Exact and efficient Lanczos method on a quantum computer
We present an algorithm that uses block encoding on a quantum computer to exactly construct a Krylov space, which can be used as the basis for the Lanczos method to estimate extremal eigenvalues of Hamiltonians. While the classical Lanczos method has exponential cost in the system size to represent...
Saved in:
Published in | Quantum (Vienna, Austria) Vol. 7; p. 1018 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
23.05.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | We present an algorithm that uses block encoding on a quantum computer to exactly construct a Krylov space, which can be used as the basis for the Lanczos method to estimate extremal eigenvalues of Hamiltonians. While the classical Lanczos method has exponential cost in the system size to represent the Krylov states for quantum systems, our efficient quantum algorithm achieves this in polynomial time and memory. The construction presented is exact in the sense that the resulting Krylov space is identical to that of the Lanczos method, so the only approximation with respect to the exact method is due to finite sample noise. This is possible because, unlike previous quantum Krylov methods, our algorithm does not require simulating real or imaginary time evolution. We provide an explicit error bound for the resulting ground state energy estimate in the presence of noise. For our method to be successful efficiently, the only requirement on the input problem is that the overlap of the initial state with the true ground state must be
Ω
(
1
/
poly
(
n
)
)
for
n
qubits. |
---|---|
AbstractList | We present an algorithm that uses block encoding on a quantum computer to exactly construct a Krylov space, which can be used as the basis for the Lanczos method to estimate extremal eigenvalues of Hamiltonians. While the classical Lanczos method has exponential cost in the system size to represent the Krylov states for quantum systems, our efficient quantum algorithm achieves this in polynomial time and memory. The construction presented is exact in the sense that the resulting Krylov space is identical to that of the Lanczos method, so the only approximation with respect to the exact method is due to finite sample noise. This is possible because, unlike previous quantum Krylov methods, our algorithm does not require simulating real or imaginary time evolution. We provide an explicit error bound for the resulting ground state energy estimate in the presence of noise. For our method to be successful efficiently, the only requirement on the input problem is that the overlap of the initial state with the true ground state must be
Ω
(
1
/
poly
(
n
)
)
for
n
qubits. We present an algorithm that uses block encoding on a quantum computer to exactly construct a Krylov space, which can be used as the basis for the Lanczos method to estimate extremal eigenvalues of Hamiltonians. While the classical Lanczos method has exponential cost in the system size to represent the Krylov states for quantum systems, our efficient quantum algorithm achieves this in polynomial time and memory. The construction presented is exact in the sense that the resulting Krylov space is identical to that of the Lanczos method, so the only approximation with respect to the exact method is due to finite sample noise. This is possible because, unlike previous quantum Krylov methods, our algorithm does not require simulating real or imaginary time evolution. We provide an explicit error bound for the resulting ground state energy estimate in the presence of noise. For our method to be successful efficiently, the only requirement on the input problem is that the overlap of the initial state with the true ground state must be $\Omega(1/\text{poly}(n))$ for $n$ qubits. |
ArticleNumber | 1018 |
Author | Mezzacapo, Antonio Kirby, William Motta, Mario |
Author_xml | – sequence: 1 givenname: William surname: Kirby fullname: Kirby, William organization: IBM Quantum, IBM Research Cambridge, Cambridge, MA 02142, USA, Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA – sequence: 2 givenname: Mario surname: Motta fullname: Motta, Mario organization: IBM Quantum, IBM Research Almaden, San Jose, CA 95120, USA – sequence: 3 givenname: Antonio surname: Mezzacapo fullname: Mezzacapo, Antonio organization: IBM Quantum, T. J. Watson Research Center, Yorktown Heights, NY 10598, USA |
BookMark | eNpNkMtKAzEYhYNUsNa-gKu8wOifZHJbSqlaKLhRcBeSzB-d0pm0M1NQn97eEDfnHM7iW3zXZNTmFgm5ZXDHuRDsfltw4KIAWeyTATMXZMwlZ4Xg-n30b1-Rad-vAIAbrZQpx8TMv3wcqG8riinVscZ2oEvfxp_c0waHz1zR3FJPtzvfDruGxtxsdgN2N-Qy-XWP03NPyNvj_HX2XCxfnhazh2URhdRDYRWATmVA5g0yiwItBo6oPIuGS225VEyCrlgSykoTK5BaqzJCshaCEROyOHGr7Fdu09WN775d9rU7Hrn7cL4b6rhGp22lgq68sglKbYWFFJArtEHrEAPbs_iJFbvc9x2mPx4Dd1Tptu6g0oF0-zyoFL8mKGc8 |
CitedBy_id | crossref_primary_10_1103_PhysRevA_108_012404 crossref_primary_10_1038_s41598_023_39263_7 crossref_primary_10_1140_epja_s10050_023_01151_z crossref_primary_10_1103_PhysRevA_108_062414 crossref_primary_10_1103_PhysRevApplied_21_064017 crossref_primary_10_1021_acs_jctc_3c00565 crossref_primary_10_21468_SciPostPhys_15_4_180 crossref_primary_10_1098_rspa_2023_0370 crossref_primary_10_22331_q_2024_06_20_1383 crossref_primary_10_1007_s11128_023_04204_w crossref_primary_10_1103_PRXQuantum_5_020101 crossref_primary_10_1016_j_future_2024_04_060 crossref_primary_10_1038_s41534_024_00839_4 crossref_primary_10_1088_2516_1075_ad2277 crossref_primary_10_1088_2516_1075_ad3592 |
Cites_doi | 10.1145/1132516.1132579 10.48550/arXiv.1909.08925 10.1126/science.273.5278.1073 10.1137/0717059 10.1103/PhysRevA.65.042323 10.2307/2003590 10.1103/PhysRevX.10.011004 10.48550/arXiv.2105.12207 10.1137/1.9780898719192 10.48550/arXiv.2206.09313 10.1109/QCE52317.2021.00018 10.1137/S0097539704445226 10.1080/00268976.2011.552441 10.1103/RevModPhys.92.015003 10.1038/nature23879 10.48550/arXiv.quant-ph/9511026 10.1103/PhysRevA.105.022417 10.1088/1751-8121/abfac7 10.1007/s00220-022-04343-8 10.1103/PRXQuantum.3.010318 10.1103/PhysRevA.95.042308 10.22331/q-2023-01-13-896 10.48550/arXiv.2205.09039 10.1103/PhysRevX.8.011044 10.1109/QCE53715.2022.00029 10.48550/arXiv.quant-ph/9705052 10.1103/PhysRevX.8.011021 10.1090/gsm/047 10.48550/arXiv.2204.10741 10.1103/PhysRevX.6.031007 10.48550/arXiv.2203.10236 10.48550/arXiv.quant-ph/0001106 10.22331/q-2019-07-12-163 10.1103/PhysRevA.55.900 10.1088/1367-2630/ab867b 10.1126/science.1113479 10.1137/16M1096426 10.1021/acs.jctc.9b01125 10.1103/PRXQuantum.3.020323 10.22331/q-2020-12-14-372 10.1038/s41467-018-07090-4 10.1103/PRXQuantum.3.040305 10.1103/PhysRevLett.87.167902 10.1038/s41467-021-27045-6 10.1007/978-3-319-05089-8 10.4230/LIPIcs.ITCS.2017.49 10.1038/ncomms5213 10.1103/PRXQuantum.2.040332 10.1103/PRXQuantum.2.040352 10.1103/PhysRevLett.118.010501 10.1103/PhysRevLett.127.030503 10.1038/s41534-023-00683-y 10.6028/jres.045.026 10.1103/PhysRevLett.129.020502 10.1038/s41567-019-0704-4 10.1103/PRXQuantum.2.010333 10.1137/21M145954X 10.1038/s41467-021-21728-w 10.1103/PhysRevA.101.052329 10.22331/q-2023-01-26-906 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.22331/q-2023-05-23-1018 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2521-327X |
ExternalDocumentID | oai_doaj_org_article_79d6b7da69f0479390fbe26e9b77bcb1 10_22331_q_2023_05_23_1018 |
GroupedDBID | AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E |
ID | FETCH-LOGICAL-c357t-96007f4be1a8e19e3e9eb2ee6a1c825792561507d1f36958cd057764c0f990b83 |
IEDL.DBID | DOA |
ISSN | 2521-327X |
IngestDate | Tue Oct 22 15:14:59 EDT 2024 Fri Dec 06 05:35:24 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-96007f4be1a8e19e3e9eb2ee6a1c825792561507d1f36958cd057764c0f990b83 |
OpenAccessLink | https://doaj.org/article/79d6b7da69f0479390fbe26e9b77bcb1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_79d6b7da69f0479390fbe26e9b77bcb1 crossref_primary_10_22331_q_2023_05_23_1018 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-23 |
PublicationDateYYYYMMDD | 2023-05-23 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-23 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | Quantum (Vienna, Austria) |
PublicationYear | 2023 |
Publisher | Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften |
Publisher_xml | – name: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften |
References | 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 0 1 2 3 4 5 6 7 8 9 60 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – ident: 44 doi: 10.1145/1132516.1132579 – ident: 16 doi: 10.48550/arXiv.1909.08925 – ident: 7 doi: 10.1126/science.273.5278.1073 – ident: 35 doi: 10.1137/0717059 – ident: 9 doi: 10.1103/PhysRevA.65.042323 – ident: 33 doi: 10.2307/2003590 – ident: 18 doi: 10.1103/PhysRevX.10.011004 – ident: 49 doi: 10.48550/arXiv.2105.12207 – ident: 32 doi: 10.1137/1.9780898719192 – ident: 57 doi: 10.48550/arXiv.2206.09313 – ident: 48 doi: 10.1109/QCE52317.2021.00018 – ident: 30 doi: 10.1137/S0097539704445226 – ident: 10 doi: 10.1080/00268976.2011.552441 – ident: 4 doi: 10.1103/RevModPhys.92.015003 – ident: 3 doi: 10.1038/nature23879 – ident: 6 doi: 10.48550/arXiv.quant-ph/9511026 – ident: 24 doi: 10.1103/PhysRevA.105.022417 – ident: 54 doi: 10.1088/1751-8121/abfac7 – ident: 45 doi: 10.1007/s00220-022-04343-8 – ident: 27 doi: 10.1103/PRXQuantum.3.010318 – ident: 12 doi: 10.1103/PhysRevA.95.042308 – ident: 47 doi: 10.22331/q-2023-01-13-896 – ident: 34 – ident: 25 doi: 10.48550/arXiv.2205.09039 – ident: 11 doi: 10.1103/PhysRevX.8.011044 – ident: 42 doi: 10.1109/QCE53715.2022.00029 – ident: 59 doi: 10.48550/arXiv.quant-ph/9705052 – ident: 13 doi: 10.1103/PhysRevX.8.011021 – ident: 29 doi: 10.1090/gsm/047 – ident: 26 doi: 10.48550/arXiv.2204.10741 – ident: 2 doi: 10.1103/PhysRevX.6.031007 – ident: 41 doi: 10.48550/arXiv.2203.10236 – ident: 8 doi: 10.48550/arXiv.quant-ph/0001106 – ident: 37 doi: 10.22331/q-2019-07-12-163 – ident: 60 doi: 10.1103/PhysRevA.55.900 – ident: 14 doi: 10.1088/1367-2630/ab867b – ident: 0 doi: 10.1126/science.1113479 – ident: 52 doi: 10.1137/16M1096426 – ident: 17 doi: 10.1021/acs.jctc.9b01125 – ident: 22 doi: 10.1103/PRXQuantum.3.020323 – ident: 19 doi: 10.22331/q-2020-12-14-372 – ident: 53 doi: 10.1038/s41467-018-07090-4 – ident: 28 doi: 10.1103/PRXQuantum.3.040305 – ident: 43 doi: 10.1103/PhysRevLett.87.167902 – ident: 56 doi: 10.1038/s41467-021-27045-6 – ident: 58 doi: 10.1007/978-3-319-05089-8 – ident: 39 doi: 10.4230/LIPIcs.ITCS.2017.49 – ident: 1 doi: 10.1038/ncomms5213 – ident: 5 doi: 10.1103/PRXQuantum.2.040332 – ident: 20 doi: 10.1103/PRXQuantum.2.040352 – ident: 38 doi: 10.1103/PhysRevLett.118.010501 – ident: 46 doi: 10.1103/PhysRevLett.127.030503 – ident: 51 doi: 10.1038/s41534-023-00683-y – ident: 31 doi: 10.6028/jres.045.026 – ident: 21 doi: 10.1103/PhysRevLett.129.020502 – ident: 15 doi: 10.1038/s41567-019-0704-4 – ident: 23 doi: 10.1103/PRXQuantum.2.010333 – ident: 36 doi: 10.1137/21M145954X – ident: 55 doi: 10.1038/s41467-021-21728-w – ident: 40 doi: 10.1103/PhysRevA.101.052329 – ident: 50 doi: 10.22331/q-2023-01-26-906 |
SSID | ssj0002876684 |
Score | 2.3191164 |
Snippet | We present an algorithm that uses block encoding on a quantum computer to exactly construct a Krylov space, which can be used as the basis for the Lanczos... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 1018 |
Title | Exact and efficient Lanczos method on a quantum computer |
URI | https://doaj.org/article/79d6b7da69f0479390fbe26e9b77bcb1 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwGLQQEwsCAaK85IENWc3DzxFQq4qBiUrdLNv5PCCRUkglxK_ncxwgGwtLhiiKkvuGu0vsO0KuQxXBaF4x9D-ecdcY5jSPjMsAtXGVdrFP-3yUiyV_WInVqOorrQnL8cAZuKkyjfSqcdLElIaOFj16qCQYr5QPPhufohqZqef-k5GSUvO8SwYZsC6nG5aawtOP3yqtxkotHyMmGgX298wyPyD7gySkt_lRDskOtEdEzz5c6Cj6fAp9ygOSA00blj_X7zTXPtN1Sx3dbBGb7QsNQz3DMVnOZ0_3Cza0HLBQC9UxkxLiI_dQOg2lgRoMul0A6cqA9k0ZFCVJtTVlrKUROjQosZTkoYjIJF7XJ2S3XbdwSqiQDQTHAXwTeEApIHRhChlk6UAgCU3Izfcb29ccZmHRBPT42I1N-NhCWDwmfCbkLoHyc2UKou5P4HjsMB7713jO_uMm52Tvd3YXZLd728IlaoHOX_Vj_wJDYa_v |
link.rule.ids | 314,780,784,864,2102,27924,27925 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+and+efficient+Lanczos+method+on+a+quantum+computer&rft.jtitle=Quantum+%28Vienna%2C+Austria%29&rft.au=William+Kirby&rft.au=Mario+Motta&rft.au=Antonio+Mezzacapo&rft.date=2023-05-23&rft.pub=Verein+zur+F%C3%B6rderung+des+Open+Access+Publizierens+in+den+Quantenwissenschaften&rft.eissn=2521-327X&rft.volume=7&rft.spage=1018&rft_id=info:doi/10.22331%2Fq-2023-05-23-1018&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_79d6b7da69f0479390fbe26e9b77bcb1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2521-327X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2521-327X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2521-327X&client=summon |