A Cloud-Edge Collaboration Framework for Cognitive Service

Mobile applications can leverage high-quality deep learning models such as convolutional neural networks and deep neural networks to provide high-performance cognitive services. Prior work on deep learning models-based mobile applications in a cloud-edge computing environment focuses on performing l...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cloud computing Vol. 10; no. 3; pp. 1489 - 1499
Main Authors Ding, Chuntao, Zhou, Ao, Liu, Yunxin, Chang, Rong N., Hsu, Ching-Hsien, Wang, Shangguang
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mobile applications can leverage high-quality deep learning models such as convolutional neural networks and deep neural networks to provide high-performance cognitive services. Prior work on deep learning models-based mobile applications in a cloud-edge computing environment focuses on performing lightweight data pre-processing tasks on edge servers for cloud-hosted cognitive servers. These approaches have two major limitations. First, it is uneasy for the mobile applications to assure satisfactory user experience in terms of network communication delay, because the intermediary edge servers are used only to pre-process data (e.g., images and videos) and the cloud servers are used to complete the tasks. Second, these approaches assume the pre-trained deep learning models deployed on cloud servers are static, and will not attempt to automatically upgrade in a context-aware manner. In this article, we propose a cloud-edge collaboration framework that facilitates delivering cognitive services with long-lasting, fast response, and high accuracy properties. We fist deploy a shallow model (i.e., EdgeCNN) on the edge server and a deep model (i.e., CloudCNN) on the cloud server. EdgeCNN can provide durable and rapid response cognitive services, because edge servers not only provide computing resources for mobile applications, but also close to users. Then, we enable CloudCNN to assist in training EdgeCNN to improve the performance of the latter. Thus, EdgeCNN also provides high-accuracy cognitive services. Furthermore, because users may continue to upload data to edge servers in real-world scenarios, we propose to use the ongoing assistance of CloudCNN to further improve the accuracy of the shallow model. Experimental results show that EdgeCNN can reduce the average response time of cognitive services by up to 55.08 percent and improve accuracy by up to 26.70 percent.
AbstractList Mobile applications can leverage high-quality deep learning models such as convolutional neural networks and deep neural networks to provide high-performance cognitive services. Prior work on deep learning models-based mobile applications in a cloud-edge computing environment focuses on performing lightweight data pre-processing tasks on edge servers for cloud-hosted cognitive servers. These approaches have two major limitations. First, it is uneasy for the mobile applications to assure satisfactory user experience in terms of network communication delay, because the intermediary edge servers are used only to pre-process data (e.g., images and videos) and the cloud servers are used to complete the tasks. Second, these approaches assume the pre-trained deep learning models deployed on cloud servers are static, and will not attempt to automatically upgrade in a context-aware manner. In this article, we propose a cloud-edge collaboration framework that facilitates delivering cognitive services with long-lasting, fast response, and high accuracy properties. We fist deploy a shallow model (i.e., EdgeCNN) on the edge server and a deep model (i.e., CloudCNN) on the cloud server. EdgeCNN can provide durable and rapid response cognitive services, because edge servers not only provide computing resources for mobile applications, but also close to users. Then, we enable CloudCNN to assist in training EdgeCNN to improve the performance of the latter. Thus, EdgeCNN also provides high-accuracy cognitive services. Furthermore, because users may continue to upload data to edge servers in real-world scenarios, we propose to use the ongoing assistance of CloudCNN to further improve the accuracy of the shallow model. Experimental results show that EdgeCNN can reduce the average response time of cognitive services by up to 55.08 percent and improve accuracy by up to 26.70 percent.
Author Ding, Chuntao
Hsu, Ching-Hsien
Wang, Shangguang
Liu, Yunxin
Zhou, Ao
Chang, Rong N.
Author_xml – sequence: 1
  givenname: Chuntao
  orcidid: 0000-0001-8362-8407
  surname: Ding
  fullname: Ding, Chuntao
  email: ctding@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 2
  givenname: Ao
  orcidid: 0000-0001-5743-9418
  surname: Zhou
  fullname: Zhou, Ao
  email: aozhou@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 3
  givenname: Yunxin
  orcidid: 0000-0001-7352-8955
  surname: Liu
  fullname: Liu, Yunxin
  email: yunxin.liu@microsoft.com
  organization: Microsoft Research, Beijing, China
– sequence: 4
  givenname: Rong N.
  orcidid: 0000-0001-8656-9924
  surname: Chang
  fullname: Chang, Rong N.
  email: rong@us.ibm.com
  organization: IBM T. J. Watson Research Center, Hawthorne, NY, USA
– sequence: 5
  givenname: Ching-Hsien
  orcidid: 0000-0002-2440-2771
  surname: Hsu
  fullname: Hsu, Ching-Hsien
  email: robertchh@gmail.com
  organization: College of Information and Electrical Engineering, Asia University, Taichung, Taiwan
– sequence: 6
  givenname: Shangguang
  orcidid: 0000-0001-7245-1298
  surname: Wang
  fullname: Wang, Shangguang
  email: sgwang@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
BookMark eNp9kEFPAjEQRhuDiYjcTbxs4nlx2tLu1hvZgJqQeBDPTbdMSXHZYnfB-O9ZhHjwYC_TZL43k3nXpFeHGgm5pTCiFNTDoihGDBiMmFIZQH5B-oxnLAWgea_7U5mnGZX0igybZg3dywVVVPXJ4yQpqrBbptPlCpMiVJUpQzStD3Uyi2aDXyF-JC7Erreqfev3mLxh3HuLN-TSmarB4bkOyPtsuiie0_nr00sxmaeWi6xNFcrcKe7QSuHGykkLpbBCOAfGcKksy7lADsaVJThDqWWZxbFkS8e4cZYPyP1p7jaGzx02rV6HXay7lZploKiQgsouJU8pG0PTRHTa-vbnjjYaX2kK-qhKd6r0UZU-q-pA-ANuo9-Y-P0fcndCPCL-xhUoNeaMHwCvwHT7
CODEN ITCCF6
CitedBy_id crossref_primary_10_11834_jig_240011
crossref_primary_10_1016_j_aiia_2025_02_008
crossref_primary_10_1109_TCC_2023_3290777
crossref_primary_10_1186_s13677_023_00394_x
crossref_primary_10_1109_JIOT_2023_3293497
crossref_primary_10_1109_JIOT_2024_3409813
crossref_primary_10_3390_s22228784
crossref_primary_10_3390_act13090327
crossref_primary_10_1109_TNSM_2021_3122147
crossref_primary_10_1109_TPDS_2022_3222765
crossref_primary_10_1109_TETC_2023_3297066
crossref_primary_10_1109_TIFS_2024_3524157
crossref_primary_10_1016_j_jnca_2023_103656
crossref_primary_10_1016_j_jpdc_2023_104781
crossref_primary_10_3390_app13106115
crossref_primary_10_1109_JIOT_2022_3184839
crossref_primary_10_1109_TSUSC_2022_3178661
crossref_primary_10_1109_TCE_2024_3413732
crossref_primary_10_1109_JSEN_2024_3502254
crossref_primary_10_1109_TSUSC_2022_3217014
crossref_primary_10_3390_app13084945
crossref_primary_10_1109_ACCESS_2024_3418995
crossref_primary_10_1109_MCE_2022_3159348
crossref_primary_10_1038_s41598_025_90839_x
crossref_primary_10_1145_3624478
crossref_primary_10_3390_electronics11203304
crossref_primary_10_1109_TVT_2022_3143828
crossref_primary_10_1109_TKDE_2022_3178211
crossref_primary_10_1109_JIOT_2024_3439852
crossref_primary_10_1007_s13369_021_05884_1
crossref_primary_10_1002_cpe_8362
crossref_primary_10_1109_TCSI_2024_3413570
crossref_primary_10_1109_TMC_2024_3466931
crossref_primary_10_1109_COMST_2024_3393230
crossref_primary_10_1109_TIM_2024_3502880
crossref_primary_10_1109_TSC_2021_3116597
crossref_primary_10_1109_TNSM_2024_3385484
crossref_primary_10_3390_electronics13173383
crossref_primary_10_1142_S021926592142007X
crossref_primary_10_1109_TSMC_2024_3495020
crossref_primary_10_1002_ett_4962
Cites_doi 10.1109/TII.2016.2607178
10.1145/3288599.3288634
10.1109/TSC.2017.2662008
10.1109/ICDCS.2017.94
10.1109/CVPR.2016.90
10.1109/TMC.2018.2850026
10.1145/3081333.3081359
10.1109/MCOM.2019.1800778
10.1109/MNET.2018.1700202
10.1109/72.870038
10.1109/ISCC.2012.6249269
10.1016/j.cub.2009.07.067
10.1109/TSC.2016.2594071
10.1109/TMC.2017.2696939
10.1109/TMC.2019.2944371
10.1109/ACCESS.2019.2911343
10.1145/3037697.3037698
10.1109/TNET.2015.2487344
10.1145/3241539.3241559
10.1109/CVPR.2018.00716
10.5555/3241094.3241142
10.1126/science.1060976
10.1145/3133956.3134077
10.1145/3234463
10.1109/TIP.2017.2781424
10.1109/ICDCS.2017.172
10.1109/TPDS.2016.2604803
10.1145/2906388.2906396
10.1109/5.726791
10.1109/TPAMI.2018.2815688
10.1109/ICCV.2017.97
10.1109/MIC.2018.2889231
10.1109/TMC.2017.2771427
10.1109/TCC.2016.2560163
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCC.2020.2997008
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2372-0018
EndPage 1499
ExternalDocumentID 10_1109_TCC_2020_2997008
9099432
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61922017
  funderid: 10.13039/501100001809
– fundername: Funds for Creative Research Groups of China
  grantid: 61921003
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-9e68f93fec65f49f6c0b5c55ff0aa369c2835e30afbb0fa11c27ce462df23afc3
IEDL.DBID RIE
ISSN 2168-7161
IngestDate Mon Jun 30 03:55:41 EDT 2025
Thu Apr 24 23:03:13 EDT 2025
Tue Jul 01 02:57:16 EDT 2025
Wed Aug 27 02:14:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-9e68f93fec65f49f6c0b5c55ff0aa369c2835e30afbb0fa11c27ce462df23afc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8362-8407
0000-0001-7352-8955
0000-0002-2440-2771
0000-0001-5743-9418
0000-0001-8656-9924
0000-0001-7245-1298
PQID 2709156516
PQPubID 2040413
PageCount 11
ParticipantIDs ieee_primary_9099432
crossref_citationtrail_10_1109_TCC_2020_2997008
crossref_primary_10_1109_TCC_2020_2997008
proquest_journals_2709156516
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cloud computing
PublicationTitleAbbrev TCC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref17
Hinton (ref30) 2015
ref39
ref16
ref19
ref18
Howard (ref26) 2017
Xiao (ref40) 2017
Yosinski (ref20)
ref24
Krizhevsky (ref41)
ref23
ref25
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Krizhevsky (ref38)
Simonyan (ref37)
References_xml – ident: ref33
  doi: 10.1109/TII.2016.2607178
– ident: ref27
  doi: 10.1145/3288599.3288634
– start-page: 1
  volume-title: Proc. 3th Int. Conf. Learn. Representations
  ident: ref37
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref2
  doi: 10.1109/TSC.2017.2662008
– ident: ref13
  doi: 10.1109/ICDCS.2017.94
– ident: ref36
  doi: 10.1109/CVPR.2016.90
– start-page: 576
  year: 2015
  ident: ref30
  article-title: Distilling the knowledge in a neural network
– ident: ref34
  doi: 10.1109/TMC.2018.2850026
– ident: ref32
  doi: 10.1145/3081333.3081359
– ident: ref10
  doi: 10.1109/MCOM.2019.1800778
– ident: ref14
  doi: 10.1109/MNET.2018.1700202
– ident: ref38
  article-title: Learning multiple layers of features from tiny images
– ident: ref15
  doi: 10.1109/72.870038
– ident: ref1
  doi: 10.1109/ISCC.2012.6249269
– ident: ref16
  doi: 10.1016/j.cub.2009.07.067
– start-page: 1
  year: 2017
  ident: ref26
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
– ident: ref3
  doi: 10.1109/TSC.2016.2594071
– ident: ref6
  doi: 10.1109/TMC.2017.2696939
– ident: ref9
  doi: 10.1109/TMC.2019.2944371
– ident: ref12
  doi: 10.1109/ACCESS.2019.2911343
– start-page: 3320
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref20
  article-title: How transferable are features in deep neural networks?
– ident: ref25
  doi: 10.1145/3037697.3037698
– ident: ref7
  doi: 10.1109/TNET.2015.2487344
– start-page: 1
  year: 2017
  ident: ref40
  article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms
– ident: ref31
  doi: 10.1145/3241539.3241559
– ident: ref29
  doi: 10.1109/CVPR.2018.00716
– start-page: 1106
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref41
  article-title: ImageNet classification with deep convolutional neural networks
– ident: ref19
  doi: 10.5555/3241094.3241142
– ident: ref17
  doi: 10.1126/science.1060976
– ident: ref18
  doi: 10.1145/3133956.3134077
– ident: ref11
  doi: 10.1145/3234463
– ident: ref22
  doi: 10.1109/TIP.2017.2781424
– ident: ref24
  doi: 10.1109/ICDCS.2017.172
– ident: ref5
  doi: 10.1109/TPDS.2016.2604803
– ident: ref28
  doi: 10.1145/2906388.2906396
– ident: ref39
  doi: 10.1109/5.726791
– ident: ref21
  doi: 10.1109/TPAMI.2018.2815688
– ident: ref35
  doi: 10.1109/ICCV.2017.97
– ident: ref23
  doi: 10.1109/MIC.2018.2889231
– ident: ref4
  doi: 10.1109/TMC.2017.2771427
– ident: ref8
  doi: 10.1109/TCC.2016.2560163
SSID ssj0000851919
Score 2.542793
Snippet Mobile applications can leverage high-quality deep learning models such as convolutional neural networks and deep neural networks to provide high-performance...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1489
SubjectTerms Accuracy
Applications programs
Artificial neural networks
Cloud computing
cloud-edge collaboration
Cognitive service
Collaboration
Computational modeling
Deep learning
Edge computing
Image edge detection
Machine learning
Mobile applications
Mobile computing
Mobile handsets
Neural networks
Performance enhancement
Response time
Servers
Training
Upgrading
User experience
Title A Cloud-Edge Collaboration Framework for Cognitive Service
URI https://ieeexplore.ieee.org/document/9099432
https://www.proquest.com/docview/2709156516
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT8MgFCZzJy9OncbpNBy8mNgOSqHF29JsWUzmaUt2a4CCB5fNaHvx1wstbYwa461pIaHvPR4f8N77ALiNNTdYYhwkLGaB43II7AsViDQiEhdKI-kSnJdPbLGOHzd00wP3XS6M1roOPtOhe6zv8ou9qtxR2YRbOBMT63AP7MatydXqzlMcdOCYtzeRiE9WWWb3fxEKrcdNkOOP_LLy1FQqP_xvvajMB2DZDqeJJXkJq1KG6uNbpcb_jvcYHHl0CaeNOZyAnt6dgkHL3AD9RB6ChynMtvuqCGbFs4bZV1uA8zZcC1o8a7_58CLovcoZWM9nq2wReBaFQBGalAHXLDWcGK0YNTE3TCFJFaXGICEI48pVXNMECSMlMgJjFSVKxywqTESEUeQc9Hf7nb4AkEpjIuMQDxJxqu3PMWItMSlSSYkUxQhMWgnnypcYd0wX27zeaiCeW53kTie518kI3HU9XpvyGn-0HToRd-28dEdg3Cox9_PvPY8Si4MsVsXs8vdeV-AwcokMdeDtGPTLt0pfW3hRypvarj4BbF7NMg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT8IwFH4heNCLqGhEUXfwYuKgXdeOeiMLBBU4QcJtWbvWgwSMjou_3nbrCFFjvC1bm3Tvvb5-bd97H8BtqLjGAmM_YiHzLZeDb15IP-0FROBMKiRsgvNkykbz8GlBFzW43-bCKKWK4DPVsY_FXX62lht7VNblBs6ExDjcPbPuU1xma21PVCx44JhXd5GId2dxbHaAAeoYnxshyyC5s_YUZCo_PHCxrAwbMKkGVEaTvHY2uejIz2-1Gv874iM4dPjS65cGcQw1tTqBRsXd4Lmp3ISHvhcv15vMH2Qvyot3rcEbVgFbnkG05psLMPKcXzmF-XAwi0e-41HwJaFR7nPFepoTrSSjOuSaSSSopFRrlKaEcWlrrimCUi0E0inGMoikClmQ6YCkWpIzqK_WK3UOHhVaB9piHpSGPWV-jhFji1HWE5SINGtBt5JwIl2Rcct1sUyKzQbiidFJYnWSOJ204G7b460ssPFH26YV8badk24L2pUSEzcDP5IgMkjIoFXMLn7vdQP7o9lknIwfp8-XcBDYtIYiDLcN9fx9o64M2MjFdWFjX0tl0Hs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Cloud-Edge+Collaboration+Framework+for+Cognitive+Service&rft.jtitle=IEEE+transactions+on+cloud+computing&rft.au=Ding%2C+Chuntao&rft.au=Zhou%2C+Ao&rft.au=Liu%2C+Yunxin&rft.au=Chang%2C+Rong+N.&rft.date=2022-07-01&rft.issn=2168-7161&rft.eissn=2372-0018&rft.volume=10&rft.issue=3&rft.spage=1489&rft.epage=1499&rft_id=info:doi/10.1109%2FTCC.2020.2997008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCC_2020_2997008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-7161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-7161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-7161&client=summon