A Cloud-Edge Collaboration Framework for Cognitive Service
Mobile applications can leverage high-quality deep learning models such as convolutional neural networks and deep neural networks to provide high-performance cognitive services. Prior work on deep learning models-based mobile applications in a cloud-edge computing environment focuses on performing l...
Saved in:
Published in | IEEE transactions on cloud computing Vol. 10; no. 3; pp. 1489 - 1499 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mobile applications can leverage high-quality deep learning models such as convolutional neural networks and deep neural networks to provide high-performance cognitive services. Prior work on deep learning models-based mobile applications in a cloud-edge computing environment focuses on performing lightweight data pre-processing tasks on edge servers for cloud-hosted cognitive servers. These approaches have two major limitations. First, it is uneasy for the mobile applications to assure satisfactory user experience in terms of network communication delay, because the intermediary edge servers are used only to pre-process data (e.g., images and videos) and the cloud servers are used to complete the tasks. Second, these approaches assume the pre-trained deep learning models deployed on cloud servers are static, and will not attempt to automatically upgrade in a context-aware manner. In this article, we propose a cloud-edge collaboration framework that facilitates delivering cognitive services with long-lasting, fast response, and high accuracy properties. We fist deploy a shallow model (i.e., EdgeCNN) on the edge server and a deep model (i.e., CloudCNN) on the cloud server. EdgeCNN can provide durable and rapid response cognitive services, because edge servers not only provide computing resources for mobile applications, but also close to users. Then, we enable CloudCNN to assist in training EdgeCNN to improve the performance of the latter. Thus, EdgeCNN also provides high-accuracy cognitive services. Furthermore, because users may continue to upload data to edge servers in real-world scenarios, we propose to use the ongoing assistance of CloudCNN to further improve the accuracy of the shallow model. Experimental results show that EdgeCNN can reduce the average response time of cognitive services by up to 55.08 percent and improve accuracy by up to 26.70 percent. |
---|---|
AbstractList | Mobile applications can leverage high-quality deep learning models such as convolutional neural networks and deep neural networks to provide high-performance cognitive services. Prior work on deep learning models-based mobile applications in a cloud-edge computing environment focuses on performing lightweight data pre-processing tasks on edge servers for cloud-hosted cognitive servers. These approaches have two major limitations. First, it is uneasy for the mobile applications to assure satisfactory user experience in terms of network communication delay, because the intermediary edge servers are used only to pre-process data (e.g., images and videos) and the cloud servers are used to complete the tasks. Second, these approaches assume the pre-trained deep learning models deployed on cloud servers are static, and will not attempt to automatically upgrade in a context-aware manner. In this article, we propose a cloud-edge collaboration framework that facilitates delivering cognitive services with long-lasting, fast response, and high accuracy properties. We fist deploy a shallow model (i.e., EdgeCNN) on the edge server and a deep model (i.e., CloudCNN) on the cloud server. EdgeCNN can provide durable and rapid response cognitive services, because edge servers not only provide computing resources for mobile applications, but also close to users. Then, we enable CloudCNN to assist in training EdgeCNN to improve the performance of the latter. Thus, EdgeCNN also provides high-accuracy cognitive services. Furthermore, because users may continue to upload data to edge servers in real-world scenarios, we propose to use the ongoing assistance of CloudCNN to further improve the accuracy of the shallow model. Experimental results show that EdgeCNN can reduce the average response time of cognitive services by up to 55.08 percent and improve accuracy by up to 26.70 percent. |
Author | Ding, Chuntao Hsu, Ching-Hsien Wang, Shangguang Liu, Yunxin Zhou, Ao Chang, Rong N. |
Author_xml | – sequence: 1 givenname: Chuntao orcidid: 0000-0001-8362-8407 surname: Ding fullname: Ding, Chuntao email: ctding@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 2 givenname: Ao orcidid: 0000-0001-5743-9418 surname: Zhou fullname: Zhou, Ao email: aozhou@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 3 givenname: Yunxin orcidid: 0000-0001-7352-8955 surname: Liu fullname: Liu, Yunxin email: yunxin.liu@microsoft.com organization: Microsoft Research, Beijing, China – sequence: 4 givenname: Rong N. orcidid: 0000-0001-8656-9924 surname: Chang fullname: Chang, Rong N. email: rong@us.ibm.com organization: IBM T. J. Watson Research Center, Hawthorne, NY, USA – sequence: 5 givenname: Ching-Hsien orcidid: 0000-0002-2440-2771 surname: Hsu fullname: Hsu, Ching-Hsien email: robertchh@gmail.com organization: College of Information and Electrical Engineering, Asia University, Taichung, Taiwan – sequence: 6 givenname: Shangguang orcidid: 0000-0001-7245-1298 surname: Wang fullname: Wang, Shangguang email: sgwang@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China |
BookMark | eNp9kEFPAjEQRhuDiYjcTbxs4nlx2tLu1hvZgJqQeBDPTbdMSXHZYnfB-O9ZhHjwYC_TZL43k3nXpFeHGgm5pTCiFNTDoihGDBiMmFIZQH5B-oxnLAWgea_7U5mnGZX0igybZg3dywVVVPXJ4yQpqrBbptPlCpMiVJUpQzStD3Uyi2aDXyF-JC7Erreqfev3mLxh3HuLN-TSmarB4bkOyPtsuiie0_nr00sxmaeWi6xNFcrcKe7QSuHGykkLpbBCOAfGcKksy7lADsaVJThDqWWZxbFkS8e4cZYPyP1p7jaGzx02rV6HXay7lZploKiQgsouJU8pG0PTRHTa-vbnjjYaX2kK-qhKd6r0UZU-q-pA-ANuo9-Y-P0fcndCPCL-xhUoNeaMHwCvwHT7 |
CODEN | ITCCF6 |
CitedBy_id | crossref_primary_10_11834_jig_240011 crossref_primary_10_1016_j_aiia_2025_02_008 crossref_primary_10_1109_TCC_2023_3290777 crossref_primary_10_1186_s13677_023_00394_x crossref_primary_10_1109_JIOT_2023_3293497 crossref_primary_10_1109_JIOT_2024_3409813 crossref_primary_10_3390_s22228784 crossref_primary_10_3390_act13090327 crossref_primary_10_1109_TNSM_2021_3122147 crossref_primary_10_1109_TPDS_2022_3222765 crossref_primary_10_1109_TETC_2023_3297066 crossref_primary_10_1109_TIFS_2024_3524157 crossref_primary_10_1016_j_jnca_2023_103656 crossref_primary_10_1016_j_jpdc_2023_104781 crossref_primary_10_3390_app13106115 crossref_primary_10_1109_JIOT_2022_3184839 crossref_primary_10_1109_TSUSC_2022_3178661 crossref_primary_10_1109_TCE_2024_3413732 crossref_primary_10_1109_JSEN_2024_3502254 crossref_primary_10_1109_TSUSC_2022_3217014 crossref_primary_10_3390_app13084945 crossref_primary_10_1109_ACCESS_2024_3418995 crossref_primary_10_1109_MCE_2022_3159348 crossref_primary_10_1038_s41598_025_90839_x crossref_primary_10_1145_3624478 crossref_primary_10_3390_electronics11203304 crossref_primary_10_1109_TVT_2022_3143828 crossref_primary_10_1109_TKDE_2022_3178211 crossref_primary_10_1109_JIOT_2024_3439852 crossref_primary_10_1007_s13369_021_05884_1 crossref_primary_10_1002_cpe_8362 crossref_primary_10_1109_TCSI_2024_3413570 crossref_primary_10_1109_TMC_2024_3466931 crossref_primary_10_1109_COMST_2024_3393230 crossref_primary_10_1109_TIM_2024_3502880 crossref_primary_10_1109_TSC_2021_3116597 crossref_primary_10_1109_TNSM_2024_3385484 crossref_primary_10_3390_electronics13173383 crossref_primary_10_1142_S021926592142007X crossref_primary_10_1109_TSMC_2024_3495020 crossref_primary_10_1002_ett_4962 |
Cites_doi | 10.1109/TII.2016.2607178 10.1145/3288599.3288634 10.1109/TSC.2017.2662008 10.1109/ICDCS.2017.94 10.1109/CVPR.2016.90 10.1109/TMC.2018.2850026 10.1145/3081333.3081359 10.1109/MCOM.2019.1800778 10.1109/MNET.2018.1700202 10.1109/72.870038 10.1109/ISCC.2012.6249269 10.1016/j.cub.2009.07.067 10.1109/TSC.2016.2594071 10.1109/TMC.2017.2696939 10.1109/TMC.2019.2944371 10.1109/ACCESS.2019.2911343 10.1145/3037697.3037698 10.1109/TNET.2015.2487344 10.1145/3241539.3241559 10.1109/CVPR.2018.00716 10.5555/3241094.3241142 10.1126/science.1060976 10.1145/3133956.3134077 10.1145/3234463 10.1109/TIP.2017.2781424 10.1109/ICDCS.2017.172 10.1109/TPDS.2016.2604803 10.1145/2906388.2906396 10.1109/5.726791 10.1109/TPAMI.2018.2815688 10.1109/ICCV.2017.97 10.1109/MIC.2018.2889231 10.1109/TMC.2017.2771427 10.1109/TCC.2016.2560163 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCC.2020.2997008 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2372-0018 |
EndPage | 1499 |
ExternalDocumentID | 10_1109_TCC_2020_2997008 9099432 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61922017 funderid: 10.13039/501100001809 – fundername: Funds for Creative Research Groups of China grantid: 61921003 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c357t-9e68f93fec65f49f6c0b5c55ff0aa369c2835e30afbb0fa11c27ce462df23afc3 |
IEDL.DBID | RIE |
ISSN | 2168-7161 |
IngestDate | Mon Jun 30 03:55:41 EDT 2025 Thu Apr 24 23:03:13 EDT 2025 Tue Jul 01 02:57:16 EDT 2025 Wed Aug 27 02:14:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-9e68f93fec65f49f6c0b5c55ff0aa369c2835e30afbb0fa11c27ce462df23afc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8362-8407 0000-0001-7352-8955 0000-0002-2440-2771 0000-0001-5743-9418 0000-0001-8656-9924 0000-0001-7245-1298 |
PQID | 2709156516 |
PQPubID | 2040413 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9099432 crossref_citationtrail_10_1109_TCC_2020_2997008 crossref_primary_10_1109_TCC_2020_2997008 proquest_journals_2709156516 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cloud computing |
PublicationTitleAbbrev | TCC |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref11 ref33 ref10 ref32 ref2 ref1 ref17 Hinton (ref30) 2015 ref39 ref16 ref19 ref18 Howard (ref26) 2017 Xiao (ref40) 2017 Yosinski (ref20) ref24 Krizhevsky (ref41) ref23 ref25 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Krizhevsky (ref38) Simonyan (ref37) |
References_xml | – ident: ref33 doi: 10.1109/TII.2016.2607178 – ident: ref27 doi: 10.1145/3288599.3288634 – start-page: 1 volume-title: Proc. 3th Int. Conf. Learn. Representations ident: ref37 article-title: Very deep convolutional networks for large-scale image recognition – ident: ref2 doi: 10.1109/TSC.2017.2662008 – ident: ref13 doi: 10.1109/ICDCS.2017.94 – ident: ref36 doi: 10.1109/CVPR.2016.90 – start-page: 576 year: 2015 ident: ref30 article-title: Distilling the knowledge in a neural network – ident: ref34 doi: 10.1109/TMC.2018.2850026 – ident: ref32 doi: 10.1145/3081333.3081359 – ident: ref10 doi: 10.1109/MCOM.2019.1800778 – ident: ref14 doi: 10.1109/MNET.2018.1700202 – ident: ref38 article-title: Learning multiple layers of features from tiny images – ident: ref15 doi: 10.1109/72.870038 – ident: ref1 doi: 10.1109/ISCC.2012.6249269 – ident: ref16 doi: 10.1016/j.cub.2009.07.067 – start-page: 1 year: 2017 ident: ref26 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications – ident: ref3 doi: 10.1109/TSC.2016.2594071 – ident: ref6 doi: 10.1109/TMC.2017.2696939 – ident: ref9 doi: 10.1109/TMC.2019.2944371 – ident: ref12 doi: 10.1109/ACCESS.2019.2911343 – start-page: 3320 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref20 article-title: How transferable are features in deep neural networks? – ident: ref25 doi: 10.1145/3037697.3037698 – ident: ref7 doi: 10.1109/TNET.2015.2487344 – start-page: 1 year: 2017 ident: ref40 article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms – ident: ref31 doi: 10.1145/3241539.3241559 – ident: ref29 doi: 10.1109/CVPR.2018.00716 – start-page: 1106 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref41 article-title: ImageNet classification with deep convolutional neural networks – ident: ref19 doi: 10.5555/3241094.3241142 – ident: ref17 doi: 10.1126/science.1060976 – ident: ref18 doi: 10.1145/3133956.3134077 – ident: ref11 doi: 10.1145/3234463 – ident: ref22 doi: 10.1109/TIP.2017.2781424 – ident: ref24 doi: 10.1109/ICDCS.2017.172 – ident: ref5 doi: 10.1109/TPDS.2016.2604803 – ident: ref28 doi: 10.1145/2906388.2906396 – ident: ref39 doi: 10.1109/5.726791 – ident: ref21 doi: 10.1109/TPAMI.2018.2815688 – ident: ref35 doi: 10.1109/ICCV.2017.97 – ident: ref23 doi: 10.1109/MIC.2018.2889231 – ident: ref4 doi: 10.1109/TMC.2017.2771427 – ident: ref8 doi: 10.1109/TCC.2016.2560163 |
SSID | ssj0000851919 |
Score | 2.542793 |
Snippet | Mobile applications can leverage high-quality deep learning models such as convolutional neural networks and deep neural networks to provide high-performance... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1489 |
SubjectTerms | Accuracy Applications programs Artificial neural networks Cloud computing cloud-edge collaboration Cognitive service Collaboration Computational modeling Deep learning Edge computing Image edge detection Machine learning Mobile applications Mobile computing Mobile handsets Neural networks Performance enhancement Response time Servers Training Upgrading User experience |
Title | A Cloud-Edge Collaboration Framework for Cognitive Service |
URI | https://ieeexplore.ieee.org/document/9099432 https://www.proquest.com/docview/2709156516 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT8MgFCZzJy9OncbpNBy8mNgOSqHF29JsWUzmaUt2a4CCB5fNaHvx1wstbYwa461pIaHvPR4f8N77ALiNNTdYYhwkLGaB43II7AsViDQiEhdKI-kSnJdPbLGOHzd00wP3XS6M1roOPtOhe6zv8ou9qtxR2YRbOBMT63AP7MatydXqzlMcdOCYtzeRiE9WWWb3fxEKrcdNkOOP_LLy1FQqP_xvvajMB2DZDqeJJXkJq1KG6uNbpcb_jvcYHHl0CaeNOZyAnt6dgkHL3AD9RB6ChynMtvuqCGbFs4bZV1uA8zZcC1o8a7_58CLovcoZWM9nq2wReBaFQBGalAHXLDWcGK0YNTE3TCFJFaXGICEI48pVXNMECSMlMgJjFSVKxywqTESEUeQc9Hf7nb4AkEpjIuMQDxJxqu3PMWItMSlSSYkUxQhMWgnnypcYd0wX27zeaiCeW53kTie518kI3HU9XpvyGn-0HToRd-28dEdg3Cox9_PvPY8Si4MsVsXs8vdeV-AwcokMdeDtGPTLt0pfW3hRypvarj4BbF7NMg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT8IwFH4heNCLqGhEUXfwYuKgXdeOeiMLBBU4QcJtWbvWgwSMjou_3nbrCFFjvC1bm3Tvvb5-bd97H8BtqLjGAmM_YiHzLZeDb15IP-0FROBMKiRsgvNkykbz8GlBFzW43-bCKKWK4DPVsY_FXX62lht7VNblBs6ExDjcPbPuU1xma21PVCx44JhXd5GId2dxbHaAAeoYnxshyyC5s_YUZCo_PHCxrAwbMKkGVEaTvHY2uejIz2-1Gv874iM4dPjS65cGcQw1tTqBRsXd4Lmp3ISHvhcv15vMH2Qvyot3rcEbVgFbnkG05psLMPKcXzmF-XAwi0e-41HwJaFR7nPFepoTrSSjOuSaSSSopFRrlKaEcWlrrimCUi0E0inGMoikClmQ6YCkWpIzqK_WK3UOHhVaB9piHpSGPWV-jhFji1HWE5SINGtBt5JwIl2Rcct1sUyKzQbiidFJYnWSOJ204G7b460ssPFH26YV8badk24L2pUSEzcDP5IgMkjIoFXMLn7vdQP7o9lknIwfp8-XcBDYtIYiDLcN9fx9o64M2MjFdWFjX0tl0Hs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Cloud-Edge+Collaboration+Framework+for+Cognitive+Service&rft.jtitle=IEEE+transactions+on+cloud+computing&rft.au=Ding%2C+Chuntao&rft.au=Zhou%2C+Ao&rft.au=Liu%2C+Yunxin&rft.au=Chang%2C+Rong+N.&rft.date=2022-07-01&rft.issn=2168-7161&rft.eissn=2372-0018&rft.volume=10&rft.issue=3&rft.spage=1489&rft.epage=1499&rft_id=info:doi/10.1109%2FTCC.2020.2997008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCC_2020_2997008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-7161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-7161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-7161&client=summon |