Mutual modality learning for video action classification
The construction of models for video action classification progresses rapidly. However, the performance of those models can still be easily improved by ensembling with the same models trained on different modalities (e.g. Optical flow). Unfortunately, it is computationally expensive to use several m...
Saved in:
Published in | Kompʹûternaâ optika Vol. 47; no. 4; pp. 637 - 649 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Samara National Research University
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The construction of models for video action classification progresses rapidly. However, the performance of those models can still be easily improved by ensembling with the same models trained on different modalities (e.g. Optical flow). Unfortunately, it is computationally expensive to use several modalities during inference. Recent works examine the ways to integrate advantages of multi-modality into a single RGB-model. Yet, there is still room for improvement. In this paper, we explore various methods to embed the ensemble power into a single model. We show that proper initialization, as well as mutual modality learning, enhances single-modality models. As a result, we achieve state-of-the-art results in the Something-Something-v2 benchmark. |
---|---|
AbstractList | The construction of models for video action classification progresses rapidly. However, the performance of those models can still be easily improved by ensembling with the same models trained on different modalities (e.g. Optical flow). Unfortunately, it is computationally expensive to use several modalities during inference. Recent works examine the ways to integrate advantages of multi-modality into a single RGB-model. Yet, there is still room for improvement. In this paper, we explore various methods to embed the ensemble power into a single model. We show that proper initialization, as well as mutual modality learning, enhances single-modality models. As a result, we achieve state-of-the-art results in the Something-Something-v2 benchmark. |
Author | Petiushko, A.A. Komkov, S.A. Dzabraev, M.D. |
Author_xml | – sequence: 1 givenname: S.A. surname: Komkov fullname: Komkov, S.A. – sequence: 2 givenname: M.D. surname: Dzabraev fullname: Dzabraev, M.D. – sequence: 3 givenname: A.A. surname: Petiushko fullname: Petiushko, A.A. |
BookMark | eNp9kM1OwzAQhC1UJErpC3DKCwS8thMnRxTxU6moFzhbG_9UrtwYOSlS356kBQ4cOK12RjPa_a7JrIudJeQW6B1UrJL3TADLS5B13mxyYFJekPmvNiNzClzkTBTsiiz7fkcpHVMlCJiT6vUwHDBk-2gw-OGYBYup8902czFln97YmKEefOwyHbDvvfMap_WGXDoMvV1-zwV5f3p8a17y9eZ51Tysc80LOeS1BdGiAa0dQMmtQGx5W-i65RINsrJ22hheSV1oKxmMPquhdBJoWcjRWZDVuddE3KmP5PeYjiqiVychpq3CNHgdrEInOFBZAIIRRjjkLQBD5hhYU7RTV3Xu0in2fbJOaT-cvhkS-qCAqhNQNcFTEzzVbNQEdIyyP9GfU_4JfQEdj3sB |
CitedBy_id | crossref_primary_10_1109_TCSVT_2024_3398624 |
ContentType | Journal Article |
CorporateAuthor | Lomonosov Moscow State University Huawei Moscow Research Center |
CorporateAuthor_xml | – name: Lomonosov Moscow State University – name: Huawei Moscow Research Center |
DBID | AAYXX CITATION DOA |
DOI | 10.18287/2412-6179-CO-1277 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2412-6179 |
EndPage | 649 |
ExternalDocumentID | oai_doaj_org_article_af4310751a1d4d4fa3b112a2f21ed5bd 10_18287_2412_6179_CO_1277 |
GroupedDBID | 642 AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ |
ID | FETCH-LOGICAL-c357t-9e14bad1ccf1163e4aab3b5c9b37ada269fcdd387c5ce7214aa2916f710657dd3 |
IEDL.DBID | DOA |
ISSN | 0134-2452 |
IngestDate | Wed Aug 27 01:31:13 EDT 2025 Thu Apr 24 23:05:58 EDT 2025 Tue Jul 01 03:11:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-9e14bad1ccf1163e4aab3b5c9b37ada269fcdd387c5ce7214aa2916f710657dd3 |
OpenAccessLink | https://doaj.org/article/af4310751a1d4d4fa3b112a2f21ed5bd |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_af4310751a1d4d4fa3b112a2f21ed5bd crossref_citationtrail_10_18287_2412_6179_CO_1277 crossref_primary_10_18287_2412_6179_CO_1277 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Kompʹûternaâ optika |
PublicationYear | 2023 |
Publisher | Samara National Research University |
Publisher_xml | – name: Samara National Research University |
SSID | ssj0002876141 |
Score | 2.2837248 |
Snippet | The construction of models for video action classification progresses rapidly. However, the performance of those models can still be easily improved by... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 637 |
SubjectTerms | mutual learning optical flow video action classification video labeling video recognition |
Title | Mutual modality learning for video action classification |
URI | https://doaj.org/article/af4310751a1d4d4fa3b112a2f21ed5bd |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYtvsb7IwZuEkmyy2Ry1WIpQe7HQW8hTEG1F2__vzG4s9aIXr5vssnyzyXyzmfmGkGuk7Do5sIDygskgPYM9MDHvkhZeucq0Iq7jx3o0lQ8zNdto9YU5YZ08cAdc32VwceDXuONRRpld5YEiOJEFT1H5iLsv-LyNYOql_WUE4bnsmhFWkuHxYqmYQYH3PrgtgcVxhg0mjAutf3ilDfH-1ssM98luoYf0tnutA7KV5odkr1BFWhbi5xFpxiss_KBvi9gSaVq6PzxTIKEUa-sWtCtZoAH5MSYEtTY4JtPh_dNgxEoTBBYqpZfMJC69izyEzIE7Jemcr7wKxlfaRSdqk0OMVaODCgAvh3EBlC8Dc6iVhpETsj1fzNMpoSJ7YFMRlqhuZOOzawJXqQ7ZoKibqXuEf4NgQ1EIx0YVrxYjBQTOInAWgbODiUXgeuRmfc97p4_x6-w7xHY9E7Wt2wtgcVssbv-y-Nl_POSc7GDj-C6V74JsLz9W6RLoxdJftV_SF0iJyUA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutual+modality+learning+for+video+action+classification&rft.jtitle=Komp%CA%B9%C3%BBterna%C3%A2+optika&rft.au=Komkov%2C+S.A.&rft.au=Dzabraev%2C+M.D.&rft.au=Petiushko%2C+A.A.&rft.date=2023-08-01&rft.issn=0134-2452&rft.eissn=2412-6179&rft.volume=47&rft.issue=4&rft.spage=637&rft.epage=649&rft_id=info:doi/10.18287%2F2412-6179-CO-1277&rft.externalDBID=n%2Fa&rft.externalDocID=10_18287_2412_6179_CO_1277 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0134-2452&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0134-2452&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0134-2452&client=summon |