Improved U2Net-Based Surface Defect Detection Method for Blister Tablets

Aiming at the problem that the surface defects of blAister tablets are difficult to detect correctly, this paper proposes a detection method based on the improved U2Net. First, the features extracted from the RSU module of U2Net are enhanced and adjusted using the large kernel attention mechanism, s...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 17; no. 10; p. 429
Main Authors Zhou, Jianmin, Huang, Jian, Liu, Jikang, Liu, Jingbo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aiming at the problem that the surface defects of blAister tablets are difficult to detect correctly, this paper proposes a detection method based on the improved U2Net. First, the features extracted from the RSU module of U2Net are enhanced and adjusted using the large kernel attention mechanism, so that the U2Net model strengthens its ability to extract defective features. Second, a loss function combining the Gaussian Laplace operator and the cross-entropy function is designed to make the model strengthen its ability to detect edge defects on the surface of blister tablets. Finally, thresholds are adaptively determined using the local mean and OTSU(an adaptive threshold segmentation method) method to improve accuracy. The experimental results show that the method proposed in this paper can reach an average accuracy of 99% and an average precision rate of 96.3%; the model test only takes 50 ms per image, which can meet the rapid detection requirements. Minor surface defects can also be accurately detected, which is better than other algorithmic models of the same type, proving the effectiveness of this method.
AbstractList Aiming at the problem that the surface defects of blAister tablets are difficult to detect correctly, this paper proposes a detection method based on the improved U2Net. First, the features extracted from the RSU module of U2Net are enhanced and adjusted using the large kernel attention mechanism, so that the U2Net model strengthens its ability to extract defective features. Second, a loss function combining the Gaussian Laplace operator and the cross-entropy function is designed to make the model strengthen its ability to detect edge defects on the surface of blister tablets. Finally, thresholds are adaptively determined using the local mean and OTSU(an adaptive threshold segmentation method) method to improve accuracy. The experimental results show that the method proposed in this paper can reach an average accuracy of 99% and an average precision rate of 96.3%; the model test only takes 50 ms per image, which can meet the rapid detection requirements. Minor surface defects can also be accurately detected, which is better than other algorithmic models of the same type, proving the effectiveness of this method.
Audience Academic
Author Liu, Jingbo
Huang, Jian
Zhou, Jianmin
Liu, Jikang
Author_xml – sequence: 1
  givenname: Jianmin
  surname: Zhou
  fullname: Zhou, Jianmin
– sequence: 2
  givenname: Jian
  surname: Huang
  fullname: Huang, Jian
– sequence: 3
  givenname: Jikang
  surname: Liu
  fullname: Liu, Jikang
– sequence: 4
  givenname: Jingbo
  surname: Liu
  fullname: Liu, Jingbo
BookMark eNpNkctLAzEQxoMoWB8H_4MFTx625rXZ5FifLfg4WM8hm0zqlnajSSr43xutFJnDN3zM_BjmO0L7QxgAoTOCx4wpfGlISzDmVO2hEVFK1Vwqtv-vP0RHKS0xFo0SZISms_V7DJ_gqlf6BLm-Mqn0L5vojYXqBjzYXCQX6cNQPUJ-C67yIVZXqz5liNXcdCvI6QQdeLNKcPqnx2h-dzu_ntYPz_ez68lDbVnT5tpQ2klLqbekA-5kJ5zCnIHzGBMOWHQSKFOtkMZayzvVurYxvumobKjn7BjNtlgXzFK_x35t4pcOpte_RogLbWLu7Qq0xKJlsmWcNsAZpdJKpohrnBLecdkV1vmWVT7wsYGU9TJs4lCu14xQ3GCFCS5T4-3UwhRoP_iQo7GlHKx7W77v--JPJOGsVVKIsnCxXbAxpBTB784kWP-EpHchsW_QnIKV
Cites_doi 10.1109/TPAMI.2007.1027
10.3390/app14114664
10.1016/j.patcog.2020.107404
10.1109/ACCESS.2020.3002545
10.1177/00405175231198266
10.1007/s41095-023-0364-2
10.1016/j.cmpb.2020.105897
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/a17100429
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database (Proquest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_80673873425e43228c8391d5d96fd48b
A814379866
10_3390_a17100429
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
TR2
TUS
PMFND
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c357t-a22b8c22fc1be4d8b6d9043edf0014e06b8e239768accc4b97d75af5b2852f43
IEDL.DBID BENPR
ISSN 1999-4893
IngestDate Wed Aug 27 01:29:19 EDT 2025
Fri Jul 25 12:03:06 EDT 2025
Tue Jun 10 20:59:25 EDT 2025
Tue Jul 01 00:39:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-a22b8c22fc1be4d8b6d9043edf0014e06b8e239768accc4b97d75af5b2852f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3120509010?pq-origsite=%requestingapplication%
PQID 3120509010
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_80673873425e43228c8391d5d96fd48b
proquest_journals_3120509010
gale_infotracacademiconefile_A814379866
crossref_primary_10_3390_a17100429
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_20) 2023; 59
Fang (ref_9) 2019; 40
ref_14
Jing (ref_15) 2020; 92
Zhang (ref_18) 2023; 93
Wang (ref_23) 2007; 29
Zhu (ref_16) 2021; 200
ref_19
ref_17
Yao (ref_5) 2015; 5
Liu (ref_6) 2013; 1
Chen (ref_12) 2021; 42
Fang (ref_7) 2010; 30
Qin (ref_8) 2020; 106
Wu (ref_11) 2014; 28
ref_24
Cheng (ref_21) 2024; 55
ref_1
ref_3
ref_2
Senthilkumaran (ref_25) 2016; 6
Sugawara (ref_4) 2010; 64
Yu (ref_10) 2014; 35
Duan (ref_13) 2020; 50
Misael (ref_26) 2020; 8
Guo (ref_22) 2023; 9
References_xml – volume: 50
  start-page: 857
  year: 2020
  ident: ref_13
  article-title: Capsule Defect Detection Method Based on Mask R-CNN
  publication-title: Radio Eng.
– ident: ref_3
– volume: 29
  start-page: 886
  year: 2007
  ident: ref_23
  article-title: Laplacian operator-based edge detectors
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1027
– ident: ref_24
  doi: 10.3390/app14114664
– volume: 106
  start-page: 107404
  year: 2020
  ident: ref_8
  article-title: U2-Net: Going deeper with nested U-structure for salient object detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107404
– ident: ref_14
– ident: ref_1
– volume: 1
  start-page: 66
  year: 2013
  ident: ref_6
  article-title: Study on Real-time Tablets Image Detection and Processing System Based on Image Processing and Its Application
  publication-title: Comput. Mod.
– volume: 8
  start-page: 112624
  year: 2020
  ident: ref_26
  article-title: Automatic Early Broken-Rotor-Bar Detection and Classification Using Otsu Segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3002545
– volume: 35
  start-page: 15
  year: 2014
  ident: ref_10
  article-title: Application of Improved Otsu Algorithm in the Defect Detection of Aluminium-plastic Blister Drugs
  publication-title: Packag. Eng.
– volume: 55
  start-page: 159
  year: 2024
  ident: ref_21
  article-title: Surface crack detection of concrete structures based on improved U2Net model
  publication-title: Water Resour. Hydropower Eng.
– ident: ref_2
– volume: 93
  start-page: 5416
  year: 2023
  ident: ref_18
  article-title: Pixel-level pruning deep supervision UNet++ for detecting fabric defects
  publication-title: Text. Res. J.
  doi: 10.1177/00405175231198266
– volume: 30
  start-page: 2958
  year: 2010
  ident: ref_7
  article-title: Discrimination of Varieties of Tablets Using Near-Infrared Spectroscopy by Wavelet Clustering
  publication-title: Spectrosc. Spectr. Anal.
– volume: 6
  start-page: 1
  year: 2016
  ident: ref_25
  article-title: Image Segmentation By Using Thresholding Techniques For Medical Images
  publication-title: Comput. Sci. Eng. Int. J.
– volume: 9
  start-page: 733
  year: 2023
  ident: ref_22
  article-title: Visual attention network
  publication-title: Comput. Vis. Media
  doi: 10.1007/s41095-023-0364-2
– volume: 200
  start-page: 105897
  year: 2021
  ident: ref_16
  article-title: Coronary angiography image segmentation based on PSPNet
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105897
– volume: 42
  start-page: 250
  year: 2021
  ident: ref_12
  article-title: Blister packaging drug defect identification based on integrated classifier
  publication-title: Packag. Eng.
– volume: 5
  start-page: 215
  year: 2015
  ident: ref_5
  article-title: Detection techniques for tablet blister packaging: Ensuring pharmaceutical quality and safety
  publication-title: Int. J. Pharm. Qual. Assur.
– ident: ref_17
– ident: ref_19
– volume: 64
  start-page: 123
  year: 2010
  ident: ref_4
  article-title: Blister packaging design for the protection and stability of pharmaceutical products
  publication-title: J. Pharm. Sci. Technol.
– volume: 92
  start-page: 004051752092860
  year: 2020
  ident: ref_15
  article-title: Mobile-Unet: An efficient convolutional neural network for fabric defect detection
  publication-title: Text. Res. J.
– volume: 40
  start-page: 133
  year: 2019
  ident: ref_9
  article-title: Defect Detection Method for Drug Packaging with Aluminum Plastic Bubble Cap
  publication-title: Packag. Eng.
– volume: 28
  start-page: 67
  year: 2014
  ident: ref_11
  article-title: Edge Detection of Aluminum-Plastic Blister Drugs Based on Improved Canny Algorithm
  publication-title: J. Hunan Univ. Technol.
– volume: 59
  start-page: 413
  year: 2023
  ident: ref_20
  article-title: Metal surface defect detection algorithm based on U2-Net
  publication-title: Nanjing Univ. Nat. Sci.
SSID ssj0065961
Score 2.3169742
Snippet Aiming at the problem that the surface defects of blAister tablets are difficult to detect correctly, this paper proposes a detection method based on the...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 429
SubjectTerms Accuracy
Algorithms
blister tablets
Blistering
Classification
Deep learning
defect detection
Defects
Drug dosages
Drugs
Feature extraction
Gaussian Laplace operator
Good Manufacturing Practice
Image processing
Image segmentation
Laplace transforms
large kernel attention mechanism
Methods
Pharmaceutical industry
Product quality
Quality management
Semantics
Surface defects
Surfaces
Surfaces (Technology)
Tablets
U2Net
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy--xWiVRQRPS5vNbrI5tmopQnuxhd6WfeUkUdL0_zuTR_UiXjwFQg7DPL_Jzn5DyEOuAFTE3jBpipSJIDmzRSJYXNgA8DQBxI0nuotlOl-L143c_Fj1hTNhLT1wq7iRwk0qKkvAt4IA71MOSnrspc_TwgtlMftCzeubqTYHpzJP45ZHKIGmfmRiJLERDY78rj4NSf9vqbipL7MTctQBQzppBTolB6E8I8f90gXaxeA5mbe_AYKna74MNZtCGfL0bVcVxgX6HHA8Ax51M2JV0kWzIZoCNKXTdzRpRVd4W6reXpDV7GX1NGfdOgTmEpnVzHBuleO8cLENwiub-nwskuAL7HPCOLUqcIQXyjjnhM0zn4EFpOVK8kIkl2RQfpThilDkuHN4XiY9F0aoXKQWgKF3IlNmbFVE7nst6c-W9EJDs4Cq1HtVRmSK-tt_gDzVzQuwnu6sp_-yXkQeUfsao6mujDPdpQCQE3mp9ETFSJgIAkdk2BtId2G21UnMkb8Gesrr_5DmhhxywCztrN6QDOpqF24Bc9T2rnGvLziKz70
  priority: 102
  providerName: Directory of Open Access Journals
Title Improved U2Net-Based Surface Defect Detection Method for Blister Tablets
URI https://www.proquest.com/docview/3120509010
https://doaj.org/article/80673873425e43228c8391d5d96fd48b
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB3BcumlUNqqW2BlIaSeLDaOnTgnxALbFRIr1C4SN8tf6QXt0mz4_8wkDpzaU6QkB2tm_PzGHr8BOKs0koosWK5sXXAZleCuziXPaheRnubIuOlE925ZLB7k7aN6TBtu21RWOWBiB9Rh42mP_DzPBEmVYPpw8fyXU9coOl1NLTR2YQ8hWOsR7M1ulve_BiwuVFVkvZ5Qjsn9uc1IzEZ2fPJ9FerE-v8Fyd06Mz-Aj4kgssveo59gJ64PYX9ovsDSXPwMi347IAb2IJax5TNcjgL7_dLU1kd2HalMAx9tV2q1Znddp2iGFJXNnsi1DVvRral2-wVW85vV1YKntgjc56psuRXCaS9E7TMXZdCuCNVU5jHUlO_EaeF0FEQztPXeS1eVoURPKCe0ErXMv8JovVnHb8BI687TuZkKQlqpK1k4JIjBy1LbqdNjOB2sZJ578QuDSQOZ0ryZcgwzst_bD6RX3b3YNH9MCn-jqR-OLnNEiCgRQ7RHYpYFFaqiDlK7Mfwg6xuaVW1jvU2XA3CcpE9lLnVGwok44DEcDw4yabptzXtwfP__5yP4IJCV9NV4xzBqm5d4gqyidRPY1fOfkxRAky43fwVx5svu
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLSXUvpQF2ixKhAni41jJ86hqtjCdinsXlgkbpZf6aXahWwQ4kf1P3YmDzi1N06RYityxvP4xp4HwH6hEVQkwXJly4zLqAR3ZSp5UrqI8DRFxE03utNZNrmSP6_V9Rr86XNhKKyy14mNog5LT2fkR2kiqFQJug_fbm45dY2i29W-hUbLFufx4R5dttXXsxPc3wMhxqfz7xPedRXgPlV5za0QTnshSp-4KIN2WSiGMo2hJHchDjOnoyArra33XroiDzn-iHJCK1HKFD_7AjZkilMoMX38o1f8mSqypC1ehIPDI5tQ5RzZgNcnk9d0BviX_m-M2vgNvO7QKDtu2WcL1uLiLWz2nR5YJ_jvYNKePcTArsQs1nyEti-wy7uqtD6yk0gxIfiom7iuBZs2bakZ4mE2-k18VLE5pWjVq_cwfw5qfYD1xXIRPwKjwnqeLulUENJKXcjMIRoNXubaDp0ewJeeSuamrbRh0EMhUppHUg5gRPR7nEDFsZsXy-qX6WTNaGq-o_MU1VGUqLC0RxSYBBWKrAxSuwEcEvUNiXBdWW-7TARcJxXDMsc6oSqNuOAB7PYbZDrZXpknTtz-__AevJzMpxfm4mx2vgOvBMKhNgxwF9br6i5-QjhTu88NEzEwz8y0fwF0ygW8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS40PJSty1gIRAnazeOnTgHhLrdrraUrirYSr1ZfoUL2i3ZVBU_jX_HTB7tCW49RUqiyBmPZ77xjL8BeF9oBBVJsFzZMuMyKsFdmUqelC4iPE0RcVNG93yRzS_llyt1tQV_-rMwVFbZ28TGUIe1pz3yUZoIoirB8GFUdmURF9PZ5-tfnDpIUaa1b6fRqshZ_H2L4dvm0-kU5_qDELOT5fGcdx0GuE9VXnMrhNNeiNInLsqgXRaKsUxjKCl0iOPM6SjIY2vrvZeuyEOOP6Wc0EqUMsXPPoLtnIKiAWxPThYX33o3kKkiS1oqozQtxiObEI-ObKDsvQNs-gT8yxs0Lm62C087bMqOWmV6Bltx9Rx2-r4PrDMDL2De7kTEwC7FItZ8gp4wsO83VWl9ZNNIFSJ4qZsqrxU7b5pUM0THbPKTtKpiSzqwVW9ewvIh5PUKBqv1Ku4BI5o9Tyk7FYS0Uhcyc4hNg5e5tmOnh_Cul5K5bnk3DMYrJEpzJ8ohTEh-dy8QVXZzY139MN3KM5pa8eg8ReMUJZov7RETJkGFIiuD1G4IH0n6hhZ0XVlvu3MJOE6ixjJHOiHORhzwEA77CTLdSt-Ye73c___jt_AYFdZ8PV2cHcATgdiorQk8hEFd3cTXiG1q96bTIgbmgfX2L-yPC04
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+U2Net-Based+Surface+Defect+Detection+Method+for+Blister+Tablets&rft.jtitle=Algorithms&rft.au=Zhou%2C+Jianmin&rft.au=Huang%2C+Jian&rft.au=Liu%2C+Jikang&rft.au=Liu%2C+Jingbo&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=17&rft.issue=10&rft.spage=429&rft_id=info:doi/10.3390%2Fa17100429&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon