Heat flux: thermohydraulic investigation of solar air heaters used in agro-industrial applications

A new design of solar air heater simulator is presented to comply with the extensive applications inagro-industry. A wise installation of increased heat transfer surface area provided uniform and efficient heat diffusion over the duct. Nusselt number and friction factor have been investigated based...

Full description

Saved in:
Bibliographic Details
Published inHeat and mass transfer Vol. 53; no. 3; pp. 917 - 928
Main Authors Rahmati Aidinlou, H., Nikbakht, A. M.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new design of solar air heater simulator is presented to comply with the extensive applications inagro-industry. A wise installation of increased heat transfer surface area provided uniform and efficient heat diffusion over the duct. Nusselt number and friction factor have been investigated based on the constant roughness parameters such as relative roughness height (e/D), relative roughness pitch (P/e), angle of attack (α) and aspect ratio with Reynolds numbers ranging from 5000 to 19,000 in the fully developed region. Heat fluxes of 800, 900 and 1000 Wm −2 were provided. The enhancement in friction factor is observed to be 3.1656, 3.47 and 3.0856 times, and for the Nusselt number either, augmentation is calculated to be 1.4437, 1.4963 and 1.535 times, respectively, over the smooth duct for 800, 900 and 1000 Wm −2 heat fluxes. Thermohydraulic performance is plotted versus the Reynolds number based on the aforementioned roughness parameters at varying heat fluxes. The results show up that thermohydraulic performance is found to be maximum for 1000 Wm −2 at the average Reynolds number of 5151. Based on the results, we can verify that the introduced solar simulator can help analyzing and developing solar collector installations at the simulated heat fluxes.
AbstractList A new design of solar air heater simulator is presented to comply with the extensive applications inagro-industry. A wise installation of increased heat transfer surface area provided uniform and efficient heat diffusion over the duct. Nusselt number and friction factor have been investigated based on the constant roughness parameters such as relative roughness height (e/D), relative roughness pitch (P/e), angle of attack (α) and aspect ratio with Reynolds numbers ranging from 5000 to 19,000 in the fully developed region. Heat fluxes of 800, 900 and 1000 Wm−2 were provided. The enhancement in friction factor is observed to be 3.1656, 3.47 and 3.0856 times, and for the Nusselt number either, augmentation is calculated to be 1.4437, 1.4963 and 1.535 times, respectively, over the smooth duct for 800, 900 and 1000 Wm−2 heat fluxes. Thermohydraulic performance is plotted versus the Reynolds number based on the aforementioned roughness parameters at varying heat fluxes. The results show up that thermohydraulic performance is found to be maximum for 1000 Wm−2 at the average Reynolds number of 5151. Based on the results, we can verify that the introduced solar simulator can help analyzing and developing solar collector installations at the simulated heat fluxes.
A new design of solar air heater simulator is presented to comply with the extensive applications inagro-industry. A wise installation of increased heat transfer surface area provided uniform and efficient heat diffusion over the duct. Nusselt number and friction factor have been investigated based on the constant roughness parameters such as relative roughness height (e/D), relative roughness pitch (P/e), angle of attack (α) and aspect ratio with Reynolds numbers ranging from 5000 to 19,000 in the fully developed region. Heat fluxes of 800, 900 and 1000 Wm −2 were provided. The enhancement in friction factor is observed to be 3.1656, 3.47 and 3.0856 times, and for the Nusselt number either, augmentation is calculated to be 1.4437, 1.4963 and 1.535 times, respectively, over the smooth duct for 800, 900 and 1000 Wm −2 heat fluxes. Thermohydraulic performance is plotted versus the Reynolds number based on the aforementioned roughness parameters at varying heat fluxes. The results show up that thermohydraulic performance is found to be maximum for 1000 Wm −2 at the average Reynolds number of 5151. Based on the results, we can verify that the introduced solar simulator can help analyzing and developing solar collector installations at the simulated heat fluxes.
Author Nikbakht, A. M.
Rahmati Aidinlou, H.
Author_xml – sequence: 1
  givenname: H.
  surname: Rahmati Aidinlou
  fullname: Rahmati Aidinlou, H.
  organization: Mechanical Engineering of Biosystems, Urmia University
– sequence: 2
  givenname: A. M.
  surname: Nikbakht
  fullname: Nikbakht, A. M.
  email: a.nikbkaht@urmia.ac.ir
  organization: Mechanical Engineering of Biosystems, Urmia University
BookMark eNp1kLFOwzAURS1UJNrCB7BZYjb4JU7ssKEKKFIlFpitF8dpU6VxsBNE_x6XMLAweTnnPussyKxznSXkGvgtcC7vAudJCoxDzkDlgqkzMgeRJgxAwYzMeSEkkwLggixC2Ec6F0k6J-Xa4kDrdvy6p8PO-oPbHSuPY9sY2nSfNgzNFofGddTVNLgWPcXG0120rA90DLaKHMWtd6zpqjEMvsGWYt_HhR8xXJLzGttgr37fJXl_enxbrdnm9fll9bBhJs3kwFCUSgEkiEXGjagUZkrVpqhyizUaoUyZF6LMcmPrssqqvFQyx0KKos6kgSxdkptpt_fuY4w_13s3-i6e1KAUlxK4OlEwUca7ELytde-bA_qjBq5PKfWUUseU-pRSq-gkkxMi222t_7P8r_QN2wx6aw
CitedBy_id crossref_primary_10_1002_er_6255
crossref_primary_10_1007_s00521_017_3269_0
crossref_primary_10_1063_1_5095584
crossref_primary_10_1016_j_tsep_2021_100891
crossref_primary_10_1007_s00231_019_02735_6
crossref_primary_10_1108_HFF_04_2018_0169
crossref_primary_10_1007_s00231_020_02815_y
crossref_primary_10_1007_s00521_021_06547_w
Cites_doi 10.1016/0017-9310(63)90097-8
10.1016/j.energy.2008.02.017
10.1016/S0038-092X(97)00005-4
10.1016/j.solener.2005.08.006
10.1115/1.3246751
10.1016/0017-9310(96)00019-1
10.1016/j.rser.2009.01.030
10.1016/j.expthermflusci.2012.05.011
10.1016/j.renene.2007.03.023
10.1016/j.renene.2007.07.013
10.1016/j.solener.2008.05.010
10.1115/1.3239782
10.1016/j.solener.2007.01.017
10.1016/j.ijheatmasstransfer.2009.05.032
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2016
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2016
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
DOI 10.1007/s00231-016-1864-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1432-1181
EndPage 928
ExternalDocumentID 10_1007_s00231_016_1864_8
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29I
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAG
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADMVV
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEKVL
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c357t-a4b88112aa950c4d8a588fc9d6eafac48cb694b56cefbd5d6b876a9749f57c153
IEDL.DBID AGYKE
ISSN 0947-7411
IngestDate Thu Oct 10 16:40:50 EDT 2024
Thu Sep 12 19:07:17 EDT 2024
Sat Dec 16 12:00:01 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Absorber Plate
Heat Flux
Friction Factor
Nusselt Number
Exit Section
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-a4b88112aa950c4d8a588fc9d6eafac48cb694b56cefbd5d6b876a9749f57c153
PQID 1880771085
PQPubID 2043585
PageCount 12
ParticipantIDs proquest_journals_1880771085
crossref_primary_10_1007_s00231_016_1864_8
springer_journals_10_1007_s00231_016_1864_8
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Wärme- und Stoffübertragung
PublicationTitle Heat and mass transfer
PublicationTitleAbbrev Heat Mass Transfer
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Varun, Singal (CR18) 2008; 33
CR2
Han, Park, Lei (CR9) 1985; 107
Hans, Saini, Saini (CR12) 2009; 13
Aharwal, Gandhi, Saini (CR10) 2008; 33
Aharwal, Gandhi, Saini (CR13) 2009; 52
CR5
Varun, Singal (CR7) 2007; 81
CR16
Saini, Verma (CR14) 2008; 33
CR15
Han (CR8) 1984; 106
Saini, Saini (CR11) 1997; 40
Saini, Saini (CR3) 2008; 82
Gupta, Solanki, Saini (CR17) 1997; 61
Yadav, Kaushal, Varun (CR1) 2013; 44
Dipprey, Sabersky (CR6) 1963; 6
Jaurker, Saini, Gandhi (CR4) 2006; 80
RP Saini (1864_CR11) 1997; 40
KR Aharwal (1864_CR10) 2008; 33
SK Saini (1864_CR3) 2008; 82
AR Jaurker (1864_CR4) 2006; 80
JC Han (1864_CR9) 1985; 107
RP Saini (1864_CR14) 2008; 33
1864_CR5
1864_CR2
1864_CR15
1864_CR16
D Gupta (1864_CR17) 1997; 61
Saini RP Varun (1864_CR18) 2008; 33
DF Dipprey (1864_CR6) 1963; 6
S Yadav (1864_CR1) 2013; 44
JC Han (1864_CR8) 1984; 106
Saini RP Varun (1864_CR7) 2007; 81
VS Hans (1864_CR12) 2009; 13
KR Aharwal (1864_CR13) 2009; 52
References_xml – volume: 6
  start-page: 329
  issue: 5
  year: 1963
  end-page: 353
  ident: CR6
  article-title: Heat and momentum transfer in smooth and rough tubes at various prandtl numbers
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(63)90097-8
  contributor:
    fullname: Sabersky
– volume: 33
  start-page: 1277
  issue: 8
  year: 2008
  end-page: 1287
  ident: CR14
  article-title: Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters
  publication-title: Energy
  doi: 10.1016/j.energy.2008.02.017
  contributor:
    fullname: Verma
– ident: CR15
– ident: CR2
– ident: CR16
– volume: 61
  start-page: 33
  issue: 1
  year: 1997
  end-page: 42
  ident: CR17
  article-title: Thermohydraulic performance of solar air heaters with roughened absorber plates
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(97)00005-4
  contributor:
    fullname: Saini
– volume: 80
  start-page: 895
  issue: 8
  year: 2006
  end-page: 907
  ident: CR4
  article-title: Heat transfer and friction characteristics of rectangular solar air heater duct using rib-grooved artificial roughness
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2005.08.006
  contributor:
    fullname: Gandhi
– volume: 106
  start-page: 774
  issue: 4
  year: 1984
  end-page: 781
  ident: CR8
  article-title: Heat transfer and friction in channels with two opposite rib-roughened walls
  publication-title: J Heat Transf
  doi: 10.1115/1.3246751
  contributor:
    fullname: Han
– volume: 40
  start-page: 973
  issue: 4
  year: 1997
  end-page: 986
  ident: CR11
  article-title: Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughness element
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(96)00019-1
  contributor:
    fullname: Saini
– volume: 13
  start-page: 1854
  issue: 8
  year: 2009
  end-page: 1869
  ident: CR12
  article-title: Performance of artificially roughened solar air heaters—a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2009.01.030
  contributor:
    fullname: Saini
– volume: 44
  start-page: 34
  year: 2013
  end-page: 41
  ident: CR1
  article-title: Nusselt number and friction factor correlations for solar air heater duct having protrusions as roughness elements on absorber plate
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2012.05.011
  contributor:
    fullname: Varun
– volume: 33
  start-page: 585
  issue: 4
  year: 2008
  end-page: 596
  ident: CR10
  article-title: Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2007.03.023
  contributor:
    fullname: Saini
– volume: 33
  start-page: 1398
  issue: 6
  year: 2008
  end-page: 1405
  ident: CR18
  article-title: Investigation of thermal performance of solar air heater having roughness elements as a combination of inclined and transverse ribs on the absorber plate
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2007.07.013
  contributor:
    fullname: Singal
– volume: 82
  start-page: 1118
  issue: 12
  year: 2008
  end-page: 1130
  ident: CR3
  article-title: Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2008.05.010
  contributor:
    fullname: Saini
– ident: CR5
– volume: 107
  start-page: 628
  issue: 3
  year: 1985
  end-page: 635
  ident: CR9
  article-title: Heat transfer enhancement in channels with turbulence promoters
  publication-title: J Eng Gas Turbines Power
  doi: 10.1115/1.3239782
  contributor:
    fullname: Lei
– volume: 81
  start-page: 1340
  issue: 11
  year: 2007
  end-page: 1350
  ident: CR7
  article-title: A review on roughness geometry used in solar air heaters
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2007.01.017
  contributor:
    fullname: Singal
– volume: 52
  start-page: 5970
  issue: 25–26
  year: 2009
  end-page: 5977
  ident: CR13
  article-title: Heat transfer and friction characteristics of solar air heater ducts having integral inclined discrete ribs on absorber plate
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2009.05.032
  contributor:
    fullname: Saini
– volume: 81
  start-page: 1340
  issue: 11
  year: 2007
  ident: 1864_CR7
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2007.01.017
  contributor:
    fullname: Saini RP Varun
– volume: 80
  start-page: 895
  issue: 8
  year: 2006
  ident: 1864_CR4
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2005.08.006
  contributor:
    fullname: AR Jaurker
– volume: 52
  start-page: 5970
  issue: 25–26
  year: 2009
  ident: 1864_CR13
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2009.05.032
  contributor:
    fullname: KR Aharwal
– ident: 1864_CR2
– volume: 33
  start-page: 1398
  issue: 6
  year: 2008
  ident: 1864_CR18
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2007.07.013
  contributor:
    fullname: Saini RP Varun
– volume: 33
  start-page: 1277
  issue: 8
  year: 2008
  ident: 1864_CR14
  publication-title: Energy
  doi: 10.1016/j.energy.2008.02.017
  contributor:
    fullname: RP Saini
– volume: 82
  start-page: 1118
  issue: 12
  year: 2008
  ident: 1864_CR3
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2008.05.010
  contributor:
    fullname: SK Saini
– volume: 40
  start-page: 973
  issue: 4
  year: 1997
  ident: 1864_CR11
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(96)00019-1
  contributor:
    fullname: RP Saini
– ident: 1864_CR5
– volume: 44
  start-page: 34
  year: 2013
  ident: 1864_CR1
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2012.05.011
  contributor:
    fullname: S Yadav
– volume: 107
  start-page: 628
  issue: 3
  year: 1985
  ident: 1864_CR9
  publication-title: J Eng Gas Turbines Power
  doi: 10.1115/1.3239782
  contributor:
    fullname: JC Han
– ident: 1864_CR15
– volume: 13
  start-page: 1854
  issue: 8
  year: 2009
  ident: 1864_CR12
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2009.01.030
  contributor:
    fullname: VS Hans
– volume: 6
  start-page: 329
  issue: 5
  year: 1963
  ident: 1864_CR6
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(63)90097-8
  contributor:
    fullname: DF Dipprey
– volume: 61
  start-page: 33
  issue: 1
  year: 1997
  ident: 1864_CR17
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(97)00005-4
  contributor:
    fullname: D Gupta
– volume: 33
  start-page: 585
  issue: 4
  year: 2008
  ident: 1864_CR10
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2007.03.023
  contributor:
    fullname: KR Aharwal
– volume: 106
  start-page: 774
  issue: 4
  year: 1984
  ident: 1864_CR8
  publication-title: J Heat Transf
  doi: 10.1115/1.3246751
  contributor:
    fullname: JC Han
– ident: 1864_CR16
SSID ssj0026423
Score 2.204562
Snippet A new design of solar air heater simulator is presented to comply with the extensive applications inagro-industry. A wise installation of increased heat...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 917
SubjectTerms Aspect ratio
Engineering
Engineering Thermodynamics
Heat and Mass Transfer
Heat transfer
Industrial Chemistry/Chemical Engineering
Original
Surface area
Thermodynamics
Title Heat flux: thermohydraulic investigation of solar air heaters used in agro-industrial applications
URI https://link.springer.com/article/10.1007/s00231-016-1864-8
https://www.proquest.com/docview/1880771085
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BjIke_G1EkfTgSVMi0HadNzAg0ehJEj0tXbcqUTfDWKL-9b4ONvDXgfOaJutrv_e9vtfvARy7Qtq-i5KiAULKNNfUFY0GgqFGZ2VTP9llzs2t6A_Y1T2_L0GzuLqInut5RjID6uKtm_UuNvIVtCEFo3IJlrnV-yrDcvvy4bpbhFnIqCcN5JlD0V828lzmX5N890YzivkjK5o5m97G5AFgkmkU2hqT53o69uv687eC4wL_sQnrU-5J2pPNsgWlMNqGtTlFwm1YySpCdbIDfh9RmpiX9P2cWJL4Gj99BCOVvgw1Gc7EOeKIxIYkNkAmajgiFtuRUZI0CQMcR9TjKKbDoj8ImU-Y78Kg17276NNpQwaqW9wZU8V8KZGgKeXyM80CqbiURruBCJVRmkntC5f5XOjQ-AEPhI9YqzBicQ13NGLrHpSjOAr3gXBXmBZOhNGUYFoZZM9MnTlGKAQUJloVOMkN471NdDe8QmE5W0LP1qbZJfRkBaq56bzpEUw8KzTnOPZxRQVOc1PMff5vsoOFRh_CatM6-qwqrQrl8SgNj5CmjP0a7step3Nbm-7PGiwNmu0vzsHfvQ
link.rule.ids 315,786,790,27955,27956,41114,41556,42183,42625,52144,52267
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BEQIGBAVEoYAHJpClftiOw1YhqgJtp1bqFjlODJVKgppGgn_POU3SgmBgjnXDOb73znd-B3DtCmnnLkqKGxBSprmmrmg2MRhqBCtb-skucwZD0Ruzpwmf5O-4k6LbvShJZpG6fOxm4cWmvoI2pWBUbsKWlVO3fXzjVqfMspBQL-fHM4ciXDaLUuZvJr6D0Yph_iiKZljTPYD9nCSSznJXD2EjjKqwtyYdWIXtrHVTJ0fg9zCcEjNLP-6IZXNv8etnMFfpbKrJdKWiEUckNiSxmSxR0zmxQRipH0mTMMB1RL3MYzotB3mQ9cr2MYy7D6P7Hs0nJ1Dd5s6CKuZLiUxKKZc3NAuk4lIa7QYiVEZpJrUvXOZzoUPjBzwQPgZFhamFa7ijMQieQCWKo_AUCHeFaaMhTHsE08ogzWWq4Rih8OQz0a7BTeFC730pkOGVUsiZvz3bRGb97cka1Asne_lZSTyrCOc49hVEDW4Lx699_svY2b9WX8FObzToe_3H4fM57LYsOmetZHWoLOZpeIHcYuFfZv_SF7xLxG0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BEQgGBAVEoYAHJpDVL9tx2CqgKl8VA5W6RY4TQ6WSVE0jwb_nnDRtQTAwx_Jwdu698929Azh3hbRzFyXFAwgp01xTVzQa6Aw1gpVN_WSPOU890e2z-wEfzOacJkW1e5GSzHsarEpTNK2NA1ObN75ZqLFhsKANKRiVq7BmkdFe8X6zPY-4kFzns-SZQxE6G0Va87ctvgPTgm3-SJBmuNPZge0ZYSTt_IR3YSWMyrC1JCNYhvWsjFMne-B30bUSM0o_rohldu_x22cwUeloqMlwoagRRyQ2JLFRLVHDCbEOGWkgSZMwwHVEvU5iOpwP9SDLWe596HduX667dDZFgeoWd6ZUMV9KZFVKubyuWSAVl9JoNxChMkozqX3hMp8LHRo_4IHw0UEqDDNcwx2NDvEASlEchYdAuCtMCzfCEEgwrQxSXqbqjhEKvQATrQpcFCb0xrlYhjeXRc7s7dmCMmtvT1agWhjZm_03iWfV4RzHdkRU4LIw_NLnvzY7-tfqM9h4vul4j3e9h2PYbFqgzqrKqlCaTtLwBGnG1D_NrtIXYCrIsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+flux%3A+thermohydraulic+investigation+of+solar+air+heaters+used+in+agro-industrial+applications&rft.jtitle=Heat+and+mass+transfer&rft.au=H.+Rahmati+Aidinlou&rft.au=Nikbakht%2C+A+M&rft.date=2017-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0947-7411&rft.eissn=1432-1181&rft.volume=53&rft.issue=3&rft.spage=917&rft.epage=928&rft_id=info:doi/10.1007%2Fs00231-016-1864-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-7411&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-7411&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-7411&client=summon