Best practices for incremental capacity analysis

This publication will present best practices for incremental capacity analysis, a technique whose popularity is growing year by year because of its ability to identify battery degradation modes for diagnosis and prognosis. While not complicated in principles, the analysis can often feel overwhelming...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in energy research Vol. 10
Main Authors Dubarry, Matthieu, Anseán, David
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 03.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This publication will present best practices for incremental capacity analysis, a technique whose popularity is growing year by year because of its ability to identify battery degradation modes for diagnosis and prognosis. While not complicated in principles, the analysis can often feel overwhelming for newcomers because of contradictory information introduced by ill-analyzed datasets. This work aims to summarize and centralize good practices to provide a strong baseline to start a proper analysis. We will provide general comments on the technique and how to avoid the main pitfalls. We will also discuss the best starting points for the most common battery chemistries such as layered oxides, iron phosphate, spinel or blends for positive electrodes and graphite, silicon oxide, or lithium titanate for negative electrodes. Finally, a set of complete synthetic degradation maps for the most common commercially available chemistries will be provided and discussed to serve as guide for future studies.
AbstractList This publication will present best practices for incremental capacity analysis, a technique whose popularity is growing year by year because of its ability to identify battery degradation modes for diagnosis and prognosis. While not complicated in principles, the analysis can often feel overwhelming for newcomers because of contradictory information introduced by ill-analyzed datasets. This work aims to summarize and centralize good practices to provide a strong baseline to start a proper analysis. We will provide general comments on the technique and how to avoid the main pitfalls. We will also discuss the best starting points for the most common battery chemistries such as layered oxides, iron phosphate, spinel or blends for positive electrodes and graphite, silicon oxide, or lithium titanate for negative electrodes. Finally, a set of complete synthetic degradation maps for the most common commercially available chemistries will be provided and discussed to serve as guide for future studies.
Author Dubarry, Matthieu
Anseán, David
Author_xml – sequence: 1
  givenname: Matthieu
  surname: Dubarry
  fullname: Dubarry, Matthieu
– sequence: 2
  givenname: David
  surname: Anseán
  fullname: Anseán, David
BookMark eNp9kMtqwzAQRUVJoWmaH-jKP-BUGkm2tGxDH4FANy10J0ayHBQcK0je5O_rPAqli65mGDiXO-eWTPrYe0LuGV1wrvRD6_u0WQAFWDAKXEp5RaYAuiqlVl-TX_sNmee8pZQyDlIwOiX0yeeh2Cd0Q3A-F21MRehd8jvfD9gVDvfownAosMfukEO-I9ctdtnPL3NGPl-eP5Zv5fr9dbV8XJeOy3ooEcAJh5VUgjOorKh4xUFTgWgt5cA0MlSucboBhYpSoa2w1jOhaqHR8RlZnXObiFuzT2GH6WAiBnM6xLQxmMbOnTeuptKLmjoJIASXqm60ksJLtBoqbccsdc5yKeacfGvGl3AIsR8Shs4wao4izUmkOYo0F5EjCn_Qnyr_QN_Qjngc
CitedBy_id crossref_primary_10_3389_fenrg_2023_1087269
crossref_primary_10_3390_wevj15060268
crossref_primary_10_1002_celc_202400323
crossref_primary_10_1016_j_fub_2025_100056
crossref_primary_10_1016_j_est_2025_115357
crossref_primary_10_1002_batt_202400546
crossref_primary_10_1016_j_apenergy_2024_124241
crossref_primary_10_3390_wevj14070188
crossref_primary_10_3390_batteries10090306
crossref_primary_10_1016_j_cej_2024_156806
crossref_primary_10_1016_j_jclepro_2023_138678
crossref_primary_10_3390_batteries10030092
crossref_primary_10_3390_batteries9070385
crossref_primary_10_1109_ACCESS_2024_3396164
crossref_primary_10_3390_en17194954
crossref_primary_10_1002_batt_202400291
crossref_primary_10_1016_j_jpowsour_2025_236174
crossref_primary_10_1149_1945_7111_ad050e
crossref_primary_10_1149_1945_7111_ace21c
crossref_primary_10_1016_j_ifacol_2025_01_082
crossref_primary_10_1016_j_xcrp_2023_101331
crossref_primary_10_1021_acsomega_4c10805
crossref_primary_10_1002_batt_202400211
crossref_primary_10_3390_batteries10080277
crossref_primary_10_1149_1945_7111_acf160
crossref_primary_10_3390_batteries9120568
crossref_primary_10_1016_j_est_2024_113453
crossref_primary_10_3390_en16207066
crossref_primary_10_1016_j_cej_2025_159927
crossref_primary_10_1016_j_tsep_2024_102870
crossref_primary_10_1016_j_jpowsour_2024_234446
crossref_primary_10_1016_j_est_2023_107430
crossref_primary_10_1016_j_jpowsour_2024_234884
crossref_primary_10_1109_TTE_2024_3471626
crossref_primary_10_1002_ente_202400494
crossref_primary_10_1002_celc_202300830
crossref_primary_10_1149_1945_7111_ad1450
crossref_primary_10_1016_j_jpowsour_2025_236185
crossref_primary_10_1002_batt_202300313
crossref_primary_10_1016_j_energy_2024_130230
crossref_primary_10_1109_TII_2024_3485809
crossref_primary_10_3390_batteries10050159
crossref_primary_10_3390_batteries10080289
crossref_primary_10_1016_j_xcrp_2024_102138
crossref_primary_10_1021_acs_chemmater_2c01976
crossref_primary_10_1016_j_apenergy_2025_125594
crossref_primary_10_1149_1945_7111_acd304
crossref_primary_10_1016_j_est_2024_113104
crossref_primary_10_1021_acs_jpcc_3c05587
crossref_primary_10_3390_batteries11020042
crossref_primary_10_1016_j_jpowsour_2023_233947
crossref_primary_10_1016_j_xcrp_2023_101754
crossref_primary_10_1038_s41467_023_38895_7
crossref_primary_10_1109_TIA_2024_3427059
crossref_primary_10_1016_j_xcrp_2024_101891
crossref_primary_10_1016_j_electacta_2023_142588
crossref_primary_10_1016_j_jpowsour_2024_234274
crossref_primary_10_1016_j_jpowsour_2024_234670
crossref_primary_10_1149_1945_7111_ad14d0
crossref_primary_10_3390_batteries10060191
crossref_primary_10_1016_j_apenergy_2024_124496
crossref_primary_10_1149_1945_7111_ad728e
crossref_primary_10_1016_j_est_2025_115668
crossref_primary_10_1016_j_jpowsour_2024_234590
crossref_primary_10_1016_j_jpowsour_2024_235759
crossref_primary_10_1016_j_jpowsour_2023_233910
crossref_primary_10_1016_j_jpowsour_2024_235713
crossref_primary_10_1002_adfm_202419229
crossref_primary_10_1016_j_etran_2024_100356
crossref_primary_10_1016_j_apenergy_2025_125524
crossref_primary_10_1149_1945_7111_ad4821
crossref_primary_10_1149_1945_7111_ad6481
crossref_primary_10_1016_j_jelechem_2023_117627
Cites_doi 10.1016/j.jpowsour.2022.231601
10.1016/j.jpowsour.2013.01.063
10.3390/electronics9010152
10.1016/j.est.2018.11.012
10.1038/s43246-022-00251-5
10.1016/j.coelec.2018.05.023
10.1016/j.jpowsour.2022.231560
10.3390/batteries5020042
10.1149/2.056210jes
10.1016/j.ensm.2021.08.025
10.1149/2.0421805jes
10.1021/accountsmr.2c00082
10.1016/s0378-7753(03)00295-7
10.1016/j.xcrp.2021.100351
10.1016/j.jpowsour.2011.08.077
10.1149/1.3393860
10.1149/1.2221767
10.1149/1945-7111/ac4b82
10.1016/0167-2738(81)90014-x
10.1016/j.jpowsour.2017.04.072
10.1016/j.jpowsour.2004.07.021
10.1149/1.1523691
10.1016/j.jpowsour.2003.12.015
10.1016/j.est.2022.104721
10.1109/tpel.2022.3173464
10.1016/j.jpowsour.2022.231296
10.1149/1.2221184
10.1016/j.jpowsour.2013.11.029
10.1016/j.jpowsour.2018.01.091
10.1016/j.jpowsour.2016.04.140
10.1149/2.1211609jes
10.1016/j.jpowsour.2020.227882
10.1016/j.jpowsour.2012.11.101
10.1016/j.pecs.2019.01.001
10.1149/2.0481509jes
10.1016/j.est.2020.101582
10.1016/j.jpowsour.2017.11.021
10.1016/j.jpowsour.2014.02.052
10.3390/en14092371
10.1016/j.jpowsour.2021.230240
10.1016/j.jpowsour.2017.05.121
10.1016/j.jpowsour.2008.10.051
10.1016/j.energy.2019.02.150
10.1016/j.jpowsour.2017.03.002
10.1149/2.063301jes
10.5796/electrochemistry.22-00036
10.1016/j.est.2022.104201
10.1149/1945-7111/ac6d13
10.17632/4k8f4t352y.1
10.1016/0379-6779(89)90828-x
10.1016/j.jpowsour.2019.227117
10.1016/j.electacta.2007.12.085
10.1007/978-3-319-21239-5
10.1016/s0378-7753(03)00351-3
10.1149/2.0491613jes
10.1016/j.jpowsour.2015.03.178
10.1149/1945-7111/abae92
10.1149/1.1600462
10.1016/j.est.2019.100813
10.1016/j.jpowsour.2011.08.078
10.1016/j.jpowsour.2022.230990
10.1149/1945-7111/ac65b7
10.3390/batteries2030028
10.1016/j.ensm.2021.03.036
10.1016/s0378-7753(02)00363-4
10.1557/s43577-021-00101-8
10.1016/j.jpowsour.2009.05.036
10.1016/j.jpowsour.2012.07.016
10.1016/j.joule.2021.09.015
10.1016/j.jpowsour.2013.01.018
10.1016/j.est.2020.101873
10.1016/s0378-7753(03)00297-0
10.1016/j.est.2020.101391
10.1149/1.1505633
10.1016/j.jpowsour.2017.10.092
10.1149/2.0971910jes
10.1016/j.jpowsour.2016.12.011
10.1016/j.est.2018.06.003
10.1115/1.4045008
10.1016/j.etran.2020.100051
10.1149/2.1001908jes
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fenrg.2022.1023555
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-598X
ExternalDocumentID oai_doaj_org_article_c705e470c522443587d9854e5ab9269b
10_3389_fenrg_2022_1023555
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c357t-a22c4ca65843126b463632904aabb03219a1a8cdc9d28a80049b4bbe148749ac3
IEDL.DBID DOA
ISSN 2296-598X
IngestDate Wed Aug 27 01:23:29 EDT 2025
Tue Jul 01 03:00:32 EDT 2025
Thu Apr 24 22:56:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-a22c4ca65843126b463632904aabb03219a1a8cdc9d28a80049b4bbe148749ac3
OpenAccessLink https://doaj.org/article/c705e470c522443587d9854e5ab9269b
ParticipantIDs doaj_primary_oai_doaj_org_article_c705e470c522443587d9854e5ab9269b
crossref_citationtrail_10_3389_fenrg_2022_1023555
crossref_primary_10_3389_fenrg_2022_1023555
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-03
PublicationDateYYYYMMDD 2022-10-03
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-03
  day: 03
PublicationDecade 2020
PublicationTitle Frontiers in energy research
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Chen (B17) 2022; 539
Khodr (B50) 2020; 167
Wu (B80) 2017; 349
Dubarry (B35) 2014; 258
Ratnakumar (B60) 2010; 25
Baure (B12) 2020; 29
Balewski (B5) 1967; 5
Smith (B72) 2012; 159
Devie (B20) 2016; 163
Shim (B69)
Lee (B51) 2018; 374
Baure (B13) 2019; 5
Shim (B70) 2004; 130
Tanim (B75) 2018; 381
Dubarry (B29) 2008; 53
Dubarry (B30) 2009; 194
Baure (B11) 2019; 166
Dubarry (B25) 2020; 9
Barker (B10); 150
Dubarry (B23); 165
Weng (B79) 2021; 5
Dubarry (B39) 2009; 186
Dubarry (B34) 2015; 162
Feng (B43) 2020; 3
Attia (B4) 2022; 169
Li (B54) 2018; 373
Dubarry (B28) 2017; 360
Dubarry (B36) 2013; 160
Liu (B55) 2022; 37
Dubarry (B37); 196
Liu (B56) 2019; 173
Barker (B8) 1989; 33
Devie (B19) 2016; 2
Dahn (B18) 1981; 2
Dubarry (B32) 2006; 9
Schmidt (B64) 2013; 239
Dubarry (B27) 2022; 3
Birkl (B14) 2017; 341
Shim (B68); 122
Dubarry (B21) 2022; 1
Fly (B44) 2022; 52
Han (B48) 2014; 251
Dubarry (B33); 196
Xu (B81) 2022; 3
von Kolzenberg (B76) 2022; 539
Anseán (B3) 2017; 356
Shim (B67) 2002; 112
Anseán (B1) 2020; 459
Chahbaz (B16) 2021; 42
Dubarry (B24) 2019; 21
Dubarry (B38) 2012; 219
Striebel (B73) 2003
Gao (B45) 2019; 166
Elliott (B40) 2020; 32
Ouyang (B59) 2015; 286
Schmitt (B66) 2022; 532
Dubarry (B22) 2020; 17
Schmitt (B65) 2021; 506
MacNeil (B57) 2002; 149
Zhang (B82) 2022; 521
Li (B53) 2022; 90
Dubarry (B31); 9
Reimers (B61) 1992; 138
Bloom (B83) 2005; 139
Tanim (B74) 2021; 46
Carter (B15) 2021; 2
Huggins (B49) 2016
Barker (B9); 6
Schindler (B63) 2019; 440
Anseán (B2) 2016; 321
Gauthier (B46) 2022; 169
Barai (B7) 2019; 72
Waldmann (B77) 2016; 163
Noh (B58) 2013; 233
Lewerenz (B52) 2018; 18
Fath (B41) 2019; 25
Sieg (B71) 2020; 30
Dubarry (B26) 2021; 14
Weng (B78) 2022
Bank (B6) 2022; 51
Rodrigues (B62) 2022; 169
Ha (B47) 2021; 38
Feng (B42) 2013; 232
References_xml – volume: 539
  start-page: 231601
  year: 2022
  ident: B17
  article-title: Operando detection of Li plating during fast charging of Li-ion batteries using incremental capacity analysis
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.231601
– volume: 233
  start-page: 121
  year: 2013
  ident: B58
  article-title: Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.01.063
– volume: 9
  start-page: 152
  year: 2020
  ident: B25
  article-title: Perspective on commercial Li-ion battery testing, best practices for simple and effective protocols
  publication-title: Electronics
  doi: 10.3390/electronics9010152
– volume: 21
  start-page: 172
  year: 2019
  ident: B24
  article-title: Battery energy storage system modeling: A combined comprehensive approach
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2018.11.012
– volume: 3
  start-page: 31
  year: 2022
  ident: B81
  article-title: Navigating the minefield of battery literature
  publication-title: Commun. Mat.
  doi: 10.1038/s43246-022-00251-5
– volume: 9
  start-page: 106
  ident: B31
  article-title: Calendar aging of commercial Li-ion cells of different chemistries – a review
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2018.05.023
– volume: 539
  start-page: 231560
  year: 2022
  ident: B76
  article-title: A four parameter model for the solid-electrolyte interphase to predict battery aging during operation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.231560
– volume: 5
  start-page: 42
  year: 2019
  ident: B13
  article-title: Synthetic vs. Real driving cycles: A comparison of electric vehicle battery degradation
  publication-title: Batteries
  doi: 10.3390/batteries5020042
– volume: 159
  start-page: A1696
  year: 2012
  ident: B72
  article-title: Synergies in blended LiMn2O4 and Li[Ni1/3Mn1/3Co1/3]O2 positive electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.056210jes
– volume: 5
  start-page: 527
  year: 1967
  ident: B5
  article-title: A new method for the study of the electrochemical reactivity of manganese dioxide
  publication-title: Electrochem. Technol.
– volume: 42
  start-page: 794
  year: 2021
  ident: B16
  article-title: Non-invasive identification of calendar and cyclic ageing mechanisms for lithium-titanate-oxide batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.08.025
– volume: 165
  start-page: A773
  ident: B23
  article-title: Durability and reliability of EV batteries under electric utility grid operations: Path dependence of battery degradation
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0421805jes
– volume: 3
  start-page: 843
  year: 2022
  ident: B27
  article-title: Perspective on mechanistic modeling of Li-ion batteries
  publication-title: Acc. Mat. Res.
  doi: 10.1021/accountsmr.2c00082
– start-page: 951
  year: 2003
  ident: B73
  article-title: LiFePO4/gel/natural graphite cells for the BATT program
  publication-title: J. Power Sources
  doi: 10.1016/s0378-7753(03)00295-7
– volume: 2
  start-page: 100351
  year: 2021
  ident: B15
  article-title: Directionality of thermal gradients in lithium-ion batteries dictates diverging degradation modes
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2021.100351
– volume: 196
  start-page: 10328
  ident: B33
  article-title: Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.08.077
– volume: 25
  start-page: 241
  year: 2010
  ident: B60
  article-title: Lithium plating behavior in lithium-ion cells
  publication-title: ECS Trans.
  doi: 10.1149/1.3393860
– volume: 9
  start-page: A454
  year: 2006
  ident: B32
  article-title: Incremental capacity analysis and close-to-equilibrium OCV measurements to quantify capacity fade in commercial rechargeable lithium batteries
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.2221767
– volume: 169
  start-page: 2
  year: 2022
  ident: B46
  article-title: How do depth of discharge, C-rate and calendar age affect capacity retention, impedance growth, the electrodes, and the electrolyte in Li-ion cells?
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac4b82
– volume: 2
  start-page: 19
  year: 1981
  ident: B18
  article-title: The role of kinetic effects in voltammetry studies of intercalation systems
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(81)90014-x
– volume: 356
  start-page: 36
  year: 2017
  ident: B3
  article-title: Operando lithium plating quantification and early detection of a commercial LiFePO 4 cell cycled under dynamic driving schedule
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.04.072
– volume: 139
  start-page: 295
  year: 2005
  ident: B83
  article-title: Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.07.021
– volume: 6
  start-page: A1
  ident: B9
  article-title: A sodium-ion cell based on the fluorophosphate compound NaVPO[sub 4]F
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.1523691
– volume: 130
  start-page: 247
  year: 2004
  ident: B70
  article-title: The dependence of natural graphite anode performance on electrode density
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2003.12.015
– volume: 52
  start-page: 104721
  year: 2022
  ident: B44
  article-title: Temperature dependency of diagnostic methods in lithium-ion batteries
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104721
– volume: 37
  start-page: 12563
  year: 2022
  ident: B55
  article-title: Comparative study of incremental capacity curve determination methods for lithium-ion batteries considering the real-world situation
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/tpel.2022.3173464
– volume: 532
  start-page: 231296
  year: 2022
  ident: B66
  article-title: Determination of degradation modes of lithium-ion batteries considering aging-induced changes in the half-cell open-circuit potential curve of silicon–graphite
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.231296
– volume: 138
  start-page: 2091
  year: 1992
  ident: B61
  article-title: Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2221184
– volume: 251
  start-page: 38
  year: 2014
  ident: B48
  article-title: A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.11.029
– volume: 381
  start-page: 56
  year: 2018
  ident: B75
  article-title: Fast charge implications: Pack and cell analysis and comparison
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.01.091
– volume: 321
  start-page: 201
  year: 2016
  ident: B2
  article-title: Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.04.140
– volume: 163
  start-page: A2149
  year: 2016
  ident: B77
  article-title: Review—post-mortem analysis of aged lithium-ion batteries: Disassembly methodology and physico-chemical analysis techniques
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1211609jes
– volume: 459
  start-page: 227882
  year: 2020
  ident: B1
  article-title: Mechanistic investigation of silicon-graphite/LiNi0.8Mn0.1Co0.1O2 commercial cells for non-intrusive diagnosis and prognosis
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.227882
– volume: 239
  start-page: 696
  year: 2013
  ident: B64
  article-title: Analysis and prediction of the open circuit potential of lithium-ion cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.11.101
– volume: 72
  start-page: 1
  year: 2019
  ident: B7
  article-title: A comparison of methodologies for the non-invasive characterisation of commercial Li-ion cells
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2019.01.001
– volume: 162
  start-page: A1787
  year: 2015
  ident: B34
  article-title: Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle (PHEV) applications
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0481509jes
– volume: 30
  start-page: 101582
  year: 2020
  ident: B71
  article-title: Local degradation and differential voltage analysis of aged lithium-ion pouch cells
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101582
– volume: 374
  start-page: 31
  year: 2018
  ident: B51
  article-title: The storage degradation of an 18650 commercial cell studied using neutron powder diffraction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.11.021
– volume: 258
  start-page: 408
  year: 2014
  ident: B35
  article-title: Cell degradation in commercial LiFePO4 cells with high-power and high-energy designs
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.02.052
– volume: 14
  start-page: 2371
  year: 2021
  ident: B26
  article-title: Analysis of synthetic voltage vs. Capacity datasets for big data Li-ion diagnosis and prognosis
  publication-title: Energies
  doi: 10.3390/en14092371
– volume: 506
  start-page: 230240
  year: 2021
  ident: B65
  article-title: Change in the half-cell open-circuit potential curves of silicon–graphite and nickel-rich lithium nickel manganese cobalt oxide during cycle aging
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230240
– volume: 360
  start-page: 59
  year: 2017
  ident: B28
  article-title: State of health battery estimator enabling degradation diagnosis: Model and algorithm description
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.05.121
– volume: 186
  start-page: 500
  year: 2009
  ident: B39
  article-title: From single cell model to battery pack simulation for Li-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.10.051
– volume: 173
  start-page: 1041
  year: 2019
  ident: B56
  article-title: Analysis of cyclic aging performance of commercial Li4Ti5O12-based batteries at room temperature
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.150
– volume: 349
  start-page: 27
  year: 2017
  ident: B80
  article-title: Storage fading of a commercial 18650 cell comprised with NMC/LMO cathode and graphite anode
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.002
– volume: 160
  start-page: A191
  year: 2013
  ident: B36
  article-title: Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.063301jes
– volume: 90
  start-page: 067004
  year: 2022
  ident: B53
  article-title: Verification of peak attribution in differential capacity profile by varying the electrode capacity balance in three-electrode Li-ion laminate cells
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.22-00036
– volume: 51
  start-page: 104201
  year: 2022
  ident: B6
  article-title: State of charge dependent degradation effects of lithium titanate oxide batteries at elevated temperatures: An in-situ and ex-situ analysis
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104201
– volume: 169
  start-page: 060517
  year: 2022
  ident: B4
  article-title: Review—"Knees" in lithium-ion battery aging trajectories
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac6d13
– volume: 1
  year: 2022
  ident: B21
  article-title: Synthetic data for Li-ion batteries degradation maps with degradation example
  publication-title: Mendeley Data
  doi: 10.17632/4k8f4t352y.1
– volume: 33
  start-page: 43
  year: 1989
  ident: B8
  article-title: An Electrochemical Investigation of the doping processes in poly(thienylene vinylene)
  publication-title: Synth. Met.
  doi: 10.1016/0379-6779(89)90828-x
– volume: 440
  start-page: 227117
  year: 2019
  ident: B63
  article-title: Kinetics accommodation in Li-ion mechanistic modeling
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227117
– volume: 53
  start-page: 4564
  year: 2008
  ident: B29
  article-title: Uncommon potential hysteresis in the Li/Li2xVO(H2−xPO4)2 (0≤x≤2) system
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2007.12.085
– volume-title: Energy storage fundamentals materials and applications
  year: 2016
  ident: B49
  doi: 10.1007/978-3-319-21239-5
– volume: 122
  start-page: 188
  ident: B68
  article-title: Characterization of high-power lithium-ion cells during constant current cycling
  publication-title: J. Power Sources
  doi: 10.1016/s0378-7753(03)00351-3
– volume: 163
  start-page: A2611
  year: 2016
  ident: B20
  article-title: Overcharge study in Li4Ti5O12 based lithium-ion pouch cell, II. Experimental investigation of the degradation mechanism
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0491613jes
– volume: 286
  start-page: 309
  year: 2015
  ident: B59
  article-title: Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.03.178
– volume-title: Frontiers in energy research submitted
  year: 2022
  ident: B78
– volume: 167
  start-page: 120535
  year: 2020
  ident: B50
  article-title: Electrochemical study of functional additives for Li-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abae92
– volume: 150
  start-page: A1267
  ident: B10
  article-title: Performance evaluation of the electroactive material, γ-LiV[sub 2]O[sub 5], made by a carbothermal reduction method
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1600462
– volume: 25
  start-page: 100813
  year: 2019
  ident: B41
  article-title: Quantification of aging mechanisms and inhomogeneity in cycled lithium-ion cells by differential voltage analysis
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2019.100813
– volume: 196
  start-page: 10336
  ident: B37
  article-title: Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part II. Degradation mechanism under 2C cycle aging
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.08.078
– volume: 521
  start-page: 230990
  year: 2022
  ident: B82
  article-title: Unlocking the thermal safety evolution of lithium-ion batteries under shallow over-discharge
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.230990
– volume: 169
  start-page: 040539
  year: 2022
  ident: B62
  article-title: Concealed cathode degradation in lithium-ion cells with a Ni-rich oxide
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac65b7
– volume: 2
  start-page: 28
  year: 2016
  ident: B19
  article-title: Durability and reliability of electric vehicle batteries under electric utility grid operations. Part 1: Cell-to-Cell variations and preliminary testing
  publication-title: Batteries
  doi: 10.3390/batteries2030028
– volume: 38
  start-page: 581
  year: 2021
  ident: B47
  article-title: Long-term cyclability of Li4Ti5O12/LiMn2O4 cells using carbonate-based electrolytes for behind-the-meter storage applications
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.03.036
– volume: 112
  start-page: 222
  year: 2002
  ident: B67
  article-title: Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature
  publication-title: J. Power Sources
  doi: 10.1016/s0378-7753(02)00363-4
– volume: 46
  start-page: 420
  year: 2021
  ident: B74
  article-title: Challenges and needs for system-level electrochemical lithium-ion battery management and diagnostics
  publication-title: MRS Bull.
  doi: 10.1557/s43577-021-00101-8
– volume: 194
  start-page: 541
  year: 2009
  ident: B30
  article-title: Identify capacity fading mechanism in a commercial LiFePO4 cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.05.036
– volume: 219
  start-page: 204
  year: 2012
  ident: B38
  article-title: Synthesize battery degradation modes via a diagnostic and prognostic model
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.07.016
– volume: 5
  start-page: 2971
  year: 2021
  ident: B79
  article-title: Predicting the impact of formation protocols on battery lifetime immediately after manufacturing
  publication-title: Joule
  doi: 10.1016/j.joule.2021.09.015
– volume: 232
  start-page: 209
  year: 2013
  ident: B42
  article-title: Using probability density function to evaluate the state of health of lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.01.018
– volume: 32
  start-page: 101873
  year: 2020
  ident: B40
  article-title: Degradation of electric vehicle lithium-ion batteries in electricity grid services
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101873
– start-page: 955
  ident: B69
  article-title: Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO4
  publication-title: J. Power Sources
  doi: 10.1016/s0378-7753(03)00297-0
– volume: 29
  start-page: 101391
  year: 2020
  ident: B12
  article-title: Battery durability and reliability under electric utility grid operations: 20-year forecast under different grid applications
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101391
– volume: 149
  start-page: A1332
  year: 2002
  ident: B57
  article-title: Structure and Electrochemistry of Li[Ni[sub x]Co[sub 1−2x]Mn[sub x]]O[sub 2] (0≤x≤1/2)
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1505633
– volume: 373
  start-page: 40
  year: 2018
  ident: B54
  article-title: A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.10.092
– volume: 166
  start-page: A1991
  year: 2019
  ident: B11
  article-title: Battery durability and reliability under electric utility grid operations: Path dependence of battery degradation
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0971910jes
– volume: 341
  start-page: 373
  year: 2017
  ident: B14
  article-title: Degradation diagnostics for lithium ion cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.12.011
– volume: 18
  start-page: 421
  year: 2018
  ident: B52
  article-title: Evaluation of cyclic aging tests of prismatic automotive LiNiMnCoO2-Graphite cells considering influence of homogeneity and anode overhang
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2018.06.003
– volume: 17
  start-page: 1
  year: 2020
  ident: B22
  article-title: Perspective on state-of-health determination in lithium-ion batteries
  publication-title: J. Electrochem. Energy Convers. Storage
  doi: 10.1115/1.4045008
– volume: 3
  start-page: 100051
  year: 2020
  ident: B43
  article-title: A reliable approach of differentiating discrete sampled-data for battery diagnosis
  publication-title: eTransportation
  doi: 10.1016/j.etran.2020.100051
– volume: 166
  start-page: A1623
  year: 2019
  ident: B45
  article-title: The mechanism and characterization of accelerated capacity deterioration for lithium-ion battery with Li(NiMnCo) O2 cathode
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1001908jes
SSID ssj0001325410
Score 2.510668
Snippet This publication will present best practices for incremental capacity analysis, a technique whose popularity is growing year by year because of its ability to...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms degradation modes
ICA
incremental capacity (IC or dQ/dV)
Li-ion
voltage response
Title Best practices for incremental capacity analysis
URI https://doaj.org/article/c705e470c522443587d9854e5ab9269b
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iSQ_iJ65f9OBNyqbJpGmOrrgsgp5c2FuZmbYiyCq6_n8nbXfpSS9eS1LSN2XmvZB5Ueo6uEjzqzzF3DcpQJWl6DWlugEWzWzYUOwdfnzKZ3N4WLjF4KqveCasswfugBuz164Gr1mIAkhtL3wVCge1QwomDxSzr9S8gZhqd1esCJ9Md10yosLCuJFwvIgeNKZ1K3Cxt29QiQaG_W1lme6rvZ4SJrfdUg7UVr08VLsDo8AjpSeSvJN1R9NXIkwzeV1yt7cnc1lKHgufTrD3GDlW8-n9890s7e86SNk6v0rRGAbGyAdsZnKKPl7WBA2IRNpKXsEMC644VKbAIhJ7AqJa1IyHgGxP1PbyfVmfqgScYOwBWSODEaAacpbIABfYNMQjla2_u-TeCDzeR_FWiiCIWJUtVmXEquyxGqmbzZyPzgbj19GTCOdmZLSwbh9IYMs-sOVfgT37j5ecq524sPb0nb1Q26vP7_pSWMSKrtof5gc4GMGI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Best+practices+for+incremental+capacity+analysis&rft.jtitle=Frontiers+in+energy+research&rft.au=Matthieu+Dubarry&rft.au=David+Anse%C3%A1n&rft.date=2022-10-03&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-598X&rft.volume=10&rft_id=info:doi/10.3389%2Ffenrg.2022.1023555&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c705e470c522443587d9854e5ab9269b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon