Improved U2Net-Based Surface Defect Detection Method for Blister Tablets
Aiming at the problem that the surface defects of blAister tablets are difficult to detect correctly, this paper proposes a detection method based on the improved U2Net. First, the features extracted from the RSU module of U2Net are enhanced and adjusted using the large kernel attention mechanism, s...
Saved in:
Published in | Algorithms Vol. 17; no. 10; p. 429 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aiming at the problem that the surface defects of blAister tablets are difficult to detect correctly, this paper proposes a detection method based on the improved U2Net. First, the features extracted from the RSU module of U2Net are enhanced and adjusted using the large kernel attention mechanism, so that the U2Net model strengthens its ability to extract defective features. Second, a loss function combining the Gaussian Laplace operator and the cross-entropy function is designed to make the model strengthen its ability to detect edge defects on the surface of blister tablets. Finally, thresholds are adaptively determined using the local mean and OTSU(an adaptive threshold segmentation method) method to improve accuracy. The experimental results show that the method proposed in this paper can reach an average accuracy of 99% and an average precision rate of 96.3%; the model test only takes 50 ms per image, which can meet the rapid detection requirements. Minor surface defects can also be accurately detected, which is better than other algorithmic models of the same type, proving the effectiveness of this method. |
---|---|
AbstractList | Aiming at the problem that the surface defects of blAister tablets are difficult to detect correctly, this paper proposes a detection method based on the improved U2Net. First, the features extracted from the RSU module of U2Net are enhanced and adjusted using the large kernel attention mechanism, so that the U2Net model strengthens its ability to extract defective features. Second, a loss function combining the Gaussian Laplace operator and the cross-entropy function is designed to make the model strengthen its ability to detect edge defects on the surface of blister tablets. Finally, thresholds are adaptively determined using the local mean and OTSU(an adaptive threshold segmentation method) method to improve accuracy. The experimental results show that the method proposed in this paper can reach an average accuracy of 99% and an average precision rate of 96.3%; the model test only takes 50 ms per image, which can meet the rapid detection requirements. Minor surface defects can also be accurately detected, which is better than other algorithmic models of the same type, proving the effectiveness of this method. |
Audience | Academic |
Author | Liu, Jingbo Huang, Jian Zhou, Jianmin Liu, Jikang |
Author_xml | – sequence: 1 givenname: Jianmin surname: Zhou fullname: Zhou, Jianmin – sequence: 2 givenname: Jian surname: Huang fullname: Huang, Jian – sequence: 3 givenname: Jikang surname: Liu fullname: Liu, Jikang – sequence: 4 givenname: Jingbo surname: Liu fullname: Liu, Jingbo |
BookMark | eNpNkctLAzEQxoMoWB8H_4MFTx625rXZ5FifLfg4WM8hm0zqlnajSSr43xutFJnDN3zM_BjmO0L7QxgAoTOCx4wpfGlISzDmVO2hEVFK1Vwqtv-vP0RHKS0xFo0SZISms_V7DJ_gqlf6BLm-Mqn0L5vojYXqBjzYXCQX6cNQPUJ-C67yIVZXqz5liNXcdCvI6QQdeLNKcPqnx2h-dzu_ntYPz_ez68lDbVnT5tpQ2klLqbekA-5kJ5zCnIHzGBMOWHQSKFOtkMZayzvVurYxvumobKjn7BjNtlgXzFK_x35t4pcOpte_RogLbWLu7Qq0xKJlsmWcNsAZpdJKpohrnBLecdkV1vmWVT7wsYGU9TJs4lCu14xQ3GCFCS5T4-3UwhRoP_iQo7GlHKx7W77v--JPJOGsVVKIsnCxXbAxpBTB784kWP-EpHchsW_QnIKV |
Cites_doi | 10.1109/TPAMI.2007.1027 10.3390/app14114664 10.1016/j.patcog.2020.107404 10.1109/ACCESS.2020.3002545 10.1177/00405175231198266 10.1007/s41095-023-0364-2 10.1016/j.cmpb.2020.105897 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/a17100429 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database (Proquest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1999-4893 |
ExternalDocumentID | oai_doaj_org_article_80673873425e43228c8391d5d96fd48b A814379866 10_3390_a17100429 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS TR2 TUS PMFND 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c357t-a22b8c22fc1be4d8b6d9043edf0014e06b8e239768accc4b97d75af5b2852f43 |
IEDL.DBID | BENPR |
ISSN | 1999-4893 |
IngestDate | Wed Aug 27 01:29:19 EDT 2025 Fri Jul 25 12:03:06 EDT 2025 Tue Jun 10 20:59:25 EDT 2025 Tue Jul 01 00:39:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-a22b8c22fc1be4d8b6d9043edf0014e06b8e239768accc4b97d75af5b2852f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3120509010?pq-origsite=%requestingapplication% |
PQID | 3120509010 |
PQPubID | 2032439 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_80673873425e43228c8391d5d96fd48b proquest_journals_3120509010 gale_infotracacademiconefile_A814379866 crossref_primary_10_3390_a17100429 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Algorithms |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wang (ref_20) 2023; 59 Fang (ref_9) 2019; 40 ref_14 Jing (ref_15) 2020; 92 Zhang (ref_18) 2023; 93 Wang (ref_23) 2007; 29 Zhu (ref_16) 2021; 200 ref_19 ref_17 Yao (ref_5) 2015; 5 Liu (ref_6) 2013; 1 Chen (ref_12) 2021; 42 Fang (ref_7) 2010; 30 Qin (ref_8) 2020; 106 Wu (ref_11) 2014; 28 ref_24 Cheng (ref_21) 2024; 55 ref_1 ref_3 ref_2 Senthilkumaran (ref_25) 2016; 6 Sugawara (ref_4) 2010; 64 Yu (ref_10) 2014; 35 Duan (ref_13) 2020; 50 Misael (ref_26) 2020; 8 Guo (ref_22) 2023; 9 |
References_xml | – volume: 50 start-page: 857 year: 2020 ident: ref_13 article-title: Capsule Defect Detection Method Based on Mask R-CNN publication-title: Radio Eng. – ident: ref_3 – volume: 29 start-page: 886 year: 2007 ident: ref_23 article-title: Laplacian operator-based edge detectors publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1027 – ident: ref_24 doi: 10.3390/app14114664 – volume: 106 start-page: 107404 year: 2020 ident: ref_8 article-title: U2-Net: Going deeper with nested U-structure for salient object detection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107404 – ident: ref_14 – ident: ref_1 – volume: 1 start-page: 66 year: 2013 ident: ref_6 article-title: Study on Real-time Tablets Image Detection and Processing System Based on Image Processing and Its Application publication-title: Comput. Mod. – volume: 8 start-page: 112624 year: 2020 ident: ref_26 article-title: Automatic Early Broken-Rotor-Bar Detection and Classification Using Otsu Segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3002545 – volume: 35 start-page: 15 year: 2014 ident: ref_10 article-title: Application of Improved Otsu Algorithm in the Defect Detection of Aluminium-plastic Blister Drugs publication-title: Packag. Eng. – volume: 55 start-page: 159 year: 2024 ident: ref_21 article-title: Surface crack detection of concrete structures based on improved U2Net model publication-title: Water Resour. Hydropower Eng. – ident: ref_2 – volume: 93 start-page: 5416 year: 2023 ident: ref_18 article-title: Pixel-level pruning deep supervision UNet++ for detecting fabric defects publication-title: Text. Res. J. doi: 10.1177/00405175231198266 – volume: 30 start-page: 2958 year: 2010 ident: ref_7 article-title: Discrimination of Varieties of Tablets Using Near-Infrared Spectroscopy by Wavelet Clustering publication-title: Spectrosc. Spectr. Anal. – volume: 6 start-page: 1 year: 2016 ident: ref_25 article-title: Image Segmentation By Using Thresholding Techniques For Medical Images publication-title: Comput. Sci. Eng. Int. J. – volume: 9 start-page: 733 year: 2023 ident: ref_22 article-title: Visual attention network publication-title: Comput. Vis. Media doi: 10.1007/s41095-023-0364-2 – volume: 200 start-page: 105897 year: 2021 ident: ref_16 article-title: Coronary angiography image segmentation based on PSPNet publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105897 – volume: 42 start-page: 250 year: 2021 ident: ref_12 article-title: Blister packaging drug defect identification based on integrated classifier publication-title: Packag. Eng. – volume: 5 start-page: 215 year: 2015 ident: ref_5 article-title: Detection techniques for tablet blister packaging: Ensuring pharmaceutical quality and safety publication-title: Int. J. Pharm. Qual. Assur. – ident: ref_17 – ident: ref_19 – volume: 64 start-page: 123 year: 2010 ident: ref_4 article-title: Blister packaging design for the protection and stability of pharmaceutical products publication-title: J. Pharm. Sci. Technol. – volume: 92 start-page: 004051752092860 year: 2020 ident: ref_15 article-title: Mobile-Unet: An efficient convolutional neural network for fabric defect detection publication-title: Text. Res. J. – volume: 40 start-page: 133 year: 2019 ident: ref_9 article-title: Defect Detection Method for Drug Packaging with Aluminum Plastic Bubble Cap publication-title: Packag. Eng. – volume: 28 start-page: 67 year: 2014 ident: ref_11 article-title: Edge Detection of Aluminum-Plastic Blister Drugs Based on Improved Canny Algorithm publication-title: J. Hunan Univ. Technol. – volume: 59 start-page: 413 year: 2023 ident: ref_20 article-title: Metal surface defect detection algorithm based on U2-Net publication-title: Nanjing Univ. Nat. Sci. |
SSID | ssj0065961 |
Score | 2.3169742 |
Snippet | Aiming at the problem that the surface defects of blAister tablets are difficult to detect correctly, this paper proposes a detection method based on the... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 429 |
SubjectTerms | Accuracy Algorithms blister tablets Blistering Classification Deep learning defect detection Defects Drug dosages Drugs Feature extraction Gaussian Laplace operator Good Manufacturing Practice Image processing Image segmentation Laplace transforms large kernel attention mechanism Methods Pharmaceutical industry Product quality Quality management Semantics Surface defects Surfaces Surfaces (Technology) Tablets U2Net |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy--xWiVRQRPS5vNbrI5tmopQnuxhd6WfeUkUdL0_zuTR_UiXjwFQg7DPL_Jzn5DyEOuAFTE3jBpipSJIDmzRSJYXNgA8DQBxI0nuotlOl-L143c_Fj1hTNhLT1wq7iRwk0qKkvAt4IA71MOSnrspc_TwgtlMftCzeubqTYHpzJP45ZHKIGmfmRiJLERDY78rj4NSf9vqbipL7MTctQBQzppBTolB6E8I8f90gXaxeA5mbe_AYKna74MNZtCGfL0bVcVxgX6HHA8Ax51M2JV0kWzIZoCNKXTdzRpRVd4W6reXpDV7GX1NGfdOgTmEpnVzHBuleO8cLENwiub-nwskuAL7HPCOLUqcIQXyjjnhM0zn4EFpOVK8kIkl2RQfpThilDkuHN4XiY9F0aoXKQWgKF3IlNmbFVE7nst6c-W9EJDs4Cq1HtVRmSK-tt_gDzVzQuwnu6sp_-yXkQeUfsao6mujDPdpQCQE3mp9ETFSJgIAkdk2BtId2G21UnMkb8Gesrr_5DmhhxywCztrN6QDOpqF24Bc9T2rnGvLziKz70 priority: 102 providerName: Directory of Open Access Journals |
Title | Improved U2Net-Based Surface Defect Detection Method for Blister Tablets |
URI | https://www.proquest.com/docview/3120509010 https://doaj.org/article/80673873425e43228c8391d5d96fd48b |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB3BcumlUNqqW2BlIaSeLDaOnTgnxALbFRIr1C4SN8tf6QXt0mz4_8wkDpzaU6QkB2tm_PzGHr8BOKs0koosWK5sXXAZleCuziXPaheRnubIuOlE925ZLB7k7aN6TBtu21RWOWBiB9Rh42mP_DzPBEmVYPpw8fyXU9coOl1NLTR2YQ8hWOsR7M1ulve_BiwuVFVkvZ5Qjsn9uc1IzEZ2fPJ9FerE-v8Fyd06Mz-Aj4kgssveo59gJ64PYX9ovsDSXPwMi347IAb2IJax5TNcjgL7_dLU1kd2HalMAx9tV2q1Znddp2iGFJXNnsi1DVvRral2-wVW85vV1YKntgjc56psuRXCaS9E7TMXZdCuCNVU5jHUlO_EaeF0FEQztPXeS1eVoURPKCe0ErXMv8JovVnHb8BI687TuZkKQlqpK1k4JIjBy1LbqdNjOB2sZJ578QuDSQOZ0ryZcgwzst_bD6RX3b3YNH9MCn-jqR-OLnNEiCgRQ7RHYpYFFaqiDlK7Mfwg6xuaVW1jvU2XA3CcpE9lLnVGwok44DEcDw4yabptzXtwfP__5yP4IJCV9NV4xzBqm5d4gqyidRPY1fOfkxRAky43fwVx5svu |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLSXUvpQF2ixKhAni41jJ86hqtjCdinsXlgkbpZf6aXahWwQ4kf1P3YmDzi1N06RYityxvP4xp4HwH6hEVQkwXJly4zLqAR3ZSp5UrqI8DRFxE03utNZNrmSP6_V9Rr86XNhKKyy14mNog5LT2fkR2kiqFQJug_fbm45dY2i29W-hUbLFufx4R5dttXXsxPc3wMhxqfz7xPedRXgPlV5za0QTnshSp-4KIN2WSiGMo2hJHchDjOnoyArra33XroiDzn-iHJCK1HKFD_7AjZkilMoMX38o1f8mSqypC1ehIPDI5tQ5RzZgNcnk9d0BviX_m-M2vgNvO7QKDtu2WcL1uLiLWz2nR5YJ_jvYNKePcTArsQs1nyEti-wy7uqtD6yk0gxIfiom7iuBZs2bakZ4mE2-k18VLE5pWjVq_cwfw5qfYD1xXIRPwKjwnqeLulUENJKXcjMIRoNXubaDp0ewJeeSuamrbRh0EMhUppHUg5gRPR7nEDFsZsXy-qX6WTNaGq-o_MU1VGUqLC0RxSYBBWKrAxSuwEcEvUNiXBdWW-7TARcJxXDMsc6oSqNuOAB7PYbZDrZXpknTtz-__AevJzMpxfm4mx2vgOvBMKhNgxwF9br6i5-QjhTu88NEzEwz8y0fwF0ygW8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS40PJSty1gIRAnazeOnTgHhLrdrraUrirYSr1ZfoUL2i3ZVBU_jX_HTB7tCW49RUqiyBmPZ77xjL8BeF9oBBVJsFzZMuMyKsFdmUqelC4iPE0RcVNG93yRzS_llyt1tQV_-rMwVFbZ28TGUIe1pz3yUZoIoirB8GFUdmURF9PZ5-tfnDpIUaa1b6fRqshZ_H2L4dvm0-kU5_qDELOT5fGcdx0GuE9VXnMrhNNeiNInLsqgXRaKsUxjKCl0iOPM6SjIY2vrvZeuyEOOP6Wc0EqUMsXPPoLtnIKiAWxPThYX33o3kKkiS1oqozQtxiObEI-ObKDsvQNs-gT8yxs0Lm62C087bMqOWmV6Bltx9Rx2-r4PrDMDL2De7kTEwC7FItZ8gp4wsO83VWl9ZNNIFSJ4qZsqrxU7b5pUM0THbPKTtKpiSzqwVW9ewvIh5PUKBqv1Ku4BI5o9Tyk7FYS0Uhcyc4hNg5e5tmOnh_Cul5K5bnk3DMYrJEpzJ8ohTEh-dy8QVXZzY139MN3KM5pa8eg8ReMUJZov7RETJkGFIiuD1G4IH0n6hhZ0XVlvu3MJOE6ixjJHOiHORhzwEA77CTLdSt-Ye73c___jt_AYFdZ8PV2cHcATgdiorQk8hEFd3cTXiG1q96bTIgbmgfX2L-yPC04 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+U2Net-Based+Surface+Defect+Detection+Method+for+Blister+Tablets&rft.jtitle=Algorithms&rft.au=Zhou%2C+Jianmin&rft.au=Huang%2C+Jian&rft.au=Liu%2C+Jikang&rft.au=Liu%2C+Jingbo&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=17&rft.issue=10&rft.spage=429&rft_id=info:doi/10.3390%2Fa17100429&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |