A Comparison of Model Averaging Techniques to Predict the Spatial Distribution of Soil Properties

This study tested and evaluated a suite of nine individual base learners and seven model averaging techniques for predicting the spatial distribution of soil properties in central Iran. Based on the nested-cross validation approach, the results showed that the artificial neural network and Random Fo...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 3; p. 472
Main Authors Taghizadeh-Mehrjardi, Ruhollah, Khademi, Hossein, Khayamim, Fatemeh, Zeraatpisheh, Mojtaba, Heung, Brandon, Scholten, Thomas
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study tested and evaluated a suite of nine individual base learners and seven model averaging techniques for predicting the spatial distribution of soil properties in central Iran. Based on the nested-cross validation approach, the results showed that the artificial neural network and Random Forest base learners were the most effective in predicting soil organic matter and electrical conductivity, respectively. However, all seven model averaging techniques performed better than the base learners. For example, the Granger–Ramanathan averaging approach resulted in the highest prediction accuracy for soil organic matter, while the Bayesian model averaging approach was most effective in predicting sand content. These results indicate that the model averaging approaches could improve the predictive accuracy for soil properties. The resulting maps, produced at a 30 m spatial resolution, can be used as valuable baseline information for managing environmental resources more effectively.
AbstractList This study tested and evaluated a suite of nine individual base learners and seven model averaging techniques for predicting the spatial distribution of soil properties in central Iran. Based on the nested-cross validation approach, the results showed that the artificial neural network and Random Forest base learners were the most effective in predicting soil organic matter and electrical conductivity, respectively. However, all seven model averaging techniques performed better than the base learners. For example, the Granger–Ramanathan averaging approach resulted in the highest prediction accuracy for soil organic matter, while the Bayesian model averaging approach was most effective in predicting sand content. These results indicate that the model averaging approaches could improve the predictive accuracy for soil properties. The resulting maps, produced at a 30 m spatial resolution, can be used as valuable baseline information for managing environmental resources more effectively.
Author Scholten, Thomas
Heung, Brandon
Taghizadeh-Mehrjardi, Ruhollah
Khademi, Hossein
Khayamim, Fatemeh
Zeraatpisheh, Mojtaba
Author_xml – sequence: 1
  givenname: Ruhollah
  surname: Taghizadeh-Mehrjardi
  fullname: Taghizadeh-Mehrjardi, Ruhollah
– sequence: 2
  givenname: Hossein
  orcidid: 0000-0003-2945-122X
  surname: Khademi
  fullname: Khademi, Hossein
– sequence: 3
  givenname: Fatemeh
  surname: Khayamim
  fullname: Khayamim, Fatemeh
– sequence: 4
  givenname: Mojtaba
  orcidid: 0000-0001-7209-0744
  surname: Zeraatpisheh
  fullname: Zeraatpisheh, Mojtaba
– sequence: 5
  givenname: Brandon
  surname: Heung
  fullname: Heung, Brandon
– sequence: 6
  givenname: Thomas
  orcidid: 0000-0002-4875-2602
  surname: Scholten
  fullname: Scholten, Thomas
BookMark eNptkU2LFDEQhoOs4LruxV8Q8CLCaD476eMwfuzCisKu51CdVM9m6Om0SUbw35vZEZXFulRRPPXyVtVzcjanGQl5ydlbKXv2LheumGTKiCfkXDAjVkr04uyf-hm5LGXHWkjJe6bOCazpJu0XyLGkmaaRfk4BJ7r-gRm2cd7SO_T3c_x-wEJrol8zhugrrfdIbxeoESb6Ppaa43Co8aRwm-LUwLRgrhHLC_J0hKng5e98Qb59_HC3uVrdfPl0vVnfrLzUpq5A284IZvXgrR87sNorZNIHOfQsAEiwQwDvdegD4IDWAvRBCeQaBsuFvCDXJ92QYOeWHPeQf7oE0T00Ut46aIb8hG6wpsNOyN72VgVtLBiLlrNgjB4DV03r9Ulryem4enX7WDxOE8yYDsWJTlnbcW76hr56hO7SIc9t00YJY4VhUjfqzYnyOZWScfxjkDN3fJ77-7wGs0ewjxWO560Z4vS_kV9vU51m
CitedBy_id crossref_primary_10_1007_s10661_022_10465_2
crossref_primary_10_3389_frsen_2024_1461537
crossref_primary_10_3389_fenvs_2023_1279712
crossref_primary_10_1016_j_geoderma_2022_115972
crossref_primary_10_3390_rs14102504
crossref_primary_10_3390_rs16224304
crossref_primary_10_3390_rs17050882
crossref_primary_10_3390_su151914125
crossref_primary_10_1007_s40808_022_01493_5
crossref_primary_10_1016_j_still_2024_106220
crossref_primary_10_1016_j_ecoinf_2022_101933
crossref_primary_10_1016_j_catena_2023_107440
crossref_primary_10_3390_land12010032
crossref_primary_10_1016_j_geoderma_2023_116604
crossref_primary_10_3390_rs15040876
crossref_primary_10_1016_j_catena_2023_106932
crossref_primary_10_1016_j_oregeorev_2022_104955
crossref_primary_10_1016_j_geodrs_2022_e00584
crossref_primary_10_3390_agriculture12070977
crossref_primary_10_1007_s40808_025_02331_0
crossref_primary_10_1080_10106049_2022_2138565
Cites_doi 10.1016/j.geomorph.2013.06.010
10.14358/PERS.85.4.269
10.1016/j.still.2012.01.011
10.5194/soil-4-1-2018
10.3390/rs13193909
10.1002/for.3980030207
10.1198/016214503000000828
10.1016/j.geoderma.2013.09.023
10.1002/joc.5086
10.2134/agronmonogr9.2.2ed.c12
10.1016/j.scitotenv.2018.02.204
10.3390/soilsystems3020037
10.3390/w12092529
10.1016/j.catena.2021.105723
10.1016/j.rse.2015.11.032
10.1016/S0034-4257(02)00188-8
10.1016/j.geoderma.2014.03.025
10.1016/j.geoderma.2018.09.006
10.1007/s10661-016-5204-8
10.1590/18069657rbcs20170421
10.1016/j.compag.2019.03.007
10.1016/j.geoderma.2009.11.005
10.1016/j.geoderma.2019.07.005
10.1016/j.geoderma.2014.09.019
10.1016/j.geoderma.2014.04.033
10.1016/j.geoderma.2019.06.040
10.1016/j.catena.2019.104424
10.1007/s10661-017-6197-7
10.1016/j.geoderma.2016.05.005
10.1111/j.1475-4762.2006.00671.x
10.2136/sssaj2012.0275
10.1371/journal.pone.0170478
10.1007/978-1-4020-8592-5_16
10.1016/j.scitotenv.2019.136092
10.1198/016214503000000819
10.1214/ss/1009212519
10.1016/j.geoderma.2013.07.020
10.1255/jnirs.1157
10.1016/S0016-7061(03)00223-4
10.1016/j.geoderma.2021.115399
10.1111/ejss.12382
10.1016/j.geoderma.2018.08.006
10.1016/j.geoderma.2015.12.003
10.1007/s00477-010-0378-z
10.1029/2002WR001426
10.1016/j.geoderma.2021.115108
10.1016/S0341-8162(03)00136-X
10.1097/00010694-195408000-00012
10.1016/j.scitotenv.2017.01.062
10.1007/s11042-021-11422-w
10.1180/0009855023740112
10.1016/j.geoderma.2019.114139
10.1016/j.envpol.2020.115412
10.1175/MWR2906.1
10.2136/sssaj2014.05.0202
10.1016/j.catena.2013.07.001
10.1016/j.patcog.2021.108224
10.2307/2533961
10.1057/jors.1969.103
10.3390/rs12071095
10.1016/j.apm.2019.12.016
10.1016/j.catena.2016.05.026
10.1016/j.earscirev.2020.103359
10.1016/j.ecolind.2014.12.028
10.1016/j.geomorph.2017.02.015
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14030472
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database - Proquest
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
ProQuest SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
AGRICOLA
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_b876e62398984d578a78e810d775fd14
10_3390_rs14030472
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c357t-a58672085bc8cf6a85c4e03cd3b90daa3a8bdacc5d9daebe88aa9d42e15ab8123
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:30:14 EDT 2025
Thu Jul 10 17:05:24 EDT 2025
Fri Jul 25 11:54:11 EDT 2025
Tue Jul 01 01:59:01 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-a58672085bc8cf6a85c4e03cd3b90daa3a8bdacc5d9daebe88aa9d42e15ab8123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2945-122X
0000-0001-7209-0744
0000-0002-4875-2602
OpenAccessLink https://www.proquest.com/docview/2627827035?pq-origsite=%requestingapplication%
PQID 2627827035
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_b876e62398984d578a78e810d775fd14
proquest_miscellaneous_2648861179
proquest_journals_2627827035
crossref_primary_10_3390_rs14030472
crossref_citationtrail_10_3390_rs14030472
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_24) 2020; 266
Malone (ref_71) 2014; 232-234
Claeskens (ref_53) 2003; 98
Toomanian (ref_70) 2016; 67
Wang (ref_77) 2020; 707
Zeraatpisheh (ref_17) 2022; 208
Sumner (ref_32) 1996; 5
Peng (ref_38) 2019; 337
Bajat (ref_19) 2010; 154
Sellami (ref_23) 2022; 121
Khayamim (ref_28) 2015; 23
Mahmoudabadi (ref_59) 2017; 189
Hamzehpour (ref_73) 2021; 399
ref_16
ref_15
Raftery (ref_52) 2005; 133
Page (ref_30) 1982; Volume 2
Khormali (ref_14) 2016; 276
Ayoubi (ref_58) 2012; 121
Meier (ref_67) 2018; 42
Nabiollahi (ref_9) 2016; 266
Jafari (ref_20) 2014; 201
Bogunovic (ref_5) 2017; 584–585
Khosravi (ref_3) 2014; 19
Hoeting (ref_51) 1999; 14
ref_21
ref_64
ref_27
Gallant (ref_36) 2003; 39
Allbed (ref_39) 2014; 230
Quine (ref_2) 2002; 57
Wadoux (ref_11) 2020; 210
Wang (ref_75) 2022; 405
Nussbaum (ref_72) 2018; 4
Brungard (ref_44) 2015; 239–240
Tajik (ref_45) 2019; 353
Peterson (ref_22) 2019; 85
Khademi (ref_74) 2003; 54
ref_35
ref_34
ref_33
ref_31
Zeraatpisheh (ref_8) 2019; 338
Wulder (ref_37) 2016; 185
Sarmast (ref_66) 2016; 145
Khaledian (ref_68) 2020; 81
Metternicht (ref_40) 2003; 85
Rouse (ref_42) 1974; 351
Brierley (ref_61) 2006; 38
Besalatpour (ref_12) 2013; 111
Fick (ref_43) 2017; 37
McBratney (ref_1) 2003; 117
Bates (ref_49) 1969; 20
Hjort (ref_54) 2003; 98
Akpa (ref_65) 2014; 78
Minasny (ref_76) 2014; 213
Diks (ref_25) 2010; 24
Wang (ref_57) 2018; 630
Mosleh (ref_62) 2016; 188
Adhikari (ref_18) 2014; 214–215
Stockmann (ref_26) 2016; 279
ref_47
Zeraatpisheh (ref_10) 2020; 188
ref_46
McLean (ref_29) 1982; Volume 2
Were (ref_69) 2015; 52
ref_41
Keshavarzi (ref_60) 2019; 159
Zeraatpisheh (ref_4) 2020; 363
ref_48
Zeraatpisheh (ref_13) 2017; 285
Buckland (ref_50) 1997; 53
Adhikari (ref_63) 2013; 77
Wang (ref_78) 2019; 353
Granger (ref_55) 1984; 3
Khormali (ref_56) 2003; 38
ref_7
ref_6
References_xml – volume: 19
  start-page: 45
  year: 2014
  ident: ref_3
  article-title: Hazard assessment of desertification as a result of soil and water recourse degradation in Kashan Region, Iran
  publication-title: Desert
– volume: 201
  start-page: 86
  year: 2014
  ident: ref_20
  article-title: Selection of a taxonomic level for soil mapping using diversity and map purity indices: A case study from an Iranian arid region
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2013.06.010
– volume: 85
  start-page: 269
  year: 2019
  ident: ref_22
  article-title: Machine learning-based ensemble prediction of water-quality variables using feature-level and decision-level fusion with proximal remote sensing
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.85.4.269
– volume: 121
  start-page: 18
  year: 2012
  ident: ref_58
  article-title: Soil aggregation and organic carbon as affected by topography and land use change in western Iran
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2012.01.011
– volume: 4
  start-page: 1
  year: 2018
  ident: ref_72
  article-title: Evaluation of digital soil mapping approaches with large sets of environmental covariates
  publication-title: Soil
  doi: 10.5194/soil-4-1-2018
– ident: ref_16
  doi: 10.3390/rs13193909
– volume: 3
  start-page: 197
  year: 1984
  ident: ref_55
  article-title: Improved methods of combining forecasts
  publication-title: J. Forecast.
  doi: 10.1002/for.3980030207
– volume: 98
  start-page: 879
  year: 2003
  ident: ref_54
  article-title: Frequentist Model Average Estimators
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214503000000828
– volume: 214–215
  start-page: 101
  year: 2014
  ident: ref_18
  article-title: Constructing a soil class map of Denmark based on the FAO legend using digital techniques
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.09.023
– volume: 37
  start-page: 4302
  year: 2017
  ident: ref_43
  article-title: WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5086
– volume: Volume 2
  start-page: 199
  year: 1982
  ident: ref_29
  article-title: Chemical and microbiological properties
  publication-title: Methods of Soil Analysis Part 2
  doi: 10.2134/agronmonogr9.2.2ed.c12
– volume: 630
  start-page: 367
  year: 2018
  ident: ref_57
  article-title: High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.02.204
– ident: ref_27
  doi: 10.3390/soilsystems3020037
– ident: ref_15
  doi: 10.3390/w12092529
– volume: 208
  start-page: 105723
  year: 2022
  ident: ref_17
  article-title: Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105723
– ident: ref_35
– volume: 185
  start-page: 271
  year: 2016
  ident: ref_37
  article-title: The global Landsat archive: Status, consolidation, and direction
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.11.032
– volume: 85
  start-page: 1
  year: 2003
  ident: ref_40
  article-title: Remote sensing of soil salinity: Potentials and constraints
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00188-8
– volume: 230
  start-page: 1
  year: 2014
  ident: ref_39
  article-title: Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.03.025
– volume: 338
  start-page: 445
  year: 2019
  ident: ref_8
  article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.006
– volume: 188
  start-page: 195
  year: 2016
  ident: ref_62
  article-title: The effectiveness of digital soil mapping to predict soil properties over low-relief areas
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-016-5204-8
– volume: 42
  start-page: 1
  year: 2018
  ident: ref_67
  article-title: Digital Soil Mapping Using Machine Learning Algorithms in a Tropical Mountainous Area
  publication-title: Rev. Bras. Cienc. Solo
  doi: 10.1590/18069657rbcs20170421
– volume: 159
  start-page: 147
  year: 2019
  ident: ref_60
  article-title: Determining the best ISUM (Improved stock unearthing Method) sampling point number to model long-term soil transport and micro-topographical changes in vineyards
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.03.007
– volume: 57
  start-page: 55
  year: 2002
  ident: ref_2
  article-title: An investigation of spatial variation in soil erosion, soil properties, and crop production within an agricultural field in Devon, United Kingdom
  publication-title: J. Soil Water Conserv.
– volume: 154
  start-page: 340
  year: 2010
  ident: ref_19
  article-title: Soil type classification and estimation of soil properties using support vector machines
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.11.005
– volume: 353
  start-page: 252
  year: 2019
  ident: ref_45
  article-title: Digital mapping of soil invertebrates using environmental attributes in a deciduous forest ecosystem
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.07.005
– ident: ref_31
– volume: 239–240
  start-page: 68
  year: 2015
  ident: ref_44
  article-title: Machine learning for predicting soil classes in three semi-arid landscapes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.019
– ident: ref_48
– volume: 5
  start-page: 1201
  year: 1996
  ident: ref_32
  article-title: Cation exchange capacity and exchange coefficients
  publication-title: Methods Soil Anal: Part 3 Chemical Methods
– volume: 232-234
  start-page: 34
  year: 2014
  ident: ref_71
  article-title: Using model averaging to combine soil property rasters from legacy soil maps and from point data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.04.033
– volume: 353
  start-page: 172
  year: 2019
  ident: ref_78
  article-title: Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.06.040
– volume: 188
  start-page: 104424
  year: 2020
  ident: ref_10
  article-title: Conventional and digital soil mapping in Iran: Past, present, and future
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104424
– volume: 189
  start-page: 500
  year: 2017
  ident: ref_59
  article-title: Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-017-6197-7
– volume: 279
  start-page: 31
  year: 2016
  ident: ref_26
  article-title: An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.05.005
– volume: 38
  start-page: 165
  year: 2006
  ident: ref_61
  article-title: Landscape connectivity: The geographic basis of geomorphic applications
  publication-title: Area
  doi: 10.1111/j.1475-4762.2006.00671.x
– volume: 77
  start-page: 860
  year: 2013
  ident: ref_63
  article-title: High-Resolution 3-D Mapping of Soil Texture in Denmark
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2012.0275
– ident: ref_6
  doi: 10.1371/journal.pone.0170478
– ident: ref_41
  doi: 10.1007/978-1-4020-8592-5_16
– volume: 707
  start-page: 136092
  year: 2020
  ident: ref_77
  article-title: Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.136092
– volume: 98
  start-page: 900
  year: 2003
  ident: ref_53
  article-title: The Focused Information Criterion
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214503000000819
– volume: 14
  start-page: 382
  year: 1999
  ident: ref_51
  article-title: Bayesian model averaging: A tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1009212519
– volume: 213
  start-page: 15
  year: 2014
  ident: ref_76
  article-title: Digital mapping of soil salinity in Ardakan region, central Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.020
– volume: 23
  start-page: 155
  year: 2015
  ident: ref_28
  article-title: Using Visible and near Infrared Spectroscopy to Estimate Carbonates and Gypsum in Soils in Arid and Subhumid Regions of Isfahan, Iran
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1255/jnirs.1157
– volume: 117
  start-page: 3
  year: 2003
  ident: ref_1
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: Volume 2
  start-page: 643
  year: 1982
  ident: ref_30
  article-title: Nitrogen—Inorganic Forms
  publication-title: Methods of Soil Analysis Part 2
– volume: 405
  start-page: 115399
  year: 2022
  ident: ref_75
  article-title: Assessing toxic metal chromium in the soil in coal mining areas via proximal sensing: Prerequisites for land rehabilitation and sustainable development
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115399
– ident: ref_47
– volume: 67
  start-page: 707
  year: 2016
  ident: ref_70
  article-title: Predicting and mapping of soil particle-size fractions with adaptive neuro-fuzzy inference and ant colony optimization in central Iran
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12382
– volume: 337
  start-page: 1309
  year: 2019
  ident: ref_38
  article-title: Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.08.006
– volume: 266
  start-page: 98
  year: 2016
  ident: ref_9
  article-title: Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.12.003
– volume: 24
  start-page: 809
  year: 2010
  ident: ref_25
  article-title: Comparison of point forecast accuracy of model averaging methods in hydrologic applications
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-010-0378-z
– volume: 39
  start-page: 1347
  year: 2003
  ident: ref_36
  article-title: A multiresolution index of valley bottom flatness for mapping depositional areas
  publication-title: Water Resour. Res.
  doi: 10.1029/2002WR001426
– volume: 399
  start-page: 115108
  year: 2021
  ident: ref_73
  article-title: Enhancing the accuracy of machine learning models using the super learner technique in digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115108
– volume: 276
  start-page: 141
  year: 2016
  ident: ref_14
  article-title: Legacy soil maps as a covariate in digital soil mapping: A case study from Northern Iran
  publication-title: Geoderma
– volume: 54
  start-page: 439
  year: 2003
  ident: ref_74
  article-title: Micromorphology and classification of Argids and associated gypsiferous Aridisols from central Iran
  publication-title: Catena
  doi: 10.1016/S0341-8162(03)00136-X
– ident: ref_34
  doi: 10.1097/00010694-195408000-00012
– volume: 584–585
  start-page: 535
  year: 2017
  ident: ref_5
  article-title: Spatial distribution of soil chemical properties in an organic farm in Croatia
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.01.062
– ident: ref_21
  doi: 10.1007/s11042-021-11422-w
– volume: 38
  start-page: 511
  year: 2003
  ident: ref_56
  article-title: Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran
  publication-title: Clay Miner.
  doi: 10.1180/0009855023740112
– volume: 363
  start-page: 114139
  year: 2020
  ident: ref_4
  article-title: Assessing the effects of deforestation and intensive agriculture on the soil quality through digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.114139
– volume: 266
  start-page: 115412
  year: 2020
  ident: ref_24
  article-title: Ensemble machine-learning-based framework for estimating total nitrogen concentration in water using drone-borne hyperspectral imagery of emergent plants: A case study in an arid oasis, NW China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.115412
– volume: 133
  start-page: 1155
  year: 2005
  ident: ref_52
  article-title: Using Bayesian model averaging to calibrate forecast ensembles
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR2906.1
– volume: 78
  start-page: 1953
  year: 2014
  ident: ref_65
  article-title: Digital Mapping of Soil Particle-Size Fractions for Nigeria
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2014.05.0202
– volume: 111
  start-page: 72
  year: 2013
  ident: ref_12
  article-title: Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed
  publication-title: Catena
  doi: 10.1016/j.catena.2013.07.001
– volume: 121
  start-page: 108224
  year: 2022
  ident: ref_23
  article-title: Deep neural networks-based relevant latent representation learning for hyperspectral image classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108224
– ident: ref_33
– volume: 351
  start-page: 309
  year: 1974
  ident: ref_42
  article-title: Monitoring vegetation systems in the Great Plains with ERTS
  publication-title: NASA Spec. Publ.
– volume: 53
  start-page: 603
  year: 1997
  ident: ref_50
  article-title: Model Selection: An Integral Part of Inference
  publication-title: Biometrics
  doi: 10.2307/2533961
– ident: ref_46
– volume: 20
  start-page: 451
  year: 1969
  ident: ref_49
  article-title: The Combination of Forecasts
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.1969.103
– ident: ref_64
– ident: ref_7
  doi: 10.3390/rs12071095
– volume: 81
  start-page: 401
  year: 2020
  ident: ref_68
  article-title: Selecting appropriate machine learning methods for digital soil mapping
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.12.016
– volume: 145
  start-page: 83
  year: 2016
  ident: ref_66
  article-title: Comparing Soil Taxonomy (2014) and updated WRB (2015) for describing calcareous and gypsiferous soils, Central Iran
  publication-title: Catena
  doi: 10.1016/j.catena.2016.05.026
– volume: 210
  start-page: 103359
  year: 2020
  ident: ref_11
  article-title: Machine learning for digital soil mapping: Applications, challenges and suggested solutions
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2020.103359
– volume: 52
  start-page: 394
  year: 2015
  ident: ref_69
  article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2014.12.028
– volume: 285
  start-page: 186
  year: 2017
  ident: ref_13
  article-title: Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.02.015
SSID ssj0000331904
Score 2.4024825
Snippet This study tested and evaluated a suite of nine individual base learners and seven model averaging techniques for predicting the spatial distribution of soil...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 472
SubjectTerms Accuracy
Artificial neural networks
Bayesian analysis
Bayesian theory
Electrical conductivity
Electrical resistivity
Environmental management
Genetic algorithms
Information management
Iran
machine learning
model averaging
Neural networks
Organic matter
Particle size
prediction
Remote sensing
sand fraction
Soil organic matter
Soil properties
Soils
Spatial discrimination
Spatial distribution
spatial modeling
Spatial resolution
Topography
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kF72IT6xWWdGLh9Akm33kWKulCIpgC72FfQWF0pQ2PfjvnUnSqih48RTIzi7LzOzMLLv7fYRcK8Ys5H0RJJBsg8RwESihReBDI13iuHESXyM_PonhOHmY8MkXqi-8E1bDA9eK6xpYrl4gSl2qoK9UWiqvotBJyXNXUVjHkPO-bKaqGMzAtcKkxiNlsK_vLpaITIfYiN8yUAXU_yMOV8llsEd2m6qQ9urZ7JMtPzsg2w1B-ev7IdE92t8wBtIip8hhBh3AESuaITpaY7EuaVnQ5wWev5QUqjuKpMPgZPQOIXIbdisc4aV4m4JgMceb1X55RMaD-1F_GDTsCIFlXJaB5kpIZNg0VtlcaMVt4kNmHTNp6LRmWhmnreUudRpMpZTWqUtiH3FtIK2zY9KaFTN_QqiI8tTmqQx97BMmdApDpvCJjI1iaGqTm7XGMttAhyODxTSDLQRqN_vUbptcbWTnNWDGr1K3qPiNBIJcVz_A9Flj-uwv07dJZ222rFl5yywWMRQ9EMd4m1xummHN4EGInvlihTIQtgSC4Z3-xzzOyE6MjyKqu9wd0ioXK38OpUppLiqv_ACWIOYq
  priority: 102
  providerName: Directory of Open Access Journals
Title A Comparison of Model Averaging Techniques to Predict the Spatial Distribution of Soil Properties
URI https://www.proquest.com/docview/2627827035
https://www.proquest.com/docview/2648861179
https://doaj.org/article/b876e62398984d578a78e810d775fd14
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7R5gAXxFMESrQILhys2t6nTyh9hArRqqKt1Ju1LxekKg6xe-DfM-NsXCEQJ0v2eA-z387s7OP7AD4Yzj3mfZUJTLaZcFJlRlmVxdzpIIJ0QdNt5NMzdXIlvlzL67Tg1qVjlduYOATq0HpaI98vVYnJDPEpP61-ZqQaRburSUJjByYYgg0WX5OD47Pzb-MqS84RYrnY8JJyrO_31x0x1BFH4h-ZaCDs_yseD0lm8QQep9khm2-68yk8iMtn8DAJlX__9RzsnB2OyoGsbRhpmeEPCMhBbohdbjlZO9a37HxN-zA9w1keI_FhBBs7IqrcpHJFLVy0P27RsF3RCevYvYCrxfHl4UmWVBIyz6XuMyuN0qS06bzxjbJGehFz7gN3VR6s5da4YL2XoQoWu8wYa6sgylhI6zC985ewu2yX8RUwVTSVbyqdxzIKrmyFTVb4KJwvSvw0hY9bj9U-UYiTksVtjaUEebe-9-4U3o-2qw1xxj-tDsjxowWRXQ8v2vVNncZO7TBiR0VEhZVB-GhjtYmmyIPWsgmFmMLettvqNAK7-h4vU3g3fsaxQxsidhnbO7LB8KWIFO_1_5t4A49KuvYwnNbeg91-fRff4mSkdzPYMYvPM5jMj06_XswS_mZDaf8bkHTjmA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FcAgXFDYxJIRGwIGDFdu9uH1AUUgYJmQREhMpN9ObA1I0nowdRfkpvpEqj-0IgbjlZMldbsnVr7p6fQ_grebcYd5XkcBkGwkrVaSVUVGIbeaFl9ZndBv5-ERNTsWXM3m2Ar_6uzB0rLLvE9uO2leO1si3U5ViMkN8yp35ZUSqUbS72ktoLGFxGG6uccpWfzjYx_Z9l6bjT9O9SdSpCkSOy6yJjNQqI2VK67QrldHSiRBz57nNY28MN9p645z0uTf4i1obk3uRhkQai-mQY7334L7gPKeI0uPPw5pOzBHQsViyoGJ5vL2oiQ-PGBn_yHutPMBfvX-b0sbr8LAbi7LdJXgewUqYPYa1Thb9x80TMLtsb9ApZFXJSDkNP0D4t-JGbNozwNasqdjXBe36NAzHlIykjhHabJ-IeTtNLarhW_XzAg2rOZ3nDvVTOL0T7z2D1Vk1C8-BqaTMXZlncUiD4MrkWGWOj8S6JMWiEbzvPVa4jrCcdDMuCpy4kHeLW--O4M1gO1_SdPzT6iM5frAgau32RbU4L7pILSzmh6CIFjHXCNZMm0wHncQ-y2TpEzGCzb7Zii7e6-IWnSN4PRRjpNL2i5mF6opssLNURMH34v9VvIK1yfT4qDg6ODncgAcpXbhoz4lvwmqzuAovcRjU2K0Wewy-3zXYfwPadB5q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKdIKbAIOHCwYnu9Dx8QaptGLYUoglbqzd2XoVIVh8QV6l_j1zHj2K4QiFtPlrzjlTz77c4-Zr8P4I3m3GHcl1GGwTbKrJCRlkZGIbbKZ15Yr-g28uepPDjJPp6K0w341d2FobTKbkxsBmpfOdojH6UyxWCG-BSjsk2LmI0nHxY_IlKQopPWTk5jDZGjcPUTl2-r94djbOu3aTrZP947iFqFgchxoerICC0VqVRap10pjRYuCzF3nts89sZwo603zgmfe4O_q7Uxuc_SkAhjMTRyrPcWbCpcFcUD2Nzdn86-9Ds8MUd4x9maE5XzPB4tV8SOR_yMf0TBRizgr1jQBLjJfbjXzkzZzhpKD2AjzB_CnVYk_fvVIzA7bK9XLWRVyUhHDT_AztBIHbHjjg92xeqKzZZ0BlQznGEyEj5GoLMx0fS2CltUw9fq_AINqwVld4fVYzi5Ef89gcG8moenwGRS5q7MVRzSkHFpcqwyx0diXZJi0RDedR4rXEtfTioaFwUuY8i7xbV3h_C6t12sSTv-abVLju8tiGi7eVEtvxVtvy0sRosgiSQx1whdpY3SQSexV0qUPsmGsN01W9H2_lVxjdUhvOqLsd_SYYyZh-qSbHDolETIt_X_Kl7CbQR68elwevQM7qZ0-6JJGt-GQb28DM9xTlTbFy34GJzdNN5_A5YZI_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparison+of+Model+Averaging+Techniques+to+Predict+the+Spatial+Distribution+of+Soil+Properties&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Taghizadeh-Mehrjardi%2C+Ruhollah&rft.au=Khademi%2C+Hossein&rft.au=Khayamim%2C+Fatemeh&rft.au=Zeraatpisheh%2C+Mojtaba&rft.date=2022-02-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=3&rft.spage=472&rft_id=info:doi/10.3390%2Frs14030472&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon