EgoGesture: A New Dataset and Benchmark for Egocentric Hand Gesture Recognition

Gesture is a natural interface in human-computer interaction, especially interacting with wearable devices, such as VR/AR helmet and glasses. However, in the gesture recognition community, it lacks of suitable datasets for developing egocentric (first-person view) gesture recognition methods, in par...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on multimedia Vol. 20; no. 5; pp. 1038 - 1050
Main Authors Zhang, Yifan, Cao, Congqi, Cheng, Jian, Lu, Hanqing
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gesture is a natural interface in human-computer interaction, especially interacting with wearable devices, such as VR/AR helmet and glasses. However, in the gesture recognition community, it lacks of suitable datasets for developing egocentric (first-person view) gesture recognition methods, in particular in the deep learning era. In this paper, we introduce a new benchmark dataset named EgoGesture with sufficient size, variation, and reality to be able to train deep neural networks. This dataset contains more than 24 000 gesture samples and 3 000 000 frames for both color and depth modalities from 50 distinct subjects. We design 83 different static and dynamic gestures focused on interaction with wearable devices and collect them from six diverse indoor and outdoor scenes, respectively, with variation in background and illumination. We also consider the scenario when people perform gestures while they are walking. The performances of several representative approaches are systematically evaluated on two tasks: gesture classification in segmented data and gesture spotting and recognition in continuous data. Our empirical study also provides an in-depth analysis on input modality selection and domain adaptation between different scenes.
AbstractList Gesture is a natural interface in human-computer interaction, especially interacting with wearable devices, such as VR/AR helmet and glasses. However, in the gesture recognition community, it lacks of suitable datasets for developing egocentric (first-person view) gesture recognition methods, in particular in the deep learning era. In this paper, we introduce a new benchmark dataset named EgoGesture with sufficient size, variation, and reality to be able to train deep neural networks. This dataset contains more than 24 000 gesture samples and 3 000 000 frames for both color and depth modalities from 50 distinct subjects. We design 83 different static and dynamic gestures focused on interaction with wearable devices and collect them from six diverse indoor and outdoor scenes, respectively, with variation in background and illumination. We also consider the scenario when people perform gestures while they are walking. The performances of several representative approaches are systematically evaluated on two tasks: gesture classification in segmented data and gesture spotting and recognition in continuous data. Our empirical study also provides an in-depth analysis on input modality selection and domain adaptation between different scenes.
Author Cao, Congqi
Lu, Hanqing
Zhang, Yifan
Cheng, Jian
Author_xml – sequence: 1
  givenname: Yifan
  orcidid: 0000-0002-9190-3509
  surname: Zhang
  fullname: Zhang, Yifan
  email: yfzhang@nlpr.ia.ac.cn
  organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Congqi
  orcidid: 0000-0002-0217-9791
  surname: Cao
  fullname: Cao, Congqi
  email: congqi.cao@nlpr.ia.ac.cn
  organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Jian
  orcidid: 0000-0003-1289-2758
  surname: Cheng
  fullname: Cheng, Jian
  email: jcheng@nlpr.ia.ac.cn
  organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Hanqing
  surname: Lu
  fullname: Lu, Hanqing
  email: luhq@nlpr.ia.ac.cn
  organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing, China
BookMark eNp9kEFPAjEQRhujiYDeTbw08bzYaXe3rTdEBBOQxOB5U8oUF3EXuyXGf283EA8ePM0k872ZyeuS06qukJArYH0Apm8Xs1mfM1B9rpiSuT4hHdApJIxJeRr7jLNEc2DnpNs0G8YgzZjskPloXY-xCXuPd3RAn_GLPphgGgzUVCt6j5V9-zD-nbra05i1WAVfWjppp0eQvqCt11UZyrq6IGfObBu8PNYeeX0cLYaTZDofPw0H08SKTIZEY66EBa6cM5gJaQBXqdaCLx1fsjxd2aUBhxy04WC4W8lcGFACrHLgchQ9cnPYu_P15z7-UWzqva_iyYIzriHlaZbHVH5IWV83jUdX2DKY9s_gTbktgBWtvCLKK1p5xVFeBNkfcOfL6OH7P-T6gJSI-BtXXOtMKvEDgKt7ag
CODEN ITMUF8
CitedBy_id crossref_primary_10_1007_s00371_023_03160_x
crossref_primary_10_1142_S0218001423560116
crossref_primary_10_1007_s12652_025_04958_4
crossref_primary_10_3390_s25010255
crossref_primary_10_1109_TMM_2023_3271811
crossref_primary_10_2478_cait_2024_0031
crossref_primary_10_1109_THMS_2022_3144951
crossref_primary_10_1016_j_cag_2023_01_008
crossref_primary_10_1109_TIM_2024_3396828
crossref_primary_10_1109_TMM_2022_3164261
crossref_primary_10_1007_s11042_023_15748_5
crossref_primary_10_1080_10447318_2023_2180235
crossref_primary_10_1038_s41597_021_00876_0
crossref_primary_10_1007_s00371_022_02497_z
crossref_primary_10_1109_JSEN_2022_3222801
crossref_primary_10_1109_ACCESS_2024_3456436
crossref_primary_10_1109_TII_2019_2944700
crossref_primary_10_1177_1045389X251321972
crossref_primary_10_1155_2021_6043152
crossref_primary_10_1016_j_aei_2023_101939
crossref_primary_10_1371_journal_pone_0267457
crossref_primary_10_1016_j_iswa_2022_200174
crossref_primary_10_1007_s11554_024_01509_6
crossref_primary_10_1007_s11704_023_3396_y
crossref_primary_10_1016_j_rcim_2023_102596
crossref_primary_10_1088_1742_6596_2024_1_012037
crossref_primary_10_1142_S0219622022300026
crossref_primary_10_1007_s10055_022_00725_4
crossref_primary_10_1007_s41870_023_01295_7
crossref_primary_10_1109_ACCESS_2024_3482459
crossref_primary_10_3390_jimaging11030091
crossref_primary_10_1016_j_patcog_2020_107416
crossref_primary_10_1109_TMM_2019_2953325
crossref_primary_10_1080_0952813X_2023_2183269
crossref_primary_10_1109_TVCG_2022_3207004
crossref_primary_10_1109_ACCESS_2020_2996779
crossref_primary_10_1016_j_hcc_2024_100280
crossref_primary_10_3390_electronics12040786
crossref_primary_10_1109_TMM_2023_3242551
crossref_primary_10_1109_ACCESS_2021_3131809
crossref_primary_10_1109_ACCESS_2023_3341702
crossref_primary_10_1016_j_dib_2024_110080
crossref_primary_10_3389_frobt_2024_1430740
crossref_primary_10_3390_s19143170
crossref_primary_10_1109_ACCESS_2020_3013016
crossref_primary_10_1109_TPAMI_2020_2986648
crossref_primary_10_35784_acs_2024_13
crossref_primary_10_3389_fnbot_2018_00086
crossref_primary_10_3390_app12042041
crossref_primary_10_1109_TIM_2021_3077967
crossref_primary_10_1109_MMUL_2020_3021799
crossref_primary_10_3390_app9163419
crossref_primary_10_1007_s00521_024_09509_0
crossref_primary_10_1016_j_engappai_2023_107288
crossref_primary_10_1007_s12559_023_10174_z
crossref_primary_10_1109_ACCESS_2020_3017869
crossref_primary_10_1109_TMM_2021_3078882
crossref_primary_10_1109_JIOT_2023_3292376
crossref_primary_10_1109_TIP_2021_3087348
crossref_primary_10_1007_s12046_022_02026_7
crossref_primary_10_1109_TCSVT_2022_3165069
crossref_primary_10_3390_s19010059
crossref_primary_10_1007_s00530_024_01282_3
crossref_primary_10_1109_TMM_2019_2919434
crossref_primary_10_1145_3561822
crossref_primary_10_1007_s00521_024_09990_7
crossref_primary_10_1007_s10639_025_13358_2
crossref_primary_10_1016_j_dib_2020_105676
crossref_primary_10_1016_j_comnet_2022_108781
crossref_primary_10_3390_s20185260
crossref_primary_10_2478_jsiot_2024_0006
crossref_primary_10_1371_journal_pone_0285838
crossref_primary_10_1007_s11042_024_18380_z
crossref_primary_10_1109_TIP_2021_3070732
crossref_primary_10_37943_18JYLU4904
crossref_primary_10_1007_s11263_024_02095_7
crossref_primary_10_3390_electronics13183737
crossref_primary_10_1016_j_eswa_2020_114499
crossref_primary_10_1016_j_cviu_2021_103252
crossref_primary_10_1016_j_neucom_2022_12_022
crossref_primary_10_2478_amns_2023_2_00873
crossref_primary_10_3390_app13074558
crossref_primary_10_1109_TCSVT_2024_3470996
crossref_primary_10_1145_3698145
crossref_primary_10_3390_math11183848
crossref_primary_10_3390_s20082321
crossref_primary_10_1109_JBHI_2022_3184870
crossref_primary_10_1016_j_rcim_2024_102847
crossref_primary_10_3390_math12091393
crossref_primary_10_1186_s13640_021_00567_1
crossref_primary_10_1016_j_dib_2024_111003
crossref_primary_10_1109_THMS_2022_3144000
crossref_primary_10_1109_ACCESS_2023_3279845
crossref_primary_10_1145_3586207
crossref_primary_10_26782_jmcms_2020_08_00030
crossref_primary_10_1109_TMM_2019_2953375
crossref_primary_10_1109_TIP_2021_3108349
crossref_primary_10_1145_3652149
crossref_primary_10_3390_app10072300
crossref_primary_10_1109_TBIOM_2020_2968216
crossref_primary_10_3233_JIFS_210050
crossref_primary_10_1145_3534600
crossref_primary_10_1016_j_rcim_2025_102957
crossref_primary_10_1109_TNNLS_2023_3295811
crossref_primary_10_1007_s11042_019_08429_9
crossref_primary_10_1016_j_procs_2022_12_106
crossref_primary_10_1109_TIFS_2020_3036218
crossref_primary_10_3390_s21020356
crossref_primary_10_1007_s13042_023_01987_3
crossref_primary_10_1007_s44267_023_00027_6
crossref_primary_10_1016_j_cag_2021_07_007
crossref_primary_10_1038_s41467_024_47580_2
crossref_primary_10_1007_s40747_022_00858_8
crossref_primary_10_1109_TCYB_2020_3012092
crossref_primary_10_1109_JSEN_2024_3445128
crossref_primary_10_1016_j_vrih_2021_05_001
crossref_primary_10_1109_JSEN_2023_3324479
crossref_primary_10_1007_s11042_024_18430_6
crossref_primary_10_1109_TII_2019_2931140
crossref_primary_10_1145_3712276
crossref_primary_10_1007_s00521_022_07651_1
crossref_primary_10_25046_aj050535
crossref_primary_10_29026_oes_2023_230017
crossref_primary_10_1007_s00371_022_02762_1
crossref_primary_10_1002_cav_2137
crossref_primary_10_1109_JSEN_2021_3123443
crossref_primary_10_1007_s00521_022_07826_w
crossref_primary_10_1007_s00371_023_03179_0
crossref_primary_10_1007_s42835_021_00972_6
crossref_primary_10_1002_cpe_7159
crossref_primary_10_1016_j_cviu_2022_103489
crossref_primary_10_1088_1742_6596_1544_1_012127
crossref_primary_10_1038_s41598_020_71713_4
crossref_primary_10_1109_TMM_2023_3295899
crossref_primary_10_1109_ACCESS_2020_2986473
crossref_primary_10_7717_peerj_cs_218
crossref_primary_10_1007_s00521_023_08774_9
crossref_primary_10_1109_JSEN_2024_3390794
crossref_primary_10_1007_s00371_021_02259_3
crossref_primary_10_1016_j_cag_2022_07_015
crossref_primary_10_1016_j_ins_2024_121005
Cites_doi 10.1109/TIP.2012.2192742
10.1109/34.598226
10.1109/34.735811
10.1109/ICPR.2016.7899606
10.1109/TPAMI.2008.167
10.1007/s11042-016-4223-3
10.21236/ADA623249
10.1109/ICCV.2017.406
10.1109/ICCV.2013.441
10.1109/TPAMI.2017.2670560
10.1109/TPAMI.2015.2513479
10.1109/ICCV.2015.443
10.1109/CVPRW.2016.100
10.1016/j.imavis.2014.04.005
10.1109/CVPR.2014.223
10.1007/s11042-012-1117-x
10.1109/TSMCC.2007.893280
10.1109/TIP.2015.2456412
10.1109/CVPR.2014.108
10.1109/TITS.2014.2337331
10.1109/CVPR.2016.456
10.1007/978-3-319-17963-6_9
10.1109/CVPRW.2016.53
10.1109/TPAMI.2016.2537323
10.1109/CVPRW.2014.107
10.1145/2702123.2702179
10.1109/ICCV.2015.510
10.1145/2522848.2532590
10.1109/ICCV.2015.226
10.1007/s10462-012-9356-9
10.1109/THMS.2016.2611824
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TMM.2018.2808769
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore (IEEE/IET Electronic Library - IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 1050
ExternalDocumentID 10_1109_TMM_2018_2808769
8299578
Genre orig-research
GrantInformation_xml – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences; Youth Innovation Promotion Association CAS
  funderid: 10.13039/501100004739
– fundername: National Natural Science Foundation of China
  grantid: 61332016; 61572500
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-9e683c128ffae537a1ed49932bf2b064dcba1fe219a21a2fd763a1831c8f1f6e3
IEDL.DBID RIE
ISSN 1520-9210
IngestDate Mon Jun 30 03:35:03 EDT 2025
Tue Jul 01 01:54:31 EDT 2025
Thu Apr 24 22:53:20 EDT 2025
Wed Aug 27 08:33:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-9e683c128ffae537a1ed49932bf2b064dcba1fe219a21a2fd763a1831c8f1f6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1289-2758
0000-0002-0217-9791
0000-0002-9190-3509
PQID 2029142456
PQPubID 75737
PageCount 13
ParticipantIDs proquest_journals_2029142456
crossref_citationtrail_10_1109_TMM_2018_2808769
ieee_primary_8299578
crossref_primary_10_1109_TMM_2018_2808769
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
liu (ref4) 2013; 1
ref31
wang (ref38) 2016
ref33
ref11
ref10
jiang (ref39) 2015; 16
ref2
ref1
ref17
ref16
ref19
ref18
wan (ref23) 0
wang (ref30) 0
graves (ref36) 2013
wu (ref43) 2014; 19
kim (ref3) 2009; 31
ref46
ref24
ref45
ref26
ref47
ref25
ref20
ref41
ref22
ref44
ref21
cao (ref35) 0
ref28
simonyan (ref32) 2014
ref27
perronnin (ref29) 2010
kurakin (ref5) 0
ref8
escalera (ref7) 0
ref9
ref6
nishida (ref37) 0
lui (ref40) 2012; 13
malgireddy (ref42) 2013; 14
escalera (ref14) 0
References_xml – ident: ref45
  doi: 10.1109/TIP.2012.2192742
– ident: ref44
  doi: 10.1109/34.598226
– ident: ref17
  doi: 10.1109/34.735811
– volume: 14
  start-page: 2189
  year: 2013
  ident: ref42
  article-title: Language-motivated approaches to action recognition
  publication-title: J Mach Learn Res
– ident: ref41
  doi: 10.1109/ICPR.2016.7899606
– volume: 19
  start-page: 552?571
  year: 2014
  ident: ref43
  article-title: Deep dynamic neural networks for gesture segmentation and recognition
  publication-title: Proc Workshop Eur Conf Comput Vis
– volume: 31
  start-page: 1415
  year: 2009
  ident: ref3
  article-title: Canonical correlation analysis of video volume tensors for action categorization and detection
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.167
– ident: ref6
  doi: 10.1007/s11042-016-4223-3
– start-page: 365
  year: 0
  ident: ref7
  article-title: Chalearn multi-modal gesture recognition 2013: Grand challenge and workshop summary
  publication-title: Proc 15th ACM Int Conf Multimodal Int
– ident: ref47
  doi: 10.21236/ADA623249
– ident: ref46
  doi: 10.1109/ICCV.2017.406
– ident: ref24
  doi: 10.1109/ICCV.2013.441
– ident: ref21
  doi: 10.1109/TPAMI.2017.2670560
– ident: ref26
  doi: 10.1109/TPAMI.2015.2513479
– ident: ref11
  doi: 10.1109/ICCV.2015.443
– start-page: 872
  year: 0
  ident: ref30
  article-title: Robust 3d action recognition with random occupancy patterns
  publication-title: Proc 12th Eur Conf Comput Vision
– year: 2013
  ident: ref36
  article-title: Generating sequences with recurrent neural networks
  publication-title: CoRR
– start-page: 143
  year: 2010
  ident: ref29
  article-title: Improving the fisher kernel for large-scale image classification
  publication-title: 11th Conf Eur Conf Comput Vision
– start-page: 1975
  year: 0
  ident: ref5
  article-title: A real time system for dynamic hand gesture recognition with a depth sensor
  publication-title: Proc IEEE 20th Eur Signal Process Conf
– start-page: 3324
  year: 0
  ident: ref35
  article-title: Action recognition with joints-pooled 3d deep convolutional descriptors
  publication-title: Proc 25th Int Conf Artif Intell
– start-page: 459
  year: 0
  ident: ref14
  article-title: ChaLearn looking at people challenge 2014: Dataset and results
  publication-title: Proc Comput Vision
– ident: ref8
  doi: 10.1109/CVPRW.2016.100
– start-page: 13
  year: 2016
  ident: ref38
  article-title: Large-scale continuous gesture recognition using convolutional neutral networks
  publication-title: Proc 23rd Int Conf Pattern Recog
– ident: ref27
  doi: 10.1016/j.imavis.2014.04.005
– ident: ref33
  doi: 10.1109/CVPR.2014.223
– start-page: 682
  year: 0
  ident: ref37
  article-title: Multimodal gesture recognition using multi-stream recurrent neural network
  publication-title: Proc Pacific-Rim Symp Image Video Technol
– ident: ref18
  doi: 10.1007/s11042-012-1117-x
– ident: ref1
  doi: 10.1109/TSMCC.2007.893280
– volume: 1
  start-page: 1493
  year: 2013
  ident: ref4
  article-title: Learning discriminative representations from RGB-D video data
  publication-title: Proc 23rd Int Joint Conf Artif Intell
– ident: ref28
  doi: 10.1109/TIP.2015.2456412
– ident: ref25
  doi: 10.1109/CVPR.2014.108
– ident: ref15
  doi: 10.1109/TITS.2014.2337331
– ident: ref16
  doi: 10.1109/CVPR.2016.456
– volume: 13
  start-page: 3297
  year: 2012
  ident: ref40
  article-title: Human gesture recognition on product manifolds
  publication-title: J Mach Learn Res
– ident: ref19
  doi: 10.1007/978-3-319-17963-6_9
– ident: ref10
  doi: 10.1109/CVPRW.2016.53
– ident: ref20
  doi: 10.1109/TPAMI.2016.2537323
– ident: ref12
  doi: 10.1109/CVPRW.2014.107
– ident: ref22
  doi: 10.1145/2702123.2702179
– ident: ref34
  doi: 10.1109/ICCV.2015.510
– ident: ref13
  doi: 10.1145/2522848.2532590
– ident: ref9
  doi: 10.1109/ICCV.2015.226
– year: 2014
  ident: ref32
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 16
  start-page: 227
  year: 2015
  ident: ref39
  article-title: Multi-layered gesture recognition with kinect
  publication-title: J Mach Learn Res
– ident: ref2
  doi: 10.1007/s10462-012-9356-9
– start-page: 554
  year: 0
  ident: ref23
  article-title: Hand pose estimation from local surface normals
  publication-title: Proc Eur Conf Comput Vision
– ident: ref31
  doi: 10.1109/THMS.2016.2611824
SSID ssj0014507
Score 2.6415958
Snippet Gesture is a natural interface in human-computer interaction, especially interacting with wearable devices, such as VR/AR helmet and glasses. However, in the...
Gesture is a natural interface in human–computer interaction, especially interacting with wearable devices, such as VR/AR helmet and glasses. However, in the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1038
SubjectTerms Artificial neural networks
Augmented reality
Benchmark
Benchmark testing
Benchmarks
Cameras
dataset
Datasets
egocentric vision
Empirical analysis
first-person view
Gesture recognition
Machine learning
Neural networks
Performance evaluation
Task analysis
Three-dimensional displays
Wearable technology
Title EgoGesture: A New Dataset and Benchmark for Egocentric Hand Gesture Recognition
URI https://ieeexplore.ieee.org/document/8299578
https://www.proquest.com/docview/2029142456
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sT3rwVcVqlT14EUzbZJO68earFiEKUsFb2KdKNZGaXvz1zm6S4gvxFpKdsPBt5pGZ-QZgP6RCGRUKT2F04VkKdE9wS7nPI-Ebxk1Abe9wcj0Y3YVX99H9AhzOe2G01q74THftpcvlq1zO7K-yHkPdiSesAQ0M3MperXnGIIxcazSao74XYxxTpyT7cW-cJLaGi3UDZgnY4i8myM1U-aGInXUZrkBS76ssKpl0Z4XoyvdvlI3_3fgqLFduJjkpz8UaLOhsHVbqEQ6k-qLXYekTH2ELbi4e8kvc3Wyqj8kJQQVIznmBdq4gPFPkFGUeX_h0QtDTJbjWVXY-STKyTytBcluXJOXZBtwNL8ZnI6-auOBJGh0VXqwHjEo0WcZwHdEj7muFIRENhAkEOi9KIpBGo5bjgc8Do1A7cVQKvmTGNwNNN6GZ5ZneAkIlFT5Vhuo-Dy39bSgpY0owNggF3mtDrwYhlRUduZ2K8Zy6sKQfpwhbamFLK9jacDCXeC2pOP5Y27IozNdVALShU-OcVt_qG8oFse8SwNu_S-3Aon13WebYgWYxnelddEUKsefO4Af2K9n7
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADZRVl9YELEmmbOCkOt7KWJSChInGLvAICUlTSC1_P2EkqNiFuUeJRLD1nlszMG4DtkAplVCg8hdGFZynQPcEt5T6PhG8YNwG1vcPJVbt7G57fRXdjsDvqhdFau-Iz3bCXLpev-nJof5U1GepOPGHjMIl2PwqKbq1RziCMXHM0GqSWF2MkUyUlW3GzlyS2ios1AmYp2OIvRshNVfmhip19OalBUu2sKCt5agxz0ZDv30gb_7v1OZgtHU3SKU7GPIzpbAFq1RAHUn7TCzDziZFwEa6P7_unuLvhQO-TDkEVSI54jpYuJzxT5ABlHl744Imgr0twravtfJSka5-WguSmKkrqZ0twe3LcO-x65cwFT9JoL_di3WZUotEyhuuI7nFfKwyKaCBMINB9URKhNBr1HA98HhiF-omjWvAlM75pa7oME1k_0ytAqKTCp8pQ3eKhJcANJWVMCcbaocB7dWhWIKSyJCS3czGeUxeYtOIUYUstbGkJWx12RhKvBRnHH2sXLQqjdSUAdVivcE7Lr_UN5YLYdyng1d-ltmCq20su08uzq4s1mLbvKYoe12EiHwz1Bjomudh05_EDggrdRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EgoGesture%3A+A+New+Dataset+and+Benchmark+for+Egocentric+Hand+Gesture+Recognition&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Zhang%2C+Yifan&rft.au=Cao%2C+Congqi&rft.au=Cheng%2C+Jian&rft.au=Lu%2C+Hanqing&rft.date=2018-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=20&rft.issue=5&rft.spage=1038&rft_id=info:doi/10.1109%2FTMM.2018.2808769&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon