A Comparison of Model Averaging Techniques to Predict the Spatial Distribution of Soil Properties
This study tested and evaluated a suite of nine individual base learners and seven model averaging techniques for predicting the spatial distribution of soil properties in central Iran. Based on the nested-cross validation approach, the results showed that the artificial neural network and Random Fo...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 3; p. 472 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study tested and evaluated a suite of nine individual base learners and seven model averaging techniques for predicting the spatial distribution of soil properties in central Iran. Based on the nested-cross validation approach, the results showed that the artificial neural network and Random Forest base learners were the most effective in predicting soil organic matter and electrical conductivity, respectively. However, all seven model averaging techniques performed better than the base learners. For example, the Granger–Ramanathan averaging approach resulted in the highest prediction accuracy for soil organic matter, while the Bayesian model averaging approach was most effective in predicting sand content. These results indicate that the model averaging approaches could improve the predictive accuracy for soil properties. The resulting maps, produced at a 30 m spatial resolution, can be used as valuable baseline information for managing environmental resources more effectively. |
---|---|
AbstractList | This study tested and evaluated a suite of nine individual base learners and seven model averaging techniques for predicting the spatial distribution of soil properties in central Iran. Based on the nested-cross validation approach, the results showed that the artificial neural network and Random Forest base learners were the most effective in predicting soil organic matter and electrical conductivity, respectively. However, all seven model averaging techniques performed better than the base learners. For example, the Granger–Ramanathan averaging approach resulted in the highest prediction accuracy for soil organic matter, while the Bayesian model averaging approach was most effective in predicting sand content. These results indicate that the model averaging approaches could improve the predictive accuracy for soil properties. The resulting maps, produced at a 30 m spatial resolution, can be used as valuable baseline information for managing environmental resources more effectively. |
Author | Scholten, Thomas Heung, Brandon Taghizadeh-Mehrjardi, Ruhollah Khademi, Hossein Khayamim, Fatemeh Zeraatpisheh, Mojtaba |
Author_xml | – sequence: 1 givenname: Ruhollah surname: Taghizadeh-Mehrjardi fullname: Taghizadeh-Mehrjardi, Ruhollah – sequence: 2 givenname: Hossein orcidid: 0000-0003-2945-122X surname: Khademi fullname: Khademi, Hossein – sequence: 3 givenname: Fatemeh surname: Khayamim fullname: Khayamim, Fatemeh – sequence: 4 givenname: Mojtaba orcidid: 0000-0001-7209-0744 surname: Zeraatpisheh fullname: Zeraatpisheh, Mojtaba – sequence: 5 givenname: Brandon surname: Heung fullname: Heung, Brandon – sequence: 6 givenname: Thomas orcidid: 0000-0002-4875-2602 surname: Scholten fullname: Scholten, Thomas |
BookMark | eNptkU2LFDEQhoOs4LruxV8Q8CLCaD476eMwfuzCisKu51CdVM9m6Om0SUbw35vZEZXFulRRPPXyVtVzcjanGQl5ydlbKXv2LheumGTKiCfkXDAjVkr04uyf-hm5LGXHWkjJe6bOCazpJu0XyLGkmaaRfk4BJ7r-gRm2cd7SO_T3c_x-wEJrol8zhugrrfdIbxeoESb6Ppaa43Co8aRwm-LUwLRgrhHLC_J0hKng5e98Qb59_HC3uVrdfPl0vVnfrLzUpq5A284IZvXgrR87sNorZNIHOfQsAEiwQwDvdegD4IDWAvRBCeQaBsuFvCDXJ92QYOeWHPeQf7oE0T00Ut46aIb8hG6wpsNOyN72VgVtLBiLlrNgjB4DV03r9Ulryem4enX7WDxOE8yYDsWJTlnbcW76hr56hO7SIc9t00YJY4VhUjfqzYnyOZWScfxjkDN3fJ77-7wGs0ewjxWO560Z4vS_kV9vU51m |
CitedBy_id | crossref_primary_10_1007_s10661_022_10465_2 crossref_primary_10_3389_frsen_2024_1461537 crossref_primary_10_3389_fenvs_2023_1279712 crossref_primary_10_1016_j_geoderma_2022_115972 crossref_primary_10_3390_rs14102504 crossref_primary_10_3390_rs16224304 crossref_primary_10_3390_rs17050882 crossref_primary_10_3390_su151914125 crossref_primary_10_1007_s40808_022_01493_5 crossref_primary_10_1016_j_still_2024_106220 crossref_primary_10_1016_j_ecoinf_2022_101933 crossref_primary_10_1016_j_catena_2023_107440 crossref_primary_10_3390_land12010032 crossref_primary_10_1016_j_geoderma_2023_116604 crossref_primary_10_3390_rs15040876 crossref_primary_10_1016_j_catena_2023_106932 crossref_primary_10_1016_j_oregeorev_2022_104955 crossref_primary_10_1016_j_geodrs_2022_e00584 crossref_primary_10_3390_agriculture12070977 crossref_primary_10_1007_s40808_025_02331_0 crossref_primary_10_1080_10106049_2022_2138565 |
Cites_doi | 10.1016/j.geomorph.2013.06.010 10.14358/PERS.85.4.269 10.1016/j.still.2012.01.011 10.5194/soil-4-1-2018 10.3390/rs13193909 10.1002/for.3980030207 10.1198/016214503000000828 10.1016/j.geoderma.2013.09.023 10.1002/joc.5086 10.2134/agronmonogr9.2.2ed.c12 10.1016/j.scitotenv.2018.02.204 10.3390/soilsystems3020037 10.3390/w12092529 10.1016/j.catena.2021.105723 10.1016/j.rse.2015.11.032 10.1016/S0034-4257(02)00188-8 10.1016/j.geoderma.2014.03.025 10.1016/j.geoderma.2018.09.006 10.1007/s10661-016-5204-8 10.1590/18069657rbcs20170421 10.1016/j.compag.2019.03.007 10.1016/j.geoderma.2009.11.005 10.1016/j.geoderma.2019.07.005 10.1016/j.geoderma.2014.09.019 10.1016/j.geoderma.2014.04.033 10.1016/j.geoderma.2019.06.040 10.1016/j.catena.2019.104424 10.1007/s10661-017-6197-7 10.1016/j.geoderma.2016.05.005 10.1111/j.1475-4762.2006.00671.x 10.2136/sssaj2012.0275 10.1371/journal.pone.0170478 10.1007/978-1-4020-8592-5_16 10.1016/j.scitotenv.2019.136092 10.1198/016214503000000819 10.1214/ss/1009212519 10.1016/j.geoderma.2013.07.020 10.1255/jnirs.1157 10.1016/S0016-7061(03)00223-4 10.1016/j.geoderma.2021.115399 10.1111/ejss.12382 10.1016/j.geoderma.2018.08.006 10.1016/j.geoderma.2015.12.003 10.1007/s00477-010-0378-z 10.1029/2002WR001426 10.1016/j.geoderma.2021.115108 10.1016/S0341-8162(03)00136-X 10.1097/00010694-195408000-00012 10.1016/j.scitotenv.2017.01.062 10.1007/s11042-021-11422-w 10.1180/0009855023740112 10.1016/j.geoderma.2019.114139 10.1016/j.envpol.2020.115412 10.1175/MWR2906.1 10.2136/sssaj2014.05.0202 10.1016/j.catena.2013.07.001 10.1016/j.patcog.2021.108224 10.2307/2533961 10.1057/jors.1969.103 10.3390/rs12071095 10.1016/j.apm.2019.12.016 10.1016/j.catena.2016.05.026 10.1016/j.earscirev.2020.103359 10.1016/j.ecolind.2014.12.028 10.1016/j.geomorph.2017.02.015 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs14030472 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database - Proquest ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library ProQuest SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_b876e62398984d578a78e810d775fd14 10_3390_rs14030472 |
GeographicLocations | Iran |
GeographicLocations_xml | – name: Iran |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c357t-a58672085bc8cf6a85c4e03cd3b90daa3a8bdacc5d9daebe88aa9d42e15ab8123 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:30:14 EDT 2025 Thu Jul 10 17:05:24 EDT 2025 Fri Jul 25 11:54:11 EDT 2025 Tue Jul 01 01:59:01 EDT 2025 Thu Apr 24 23:01:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-a58672085bc8cf6a85c4e03cd3b90daa3a8bdacc5d9daebe88aa9d42e15ab8123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2945-122X 0000-0001-7209-0744 0000-0002-4875-2602 |
OpenAccessLink | https://www.proquest.com/docview/2627827035?pq-origsite=%requestingapplication% |
PQID | 2627827035 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b876e62398984d578a78e810d775fd14 proquest_miscellaneous_2648861179 proquest_journals_2627827035 crossref_primary_10_3390_rs14030472 crossref_citationtrail_10_3390_rs14030472 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wang (ref_24) 2020; 266 Malone (ref_71) 2014; 232-234 Claeskens (ref_53) 2003; 98 Toomanian (ref_70) 2016; 67 Wang (ref_77) 2020; 707 Zeraatpisheh (ref_17) 2022; 208 Sumner (ref_32) 1996; 5 Peng (ref_38) 2019; 337 Bajat (ref_19) 2010; 154 Sellami (ref_23) 2022; 121 Khayamim (ref_28) 2015; 23 Mahmoudabadi (ref_59) 2017; 189 Hamzehpour (ref_73) 2021; 399 ref_16 ref_15 Raftery (ref_52) 2005; 133 Page (ref_30) 1982; Volume 2 Khormali (ref_14) 2016; 276 Ayoubi (ref_58) 2012; 121 Meier (ref_67) 2018; 42 Nabiollahi (ref_9) 2016; 266 Jafari (ref_20) 2014; 201 Bogunovic (ref_5) 2017; 584–585 Khosravi (ref_3) 2014; 19 Hoeting (ref_51) 1999; 14 ref_21 ref_64 ref_27 Gallant (ref_36) 2003; 39 Allbed (ref_39) 2014; 230 Quine (ref_2) 2002; 57 Wadoux (ref_11) 2020; 210 Wang (ref_75) 2022; 405 Nussbaum (ref_72) 2018; 4 Brungard (ref_44) 2015; 239–240 Tajik (ref_45) 2019; 353 Peterson (ref_22) 2019; 85 Khademi (ref_74) 2003; 54 ref_35 ref_34 ref_33 ref_31 Zeraatpisheh (ref_8) 2019; 338 Wulder (ref_37) 2016; 185 Sarmast (ref_66) 2016; 145 Khaledian (ref_68) 2020; 81 Metternicht (ref_40) 2003; 85 Rouse (ref_42) 1974; 351 Brierley (ref_61) 2006; 38 Besalatpour (ref_12) 2013; 111 Fick (ref_43) 2017; 37 McBratney (ref_1) 2003; 117 Bates (ref_49) 1969; 20 Hjort (ref_54) 2003; 98 Akpa (ref_65) 2014; 78 Minasny (ref_76) 2014; 213 Diks (ref_25) 2010; 24 Wang (ref_57) 2018; 630 Mosleh (ref_62) 2016; 188 Adhikari (ref_18) 2014; 214–215 Stockmann (ref_26) 2016; 279 ref_47 Zeraatpisheh (ref_10) 2020; 188 ref_46 McLean (ref_29) 1982; Volume 2 Were (ref_69) 2015; 52 ref_41 Keshavarzi (ref_60) 2019; 159 Zeraatpisheh (ref_4) 2020; 363 ref_48 Zeraatpisheh (ref_13) 2017; 285 Buckland (ref_50) 1997; 53 Adhikari (ref_63) 2013; 77 Wang (ref_78) 2019; 353 Granger (ref_55) 1984; 3 Khormali (ref_56) 2003; 38 ref_7 ref_6 |
References_xml | – volume: 19 start-page: 45 year: 2014 ident: ref_3 article-title: Hazard assessment of desertification as a result of soil and water recourse degradation in Kashan Region, Iran publication-title: Desert – volume: 201 start-page: 86 year: 2014 ident: ref_20 article-title: Selection of a taxonomic level for soil mapping using diversity and map purity indices: A case study from an Iranian arid region publication-title: Geomorphology doi: 10.1016/j.geomorph.2013.06.010 – volume: 85 start-page: 269 year: 2019 ident: ref_22 article-title: Machine learning-based ensemble prediction of water-quality variables using feature-level and decision-level fusion with proximal remote sensing publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.85.4.269 – volume: 121 start-page: 18 year: 2012 ident: ref_58 article-title: Soil aggregation and organic carbon as affected by topography and land use change in western Iran publication-title: Soil Tillage Res. doi: 10.1016/j.still.2012.01.011 – volume: 4 start-page: 1 year: 2018 ident: ref_72 article-title: Evaluation of digital soil mapping approaches with large sets of environmental covariates publication-title: Soil doi: 10.5194/soil-4-1-2018 – ident: ref_16 doi: 10.3390/rs13193909 – volume: 3 start-page: 197 year: 1984 ident: ref_55 article-title: Improved methods of combining forecasts publication-title: J. Forecast. doi: 10.1002/for.3980030207 – volume: 98 start-page: 879 year: 2003 ident: ref_54 article-title: Frequentist Model Average Estimators publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214503000000828 – volume: 214–215 start-page: 101 year: 2014 ident: ref_18 article-title: Constructing a soil class map of Denmark based on the FAO legend using digital techniques publication-title: Geoderma doi: 10.1016/j.geoderma.2013.09.023 – volume: 37 start-page: 4302 year: 2017 ident: ref_43 article-title: WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas publication-title: Int. J. Climatol. doi: 10.1002/joc.5086 – volume: Volume 2 start-page: 199 year: 1982 ident: ref_29 article-title: Chemical and microbiological properties publication-title: Methods of Soil Analysis Part 2 doi: 10.2134/agronmonogr9.2.2ed.c12 – volume: 630 start-page: 367 year: 2018 ident: ref_57 article-title: High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.02.204 – ident: ref_27 doi: 10.3390/soilsystems3020037 – ident: ref_15 doi: 10.3390/w12092529 – volume: 208 start-page: 105723 year: 2022 ident: ref_17 article-title: Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates publication-title: Catena doi: 10.1016/j.catena.2021.105723 – ident: ref_35 – volume: 185 start-page: 271 year: 2016 ident: ref_37 article-title: The global Landsat archive: Status, consolidation, and direction publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.11.032 – volume: 85 start-page: 1 year: 2003 ident: ref_40 article-title: Remote sensing of soil salinity: Potentials and constraints publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00188-8 – volume: 230 start-page: 1 year: 2014 ident: ref_39 article-title: Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region publication-title: Geoderma doi: 10.1016/j.geoderma.2014.03.025 – volume: 338 start-page: 445 year: 2019 ident: ref_8 article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.006 – volume: 188 start-page: 195 year: 2016 ident: ref_62 article-title: The effectiveness of digital soil mapping to predict soil properties over low-relief areas publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-016-5204-8 – volume: 42 start-page: 1 year: 2018 ident: ref_67 article-title: Digital Soil Mapping Using Machine Learning Algorithms in a Tropical Mountainous Area publication-title: Rev. Bras. Cienc. Solo doi: 10.1590/18069657rbcs20170421 – volume: 159 start-page: 147 year: 2019 ident: ref_60 article-title: Determining the best ISUM (Improved stock unearthing Method) sampling point number to model long-term soil transport and micro-topographical changes in vineyards publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.03.007 – volume: 57 start-page: 55 year: 2002 ident: ref_2 article-title: An investigation of spatial variation in soil erosion, soil properties, and crop production within an agricultural field in Devon, United Kingdom publication-title: J. Soil Water Conserv. – volume: 154 start-page: 340 year: 2010 ident: ref_19 article-title: Soil type classification and estimation of soil properties using support vector machines publication-title: Geoderma doi: 10.1016/j.geoderma.2009.11.005 – volume: 353 start-page: 252 year: 2019 ident: ref_45 article-title: Digital mapping of soil invertebrates using environmental attributes in a deciduous forest ecosystem publication-title: Geoderma doi: 10.1016/j.geoderma.2019.07.005 – ident: ref_31 – volume: 239–240 start-page: 68 year: 2015 ident: ref_44 article-title: Machine learning for predicting soil classes in three semi-arid landscapes publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.019 – ident: ref_48 – volume: 5 start-page: 1201 year: 1996 ident: ref_32 article-title: Cation exchange capacity and exchange coefficients publication-title: Methods Soil Anal: Part 3 Chemical Methods – volume: 232-234 start-page: 34 year: 2014 ident: ref_71 article-title: Using model averaging to combine soil property rasters from legacy soil maps and from point data publication-title: Geoderma doi: 10.1016/j.geoderma.2014.04.033 – volume: 353 start-page: 172 year: 2019 ident: ref_78 article-title: Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China publication-title: Geoderma doi: 10.1016/j.geoderma.2019.06.040 – volume: 188 start-page: 104424 year: 2020 ident: ref_10 article-title: Conventional and digital soil mapping in Iran: Past, present, and future publication-title: Catena doi: 10.1016/j.catena.2019.104424 – volume: 189 start-page: 500 year: 2017 ident: ref_59 article-title: Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-017-6197-7 – volume: 279 start-page: 31 year: 2016 ident: ref_26 article-title: An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties publication-title: Geoderma doi: 10.1016/j.geoderma.2016.05.005 – volume: 38 start-page: 165 year: 2006 ident: ref_61 article-title: Landscape connectivity: The geographic basis of geomorphic applications publication-title: Area doi: 10.1111/j.1475-4762.2006.00671.x – volume: 77 start-page: 860 year: 2013 ident: ref_63 article-title: High-Resolution 3-D Mapping of Soil Texture in Denmark publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2012.0275 – ident: ref_6 doi: 10.1371/journal.pone.0170478 – ident: ref_41 doi: 10.1007/978-1-4020-8592-5_16 – volume: 707 start-page: 136092 year: 2020 ident: ref_77 article-title: Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.136092 – volume: 98 start-page: 900 year: 2003 ident: ref_53 article-title: The Focused Information Criterion publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214503000000819 – volume: 14 start-page: 382 year: 1999 ident: ref_51 article-title: Bayesian model averaging: A tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors publication-title: Stat. Sci. doi: 10.1214/ss/1009212519 – volume: 213 start-page: 15 year: 2014 ident: ref_76 article-title: Digital mapping of soil salinity in Ardakan region, central Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.020 – volume: 23 start-page: 155 year: 2015 ident: ref_28 article-title: Using Visible and near Infrared Spectroscopy to Estimate Carbonates and Gypsum in Soils in Arid and Subhumid Regions of Isfahan, Iran publication-title: J. Near Infrared Spectrosc. doi: 10.1255/jnirs.1157 – volume: 117 start-page: 3 year: 2003 ident: ref_1 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: Volume 2 start-page: 643 year: 1982 ident: ref_30 article-title: Nitrogen—Inorganic Forms publication-title: Methods of Soil Analysis Part 2 – volume: 405 start-page: 115399 year: 2022 ident: ref_75 article-title: Assessing toxic metal chromium in the soil in coal mining areas via proximal sensing: Prerequisites for land rehabilitation and sustainable development publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115399 – ident: ref_47 – volume: 67 start-page: 707 year: 2016 ident: ref_70 article-title: Predicting and mapping of soil particle-size fractions with adaptive neuro-fuzzy inference and ant colony optimization in central Iran publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12382 – volume: 337 start-page: 1309 year: 2019 ident: ref_38 article-title: Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China publication-title: Geoderma doi: 10.1016/j.geoderma.2018.08.006 – volume: 266 start-page: 98 year: 2016 ident: ref_9 article-title: Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2015.12.003 – volume: 24 start-page: 809 year: 2010 ident: ref_25 article-title: Comparison of point forecast accuracy of model averaging methods in hydrologic applications publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-010-0378-z – volume: 39 start-page: 1347 year: 2003 ident: ref_36 article-title: A multiresolution index of valley bottom flatness for mapping depositional areas publication-title: Water Resour. Res. doi: 10.1029/2002WR001426 – volume: 399 start-page: 115108 year: 2021 ident: ref_73 article-title: Enhancing the accuracy of machine learning models using the super learner technique in digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115108 – volume: 276 start-page: 141 year: 2016 ident: ref_14 article-title: Legacy soil maps as a covariate in digital soil mapping: A case study from Northern Iran publication-title: Geoderma – volume: 54 start-page: 439 year: 2003 ident: ref_74 article-title: Micromorphology and classification of Argids and associated gypsiferous Aridisols from central Iran publication-title: Catena doi: 10.1016/S0341-8162(03)00136-X – ident: ref_34 doi: 10.1097/00010694-195408000-00012 – volume: 584–585 start-page: 535 year: 2017 ident: ref_5 article-title: Spatial distribution of soil chemical properties in an organic farm in Croatia publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.01.062 – ident: ref_21 doi: 10.1007/s11042-021-11422-w – volume: 38 start-page: 511 year: 2003 ident: ref_56 article-title: Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran publication-title: Clay Miner. doi: 10.1180/0009855023740112 – volume: 363 start-page: 114139 year: 2020 ident: ref_4 article-title: Assessing the effects of deforestation and intensive agriculture on the soil quality through digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114139 – volume: 266 start-page: 115412 year: 2020 ident: ref_24 article-title: Ensemble machine-learning-based framework for estimating total nitrogen concentration in water using drone-borne hyperspectral imagery of emergent plants: A case study in an arid oasis, NW China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.115412 – volume: 133 start-page: 1155 year: 2005 ident: ref_52 article-title: Using Bayesian model averaging to calibrate forecast ensembles publication-title: Mon. Weather Rev. doi: 10.1175/MWR2906.1 – volume: 78 start-page: 1953 year: 2014 ident: ref_65 article-title: Digital Mapping of Soil Particle-Size Fractions for Nigeria publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2014.05.0202 – volume: 111 start-page: 72 year: 2013 ident: ref_12 article-title: Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed publication-title: Catena doi: 10.1016/j.catena.2013.07.001 – volume: 121 start-page: 108224 year: 2022 ident: ref_23 article-title: Deep neural networks-based relevant latent representation learning for hyperspectral image classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108224 – ident: ref_33 – volume: 351 start-page: 309 year: 1974 ident: ref_42 article-title: Monitoring vegetation systems in the Great Plains with ERTS publication-title: NASA Spec. Publ. – volume: 53 start-page: 603 year: 1997 ident: ref_50 article-title: Model Selection: An Integral Part of Inference publication-title: Biometrics doi: 10.2307/2533961 – ident: ref_46 – volume: 20 start-page: 451 year: 1969 ident: ref_49 article-title: The Combination of Forecasts publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.1969.103 – ident: ref_64 – ident: ref_7 doi: 10.3390/rs12071095 – volume: 81 start-page: 401 year: 2020 ident: ref_68 article-title: Selecting appropriate machine learning methods for digital soil mapping publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.12.016 – volume: 145 start-page: 83 year: 2016 ident: ref_66 article-title: Comparing Soil Taxonomy (2014) and updated WRB (2015) for describing calcareous and gypsiferous soils, Central Iran publication-title: Catena doi: 10.1016/j.catena.2016.05.026 – volume: 210 start-page: 103359 year: 2020 ident: ref_11 article-title: Machine learning for digital soil mapping: Applications, challenges and suggested solutions publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2020.103359 – volume: 52 start-page: 394 year: 2015 ident: ref_69 article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2014.12.028 – volume: 285 start-page: 186 year: 2017 ident: ref_13 article-title: Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.02.015 |
SSID | ssj0000331904 |
Score | 2.4024825 |
Snippet | This study tested and evaluated a suite of nine individual base learners and seven model averaging techniques for predicting the spatial distribution of soil... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 472 |
SubjectTerms | Accuracy Artificial neural networks Bayesian analysis Bayesian theory Electrical conductivity Electrical resistivity Environmental management Genetic algorithms Information management Iran machine learning model averaging Neural networks Organic matter Particle size prediction Remote sensing sand fraction Soil organic matter Soil properties Soils Spatial discrimination Spatial distribution spatial modeling Spatial resolution Topography Variables |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kF72IT6xWWdGLh9Akm33kWKulCIpgC72FfQWF0pQ2PfjvnUnSqih48RTIzi7LzOzMLLv7fYRcK8Ys5H0RJJBsg8RwESihReBDI13iuHESXyM_PonhOHmY8MkXqi-8E1bDA9eK6xpYrl4gSl2qoK9UWiqvotBJyXNXUVjHkPO-bKaqGMzAtcKkxiNlsK_vLpaITIfYiN8yUAXU_yMOV8llsEd2m6qQ9urZ7JMtPzsg2w1B-ev7IdE92t8wBtIip8hhBh3AESuaITpaY7EuaVnQ5wWev5QUqjuKpMPgZPQOIXIbdisc4aV4m4JgMceb1X55RMaD-1F_GDTsCIFlXJaB5kpIZNg0VtlcaMVt4kNmHTNp6LRmWhmnreUudRpMpZTWqUtiH3FtIK2zY9KaFTN_QqiI8tTmqQx97BMmdApDpvCJjI1iaGqTm7XGMttAhyODxTSDLQRqN_vUbptcbWTnNWDGr1K3qPiNBIJcVz_A9Flj-uwv07dJZ222rFl5yywWMRQ9EMd4m1xummHN4EGInvlihTIQtgSC4Z3-xzzOyE6MjyKqu9wd0ioXK38OpUppLiqv_ACWIOYq priority: 102 providerName: Directory of Open Access Journals |
Title | A Comparison of Model Averaging Techniques to Predict the Spatial Distribution of Soil Properties |
URI | https://www.proquest.com/docview/2627827035 https://www.proquest.com/docview/2648861179 https://doaj.org/article/b876e62398984d578a78e810d775fd14 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7R5gAXxFMESrQILhys2t6nTyh9hArRqqKt1Ju1LxekKg6xe-DfM-NsXCEQJ0v2eA-z387s7OP7AD4Yzj3mfZUJTLaZcFJlRlmVxdzpIIJ0QdNt5NMzdXIlvlzL67Tg1qVjlduYOATq0HpaI98vVYnJDPEpP61-ZqQaRburSUJjByYYgg0WX5OD47Pzb-MqS84RYrnY8JJyrO_31x0x1BFH4h-ZaCDs_yseD0lm8QQep9khm2-68yk8iMtn8DAJlX__9RzsnB2OyoGsbRhpmeEPCMhBbohdbjlZO9a37HxN-zA9w1keI_FhBBs7IqrcpHJFLVy0P27RsF3RCevYvYCrxfHl4UmWVBIyz6XuMyuN0qS06bzxjbJGehFz7gN3VR6s5da4YL2XoQoWu8wYa6sgylhI6zC985ewu2yX8RUwVTSVbyqdxzIKrmyFTVb4KJwvSvw0hY9bj9U-UYiTksVtjaUEebe-9-4U3o-2qw1xxj-tDsjxowWRXQ8v2vVNncZO7TBiR0VEhZVB-GhjtYmmyIPWsgmFmMLettvqNAK7-h4vU3g3fsaxQxsidhnbO7LB8KWIFO_1_5t4A49KuvYwnNbeg91-fRff4mSkdzPYMYvPM5jMj06_XswS_mZDaf8bkHTjmA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FcAgXFDYxJIRGwIGDFdu9uH1AUUgYJmQREhMpN9ObA1I0nowdRfkpvpEqj-0IgbjlZMldbsnVr7p6fQ_grebcYd5XkcBkGwkrVaSVUVGIbeaFl9ZndBv5-ERNTsWXM3m2Ar_6uzB0rLLvE9uO2leO1si3U5ViMkN8yp35ZUSqUbS72ktoLGFxGG6uccpWfzjYx_Z9l6bjT9O9SdSpCkSOy6yJjNQqI2VK67QrldHSiRBz57nNY28MN9p645z0uTf4i1obk3uRhkQai-mQY7334L7gPKeI0uPPw5pOzBHQsViyoGJ5vL2oiQ-PGBn_yHutPMBfvX-b0sbr8LAbi7LdJXgewUqYPYa1Thb9x80TMLtsb9ApZFXJSDkNP0D4t-JGbNozwNasqdjXBe36NAzHlIykjhHabJ-IeTtNLarhW_XzAg2rOZ3nDvVTOL0T7z2D1Vk1C8-BqaTMXZlncUiD4MrkWGWOj8S6JMWiEbzvPVa4jrCcdDMuCpy4kHeLW--O4M1gO1_SdPzT6iM5frAgau32RbU4L7pILSzmh6CIFjHXCNZMm0wHncQ-y2TpEzGCzb7Zii7e6-IWnSN4PRRjpNL2i5mF6opssLNURMH34v9VvIK1yfT4qDg6ODncgAcpXbhoz4lvwmqzuAovcRjU2K0Wewy-3zXYfwPadB5q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKdIKbAIOHCwYnu9Dx8QaptGLYUoglbqzd2XoVIVh8QV6l_j1zHj2K4QiFtPlrzjlTz77c4-Zr8P4I3m3GHcl1GGwTbKrJCRlkZGIbbKZ15Yr-g28uepPDjJPp6K0w341d2FobTKbkxsBmpfOdojH6UyxWCG-BSjsk2LmI0nHxY_IlKQopPWTk5jDZGjcPUTl2-r94djbOu3aTrZP947iFqFgchxoerICC0VqVRap10pjRYuCzF3nts89sZwo603zgmfe4O_q7Uxuc_SkAhjMTRyrPcWbCpcFcUD2Nzdn86-9Ds8MUd4x9maE5XzPB4tV8SOR_yMf0TBRizgr1jQBLjJfbjXzkzZzhpKD2AjzB_CnVYk_fvVIzA7bK9XLWRVyUhHDT_AztBIHbHjjg92xeqKzZZ0BlQznGEyEj5GoLMx0fS2CltUw9fq_AINqwVld4fVYzi5Ef89gcG8moenwGRS5q7MVRzSkHFpcqwyx0diXZJi0RDedR4rXEtfTioaFwUuY8i7xbV3h_C6t12sSTv-abVLju8tiGi7eVEtvxVtvy0sRosgiSQx1whdpY3SQSexV0qUPsmGsN01W9H2_lVxjdUhvOqLsd_SYYyZh-qSbHDolETIt_X_Kl7CbQR68elwevQM7qZ0-6JJGt-GQb28DM9xTlTbFy34GJzdNN5_A5YZI_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparison+of+Model+Averaging+Techniques+to+Predict+the+Spatial+Distribution+of+Soil+Properties&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Taghizadeh-Mehrjardi%2C+Ruhollah&rft.au=Khademi%2C+Hossein&rft.au=Khayamim%2C+Fatemeh&rft.au=Zeraatpisheh%2C+Mojtaba&rft.date=2022-02-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=3&rft.spage=472&rft_id=info:doi/10.3390%2Frs14030472&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |