDs) based on variational mode decomposition (VMD) and a random discriminative projection extreme learning machine for multilabel learning (RDPEML). First, VMD is employed to decompose the MPQDs into several intrinsic mode functions and the standard energy differences of each mode are extracted as features that form the input vectors of the classifier. Second, a novel multilabel classifier called RDPEML is constructed by combining a random discriminative projection multiclass extreme learning machine (ELM) and a thresholding learning method-based kernel ELM. In order to obtain better classification performance, a tenfold cross-validation embedded particle swarm optimization approach is utilized to search for the optimal values of the structural parameters. Finally, a test study was conducted using MATLAB synthetic signals and real signals sampled from a three-phase standard source under different noise conditions. Compared with the several recent state-of-the-art multilabel learning algorithms, RDPEML achieved better classification performance with superior computational speed.
Author Zhao, Chen
Ding, Xiaojun
Wang, Lingyun
Li, Kaicheng
Li, Yuanzheng
Luo, Yi
Xu, Xuebin
Meng, Qingxu
Author_xml – sequence: 1
  givenname: Chen
  orcidid: 0000-0002-6200-8142
  surname: Zhao
  fullname: Zhao, Chen
  email: fauzhao@gmail.com
  organization: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Kaicheng
  orcidid: 0000-0001-5500-7523
  surname: Li
  fullname: Li, Kaicheng
  email: likaicheng@hust.edu.cn
  organization: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Yuanzheng
  orcidid: 0000-0001-8052-1233
  surname: Li
  fullname: Li, Yuanzheng
  email: Yuanzheng_Li@hust.edu.cn
  organization: Key Laboratory of Ministry of Education for Image Processing and Intelligence Control, School of Automation, Huazhong University of Science and Technology, Wuhan, China
– sequence: 4
  givenname: Lingyun
  surname: Wang
  fullname: Wang, Lingyun
  email: vth000@icloud.com
  organization: Ningbo Electric Power Design Institute, Ningbo, China
– sequence: 5
  givenname: Yi
  orcidid: 0000-0003-0957-8805
  surname: Luo
  fullname: Luo, Yi
  email: luoyi1@csg.cn
  organization: Electric Power Research Institute, China Southern Power Grid, Guangzhou, China
– sequence: 6
  givenname: Xuebin
  surname: Xu
  fullname: Xu, Xuebin
  email: 271372699@qq.com
  organization: Xi'an Jiaotong University Guangdong Province Shunde Research Institute, Xi'an, China
– sequence: 7
  givenname: Xiaojun
  surname: Ding
  fullname: Ding, Xiaojun
  email: dingxiaojun2016@gmail.com
  organization: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China
– sequence: 8
  givenname: Qingxu
  orcidid: 0000-0001-7669-2080
  surname: Meng
  fullname: Meng, Qingxu
  email: mqx@hust.edu.cn
  organization: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China
BookMark eNp9kUtv1DAUhS1UJNrCHomNJdYZ_IgTZwltoSPN8KhGbKOLfdN6lLEH2yn0F_Vv4sxULFiwupbv-e6RzjkjJz54JOQ1ZwvOWfdus1wuBON6IXTLhZLPyCnval4xpthJeSvFKymYfEHOUtoyJlsmu1Py-Dnc40jXmO-CpR8goaXB0-8QHWQXPJRdsEgv0YTdPiQ3f1LwlgK9KSPs6KVLJrqd8wW4R_o1hi2ag-zqd464Q7pCiN75W7oGc-c80iFEup7G7PZjAcIvjPTbBKPLD_O1PMUf4A3Sm2J66w-WL8nzAcaEr57mOdl8vNpcXFerL5-WF-9XlZGqzRVo3jLdmsZibcXQKS67RlqBCIOCQdTa1kYIidCCNUo3umtqaxsjWKeslufk7fHsPoafE6bcb8MUSwqpF6Kk12nNZhU7qkwMKUUc-n0JAOJDz1k_t9GXNvq5jf6pjYI0_yDG5UPCOYIb_we-OYIOEf_66LrRrOnkH_UanFs
CODEN ITIICH
CitedBy_id crossref_primary_10_1016_j_rser_2023_114088
crossref_primary_10_1109_TII_2023_3285030
crossref_primary_10_1016_j_ijepes_2022_108797
crossref_primary_10_1049_iet_gtd_2019_0812
crossref_primary_10_1016_j_rineng_2024_103873
crossref_primary_10_1016_j_epsr_2023_109939
crossref_primary_10_1016_j_epsr_2024_110283
crossref_primary_10_1080_15325008_2023_2207561
crossref_primary_10_1109_TIM_2021_3054673
crossref_primary_10_3390_en11113040
crossref_primary_10_1016_j_asoc_2024_111326
crossref_primary_10_1142_S0218348X24500592
crossref_primary_10_1109_ACCESS_2021_3124511
crossref_primary_10_1049_ell2_13312
crossref_primary_10_1109_JSYST_2021_3128213
crossref_primary_10_1109_TII_2020_2977980
crossref_primary_10_1109_TII_2022_3185293
crossref_primary_10_1016_j_epsr_2022_107866
crossref_primary_10_1109_TSG_2020_2990079
crossref_primary_10_1109_TIM_2025_3540138
crossref_primary_10_1016_j_epsr_2021_107682
crossref_primary_10_1016_j_epsr_2024_110413
crossref_primary_10_1109_TII_2023_3240929
crossref_primary_10_1109_TIM_2023_3312492
crossref_primary_10_1109_TII_2020_3016594
crossref_primary_10_1109_TNNLS_2020_3027984
crossref_primary_10_1016_j_compeleceng_2021_107100
crossref_primary_10_1016_j_epsr_2022_108664
crossref_primary_10_1109_TIE_2019_2952823
crossref_primary_10_2139_ssrn_4164374
crossref_primary_10_1109_TIM_2022_3204985
crossref_primary_10_1016_j_egyr_2022_09_068
crossref_primary_10_1016_j_measurement_2025_117358
crossref_primary_10_1016_j_suscom_2020_100417
crossref_primary_10_23919_PCMP_2023_000296
crossref_primary_10_3390_en16062685
crossref_primary_10_1109_TIE_2022_3189107
crossref_primary_10_1109_TIM_2021_3052554
crossref_primary_10_1016_j_measurement_2019_107453
crossref_primary_10_1109_TII_2020_2966223
crossref_primary_10_1049_gtd2_12407
crossref_primary_10_1109_TIE_2022_3194575
crossref_primary_10_3390_electronics10212725
crossref_primary_10_1109_TII_2021_3104008
crossref_primary_10_1109_TIM_2023_3265756
crossref_primary_10_3390_en13040935
crossref_primary_10_1016_j_rser_2020_110050
crossref_primary_10_1049_gtd2_12364
crossref_primary_10_1109_TIM_2025_3547128
crossref_primary_10_1016_j_epsr_2022_108695
crossref_primary_10_1109_TII_2024_3393497
crossref_primary_10_1088_1742_6596_1952_2_022057
crossref_primary_10_1109_TII_2021_3115567
crossref_primary_10_1109_TII_2023_3321024
crossref_primary_10_3389_fenrg_2024_1363028
crossref_primary_10_1109_TII_2023_3345451
crossref_primary_10_1002_ese3_1516
crossref_primary_10_1109_TIM_2023_3250220
crossref_primary_10_1049_gtd2_12378
crossref_primary_10_1049_gtd2_12056
crossref_primary_10_1109_ACCESS_2024_3350170
crossref_primary_10_1007_s00202_020_01075_7
crossref_primary_10_1016_j_prime_2025_100919
Cites_doi 10.1016/j.ins.2009.06.010
10.1016/j.dsp.2013.02.012
10.1109/TNN.2011.2170220
10.24963/ijcai.2017/466
10.1109/TIE.2016.2521615
10.1016/j.neucom.2005.12.126
10.1016/S0378-7796(02)00035-4
10.1109/TIE.2015.2506619
10.1109/TSMCB.2011.2168604
10.1016/j.epsr.2012.09.007
10.1109/TIE.2013.2272276
10.1023/A:1007649029923
10.1016/j.patcog.2006.12.019
10.1109/TIM.2013.2258761
10.1109/TIM.2016.2578518
10.1109/JSEN.2014.2377775
10.1109/TSP.2013.2288675
10.1109/TNNLS.2011.2178124
10.1109/TKDE.2006.162
10.1109/TSG.2015.2397431
10.1049/iet-smt.2016.0194
10.1109/TIM.2014.2330493
10.1109/TSG.2016.2624313
10.1016/j.epsr.2014.10.028
10.3390/e18060225
10.1109/TSG.2016.2626469
10.1016/j.neucom.2015.12.050
10.1016/j.measurement.2016.10.013
10.1109/TII.2012.2210230
10.4304/jcp.8.8.2110-2117
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2018.2871253
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 2926
ExternalDocumentID 10_1109_TII_2018_2871253
8468069
Genre orig-research
GrantInformation_xml – fundername: Major Science and Technology Foundation of Guangdong Province
  grantid: 2015B010104002
– fundername: State Key Laboratory of Synthetical Automation for Process
  grantid: PAL-N201806
– fundername: National Natural Science Foundation of China
  grantid: 51277080; 51707069
  funderid: 10.13039/501100001809
– fundername: Youth Scholars Educational Commission of Fujian Province of China
  grantid: JT180147
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-a817087c6de4d2f9513963d2eeaf5af248d4c223ea7adc5868964dd6c2095d83
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Mon Jun 30 10:20:51 EDT 2025
Thu Apr 24 22:57:03 EDT 2025
Tue Jul 01 03:06:12 EDT 2025
Wed Aug 27 02:35:31 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-a817087c6de4d2f9513963d2eeaf5af248d4c223ea7adc5868964dd6c2095d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5500-7523
0000-0003-0957-8805
0000-0001-8052-1233
0000-0002-6200-8142
0000-0001-7669-2080
PQID 2220398808
PQPubID 85507
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TII_2018_2871253
ieee_primary_8468069
crossref_primary_10_1109_TII_2018_2871253
proquest_journals_2220398808
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref30
zhigang (ref23) 2015; 6
ref32
ref10
ref2
ref38
ref16
ref19
(ref1) 2009
ref18
shen (ref26) 0
thirumala (ref20) 2018; 9
shamachurn (ref11) 2017; 17
kennedy (ref33) 2011
ref25
ref21
ref28
elisseeff (ref24) 0
ref27
zhou (ref22) 2011; 31
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
tan (ref37) 2010; 43
kubendran (ref17) 2017; 27
References_xml – ident: ref35
  doi: 10.1016/j.ins.2009.06.010
– ident: ref16
  doi: 10.1016/j.dsp.2013.02.012
– ident: ref28
  doi: 10.1109/TNN.2011.2170220
– ident: ref25
  doi: 10.24963/ijcai.2017/466
– ident: ref19
  doi: 10.1109/TIE.2016.2521615
– ident: ref29
  doi: 10.1016/j.neucom.2005.12.126
– start-page: 681
  year: 0
  ident: ref24
  article-title: A kernel method for multi-labelled classification
  publication-title: Proc Conf Neural Inf Process Syst Natural Synth
– start-page: 1c
  year: 2009
  ident: ref1
– ident: ref2
  doi: 10.1016/S0378-7796(02)00035-4
– ident: ref5
  doi: 10.1109/TIE.2015.2506619
– ident: ref30
  doi: 10.1109/TSMCB.2011.2168604
– ident: ref6
  doi: 10.1016/j.epsr.2012.09.007
– ident: ref14
  doi: 10.1109/TIE.2013.2272276
– ident: ref34
  doi: 10.1023/A:1007649029923
– ident: ref21
  doi: 10.1016/j.patcog.2006.12.019
– ident: ref12
  doi: 10.1109/TIM.2013.2258761
– volume: 17
  start-page: 1
  year: 2017
  ident: ref11
  article-title: Assessing the performance of a modified S-transform with probabilistic neural network, support vector machine and nearest neighbour classifiers for single and multiple power quality disturbances identification
  publication-title: Neural Comput Appl
– volume: 43
  start-page: 30
  year: 2010
  ident: ref37
  article-title: Numerical model framework of power quality events
  publication-title: Eur J Sci Res
– ident: ref13
  doi: 10.1109/TIM.2016.2578518
– volume: 27
  year: 2017
  ident: ref17
  article-title: Detection and classification of complex power quality disturbances using S-transform amplitude matrix-based decision tree for different noise levels
  publication-title: International Transactions on Electrical Energy Systems
– ident: ref18
  doi: 10.1109/JSEN.2014.2377775
– ident: ref36
  doi: 10.1109/TSP.2013.2288675
– start-page: 1
  year: 0
  ident: ref26
  article-title: Compact multi-label learning
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref31
  doi: 10.1109/TNNLS.2011.2178124
– ident: ref38
  doi: 10.1109/TKDE.2006.162
– volume: 6
  start-page: 1678
  year: 2015
  ident: ref23
  article-title: A classification method for complex power quality disturbances using EEMD and rank wavelet SVM
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2397431
– ident: ref8
  doi: 10.1049/iet-smt.2016.0194
– ident: ref7
  doi: 10.1109/TIM.2014.2330493
– volume: 9
  start-page: 3018
  year: 2018
  ident: ref20
  article-title: Tunable-Q wavelet transform and dual multiclass SVM for online automatic detection of power quality disturbances
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2624313
– ident: ref15
  doi: 10.1016/j.epsr.2014.10.028
– ident: ref27
  doi: 10.3390/e18060225
– ident: ref9
  doi: 10.1109/TSG.2016.2626469
– ident: ref4
  doi: 10.1016/j.neucom.2015.12.050
– ident: ref3
  doi: 10.1016/j.measurement.2016.10.013
– ident: ref10
  doi: 10.1109/TII.2012.2210230
– volume: 31
  start-page: 45
  year: 2011
  ident: ref22
  article-title: Application of multi-label classification method to categorization of multiple power quality disturbances
  publication-title: Proc CSEE
– start-page: 760
  year: 2011
  ident: ref33
  publication-title: Particle Swarm Optimization
– ident: ref32
  doi: 10.4304/jcp.8.8.2110-2117
SSID ssj0037039
Score 2.502888
Snippet Power quality events are usually associated with more than one disturbance and their recognition is typically based on multilabel learning. In this study, we...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2915
SubjectTerms Algorithms
Classification
Classifiers
Decomposition
discriminative projection
extreme learning machine (ELM)
Feature extraction
Machine learning
multilabel
multiple power quality disturbance (MPQD)
Neural networks
Particle swarm optimization
Pattern classification
Power engineering computing
Power quality
Power system faults
Projection
Recognition
Support vector machines
variational mode decomposition (VMD)
Title Novel Method Based on Variational Mode Decomposition and a Random Discriminative Projection Extreme Learning Machine for Multiple Power Quality Disturbance Recognition
URI https://ieeexplore.ieee.org/document/8468069
https://www.proquest.com/docview/2220398808
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuDAqyAWCpoDFySym8aJYx_7VIuUqqoW1FvkJ6ooCYIsAv5Q_yYzjrPiJcQpOdiWpRnPy5-_YezFrgkUpoqs0GWRlV6ZzARjMsFNQP-bB-vpgXNzJk7elK8vq8sN9mr9FsZ7H8Fnfk6_8S7f9XZFpbIF-kqZC7XJNjFxG99qTVaXo-aqyI1a7Wa8yPl0JZmrxfL0lDBcck7ZQVHxX1xQ7KnyhyGO3uX4LmumfY2gkvfz1WDm9vtvlI3_u_F77E4KM2Fv1Iv7bMN3D9jtn8gHt9nNWf_FX0MTW0jDPnozB30HbzF5TgVCoEZpcOgJdp6wXaA7Bxou8NN_gMMrMjoEpiGjCedjVYeGHX0dqPAIib71HTQRtOkBY2RoEogRzqlFG4w0Ht9oNfR_htQQLiZcU989ZMvjo-XBSZbaNmSWV_WQaeL8k7UVzpeuCBjCcTzlrvBeh0qHopSutBiVeF1rZysppBKlc8IWGO45yR-xra7v_GMGItScG6G906pUtlahcoRLtaqSwVX5jC0mQbY2UZpTZ43rNqY2uWpR9C2Jvk2in7GX6xkfRzqPf4zdJkmuxyUhztjOpCttOu-fW4yyUP_QFsonf5_1lN3CtdUIldxhW8OnlX-G4cxgnkc9_gHfqvT3
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOQAHXgWxUGAOXJDIbjaOnfgItNUuNKuqWlBvkZ8IURIEWQT8If4mM4mz4iXEKTnYiaUZz3y2P3_D2KO5CQRTZZLpPEtyr0xigjGJ5CZg_k2D9XTBuVrJxav8xZk422FPtndhvPc9-cxP6bU_y3et3dBW2QxzZZlKdYFdxLwv5sNtrTHucvRd1aujinnCs5SPh5Kpmq2XS2JxlVNaH2SC_5KE-qoqf4TiPr8cXWPVOLKBVvJuuunM1H77TbTxf4d-nV2NQBOeDp5xg-345ia78pP84B77vmo_-3Oo-iLS8AzzmYO2gde4fI5bhECl0uDAE_E8srtANw40nOKjfQ8HbynsEJ2GwiacDPs61OzwS0dbjxAFXN9A1dM2PSBKhirSGOGEirTBIOTxlb6GGdCQI8LpyGxqm1tsfXS4fr5IYuGGxHJRdIkm1b-ysNL53GUBQRzHee4y73UQOmR56XKLuMTrQjsrSlkqmTsnbYaAz5X8Nttt2sbfYSBDwbmR2jutcmULFYQjZqpVogxOpBM2Gw1Z2yhqTrU1zut-cZOqGk1fk-nraPoJe7zt8WEQ9PhH2z2y5LZdNOKE7Y--UscZ_6lGnIX-h9GwvPv3Xg_ZpcW6Oq6Pl6uX99hl_I8aiJP7bLf7uPH3Edx05kHv0z8Axpf4QA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Method+Based+on+Variational+Mode+Decomposition+and+a+Random+Discriminative+Projection+Extreme+Learning+Machine+for+Multiple+Power+Quality+Disturbance+Recognition&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Chen%2C+Zhao&rft.au=Li%2C+Kaicheng&rft.au=Li%2C+Yuanzheng&rft.au=Wang%2C+Lingyun&rft.date=2019-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=15&rft.issue=5&rft.spage=2915&rft_id=info:doi/10.1109%2FTII.2018.2871253&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon