Exact and efficient Lanczos method on a quantum computer

We present an algorithm that uses block encoding on a quantum computer to exactly construct a Krylov space, which can be used as the basis for the Lanczos method to estimate extremal eigenvalues of Hamiltonians. While the classical Lanczos method has exponential cost in the system size to represent...

Full description

Saved in:
Bibliographic Details
Published inQuantum (Vienna, Austria) Vol. 7; p. 1018
Main Authors Kirby, William, Motta, Mario, Mezzacapo, Antonio
Format Journal Article
LanguageEnglish
Published Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 23.05.2023
Online AccessGet full text

Cover

Loading…
Abstract We present an algorithm that uses block encoding on a quantum computer to exactly construct a Krylov space, which can be used as the basis for the Lanczos method to estimate extremal eigenvalues of Hamiltonians. While the classical Lanczos method has exponential cost in the system size to represent the Krylov states for quantum systems, our efficient quantum algorithm achieves this in polynomial time and memory. The construction presented is exact in the sense that the resulting Krylov space is identical to that of the Lanczos method, so the only approximation with respect to the exact method is due to finite sample noise. This is possible because, unlike previous quantum Krylov methods, our algorithm does not require simulating real or imaginary time evolution. We provide an explicit error bound for the resulting ground state energy estimate in the presence of noise. For our method to be successful efficiently, the only requirement on the input problem is that the overlap of the initial state with the true ground state must be Ω ( 1 / poly ( n ) ) for n qubits.
AbstractList We present an algorithm that uses block encoding on a quantum computer to exactly construct a Krylov space, which can be used as the basis for the Lanczos method to estimate extremal eigenvalues of Hamiltonians. While the classical Lanczos method has exponential cost in the system size to represent the Krylov states for quantum systems, our efficient quantum algorithm achieves this in polynomial time and memory. The construction presented is exact in the sense that the resulting Krylov space is identical to that of the Lanczos method, so the only approximation with respect to the exact method is due to finite sample noise. This is possible because, unlike previous quantum Krylov methods, our algorithm does not require simulating real or imaginary time evolution. We provide an explicit error bound for the resulting ground state energy estimate in the presence of noise. For our method to be successful efficiently, the only requirement on the input problem is that the overlap of the initial state with the true ground state must be Ω ( 1 / poly ( n ) ) for n qubits.
We present an algorithm that uses block encoding on a quantum computer to exactly construct a Krylov space, which can be used as the basis for the Lanczos method to estimate extremal eigenvalues of Hamiltonians. While the classical Lanczos method has exponential cost in the system size to represent the Krylov states for quantum systems, our efficient quantum algorithm achieves this in polynomial time and memory. The construction presented is exact in the sense that the resulting Krylov space is identical to that of the Lanczos method, so the only approximation with respect to the exact method is due to finite sample noise. This is possible because, unlike previous quantum Krylov methods, our algorithm does not require simulating real or imaginary time evolution. We provide an explicit error bound for the resulting ground state energy estimate in the presence of noise. For our method to be successful efficiently, the only requirement on the input problem is that the overlap of the initial state with the true ground state must be $\Omega(1/\text{poly}(n))$ for $n$ qubits.
ArticleNumber 1018
Author Mezzacapo, Antonio
Kirby, William
Motta, Mario
Author_xml – sequence: 1
  givenname: William
  surname: Kirby
  fullname: Kirby, William
  organization: IBM Quantum, IBM Research Cambridge, Cambridge, MA 02142, USA, Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA
– sequence: 2
  givenname: Mario
  surname: Motta
  fullname: Motta, Mario
  organization: IBM Quantum, IBM Research Almaden, San Jose, CA 95120, USA
– sequence: 3
  givenname: Antonio
  surname: Mezzacapo
  fullname: Mezzacapo, Antonio
  organization: IBM Quantum, T. J. Watson Research Center, Yorktown Heights, NY 10598, USA
BookMark eNpNkMtKAzEYhYNUsNa-gKu8wOifZHJbSqlaKLhRcBeSzB-d0pm0M1NQn97eEDfnHM7iW3zXZNTmFgm5ZXDHuRDsfltw4KIAWeyTATMXZMwlZ4Xg-n30b1-Rad-vAIAbrZQpx8TMv3wcqG8riinVscZ2oEvfxp_c0waHz1zR3FJPtzvfDruGxtxsdgN2N-Qy-XWP03NPyNvj_HX2XCxfnhazh2URhdRDYRWATmVA5g0yiwItBo6oPIuGS225VEyCrlgSykoTK5BaqzJCshaCEROyOHGr7Fdu09WN775d9rU7Hrn7cL4b6rhGp22lgq68sglKbYWFFJArtEHrEAPbs_iJFbvc9x2mPx4Dd1Tptu6g0oF0-zyoFL8mKGc8
CitedBy_id crossref_primary_10_1103_PhysRevA_108_012404
crossref_primary_10_1038_s41598_023_39263_7
crossref_primary_10_1140_epja_s10050_023_01151_z
crossref_primary_10_1103_PhysRevA_108_062414
crossref_primary_10_1103_PhysRevApplied_21_064017
crossref_primary_10_1021_acs_jctc_3c00565
crossref_primary_10_21468_SciPostPhys_15_4_180
crossref_primary_10_1098_rspa_2023_0370
crossref_primary_10_22331_q_2024_06_20_1383
crossref_primary_10_1007_s11128_023_04204_w
crossref_primary_10_1103_PRXQuantum_5_020101
crossref_primary_10_1016_j_future_2024_04_060
crossref_primary_10_1038_s41534_024_00839_4
crossref_primary_10_1088_2516_1075_ad2277
crossref_primary_10_1088_2516_1075_ad3592
Cites_doi 10.1145/1132516.1132579
10.48550/arXiv.1909.08925
10.1126/science.273.5278.1073
10.1137/0717059
10.1103/PhysRevA.65.042323
10.2307/2003590
10.1103/PhysRevX.10.011004
10.48550/arXiv.2105.12207
10.1137/1.9780898719192
10.48550/arXiv.2206.09313
10.1109/QCE52317.2021.00018
10.1137/S0097539704445226
10.1080/00268976.2011.552441
10.1103/RevModPhys.92.015003
10.1038/nature23879
10.48550/arXiv.quant-ph/9511026
10.1103/PhysRevA.105.022417
10.1088/1751-8121/abfac7
10.1007/s00220-022-04343-8
10.1103/PRXQuantum.3.010318
10.1103/PhysRevA.95.042308
10.22331/q-2023-01-13-896
10.48550/arXiv.2205.09039
10.1103/PhysRevX.8.011044
10.1109/QCE53715.2022.00029
10.48550/arXiv.quant-ph/9705052
10.1103/PhysRevX.8.011021
10.1090/gsm/047
10.48550/arXiv.2204.10741
10.1103/PhysRevX.6.031007
10.48550/arXiv.2203.10236
10.48550/arXiv.quant-ph/0001106
10.22331/q-2019-07-12-163
10.1103/PhysRevA.55.900
10.1088/1367-2630/ab867b
10.1126/science.1113479
10.1137/16M1096426
10.1021/acs.jctc.9b01125
10.1103/PRXQuantum.3.020323
10.22331/q-2020-12-14-372
10.1038/s41467-018-07090-4
10.1103/PRXQuantum.3.040305
10.1103/PhysRevLett.87.167902
10.1038/s41467-021-27045-6
10.1007/978-3-319-05089-8
10.4230/LIPIcs.ITCS.2017.49
10.1038/ncomms5213
10.1103/PRXQuantum.2.040332
10.1103/PRXQuantum.2.040352
10.1103/PhysRevLett.118.010501
10.1103/PhysRevLett.127.030503
10.1038/s41534-023-00683-y
10.6028/jres.045.026
10.1103/PhysRevLett.129.020502
10.1038/s41567-019-0704-4
10.1103/PRXQuantum.2.010333
10.1137/21M145954X
10.1038/s41467-021-21728-w
10.1103/PhysRevA.101.052329
10.22331/q-2023-01-26-906
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.22331/q-2023-05-23-1018
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2521-327X
ExternalDocumentID oai_doaj_org_article_79d6b7da69f0479390fbe26e9b77bcb1
10_22331_q_2023_05_23_1018
GroupedDBID AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c357t-96007f4be1a8e19e3e9eb2ee6a1c825792561507d1f36958cd057764c0f990b83
IEDL.DBID DOA
ISSN 2521-327X
IngestDate Tue Oct 22 15:14:59 EDT 2024
Fri Dec 06 05:35:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-96007f4be1a8e19e3e9eb2ee6a1c825792561507d1f36958cd057764c0f990b83
OpenAccessLink https://doaj.org/article/79d6b7da69f0479390fbe26e9b77bcb1
ParticipantIDs doaj_primary_oai_doaj_org_article_79d6b7da69f0479390fbe26e9b77bcb1
crossref_primary_10_22331_q_2023_05_23_1018
PublicationCentury 2000
PublicationDate 2023-05-23
PublicationDateYYYYMMDD 2023-05-23
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-23
  day: 23
PublicationDecade 2020
PublicationTitle Quantum (Vienna, Austria)
PublicationYear 2023
Publisher Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
Publisher_xml – name: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
References 44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
0
1
2
3
4
5
6
7
8
9
60
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – ident: 44
  doi: 10.1145/1132516.1132579
– ident: 16
  doi: 10.48550/arXiv.1909.08925
– ident: 7
  doi: 10.1126/science.273.5278.1073
– ident: 35
  doi: 10.1137/0717059
– ident: 9
  doi: 10.1103/PhysRevA.65.042323
– ident: 33
  doi: 10.2307/2003590
– ident: 18
  doi: 10.1103/PhysRevX.10.011004
– ident: 49
  doi: 10.48550/arXiv.2105.12207
– ident: 32
  doi: 10.1137/1.9780898719192
– ident: 57
  doi: 10.48550/arXiv.2206.09313
– ident: 48
  doi: 10.1109/QCE52317.2021.00018
– ident: 30
  doi: 10.1137/S0097539704445226
– ident: 10
  doi: 10.1080/00268976.2011.552441
– ident: 4
  doi: 10.1103/RevModPhys.92.015003
– ident: 3
  doi: 10.1038/nature23879
– ident: 6
  doi: 10.48550/arXiv.quant-ph/9511026
– ident: 24
  doi: 10.1103/PhysRevA.105.022417
– ident: 54
  doi: 10.1088/1751-8121/abfac7
– ident: 45
  doi: 10.1007/s00220-022-04343-8
– ident: 27
  doi: 10.1103/PRXQuantum.3.010318
– ident: 12
  doi: 10.1103/PhysRevA.95.042308
– ident: 47
  doi: 10.22331/q-2023-01-13-896
– ident: 34
– ident: 25
  doi: 10.48550/arXiv.2205.09039
– ident: 11
  doi: 10.1103/PhysRevX.8.011044
– ident: 42
  doi: 10.1109/QCE53715.2022.00029
– ident: 59
  doi: 10.48550/arXiv.quant-ph/9705052
– ident: 13
  doi: 10.1103/PhysRevX.8.011021
– ident: 29
  doi: 10.1090/gsm/047
– ident: 26
  doi: 10.48550/arXiv.2204.10741
– ident: 2
  doi: 10.1103/PhysRevX.6.031007
– ident: 41
  doi: 10.48550/arXiv.2203.10236
– ident: 8
  doi: 10.48550/arXiv.quant-ph/0001106
– ident: 37
  doi: 10.22331/q-2019-07-12-163
– ident: 60
  doi: 10.1103/PhysRevA.55.900
– ident: 14
  doi: 10.1088/1367-2630/ab867b
– ident: 0
  doi: 10.1126/science.1113479
– ident: 52
  doi: 10.1137/16M1096426
– ident: 17
  doi: 10.1021/acs.jctc.9b01125
– ident: 22
  doi: 10.1103/PRXQuantum.3.020323
– ident: 19
  doi: 10.22331/q-2020-12-14-372
– ident: 53
  doi: 10.1038/s41467-018-07090-4
– ident: 28
  doi: 10.1103/PRXQuantum.3.040305
– ident: 43
  doi: 10.1103/PhysRevLett.87.167902
– ident: 56
  doi: 10.1038/s41467-021-27045-6
– ident: 58
  doi: 10.1007/978-3-319-05089-8
– ident: 39
  doi: 10.4230/LIPIcs.ITCS.2017.49
– ident: 1
  doi: 10.1038/ncomms5213
– ident: 5
  doi: 10.1103/PRXQuantum.2.040332
– ident: 20
  doi: 10.1103/PRXQuantum.2.040352
– ident: 38
  doi: 10.1103/PhysRevLett.118.010501
– ident: 46
  doi: 10.1103/PhysRevLett.127.030503
– ident: 51
  doi: 10.1038/s41534-023-00683-y
– ident: 31
  doi: 10.6028/jres.045.026
– ident: 21
  doi: 10.1103/PhysRevLett.129.020502
– ident: 15
  doi: 10.1038/s41567-019-0704-4
– ident: 23
  doi: 10.1103/PRXQuantum.2.010333
– ident: 36
  doi: 10.1137/21M145954X
– ident: 55
  doi: 10.1038/s41467-021-21728-w
– ident: 40
  doi: 10.1103/PhysRevA.101.052329
– ident: 50
  doi: 10.22331/q-2023-01-26-906
SSID ssj0002876684
Score 2.3191164
Snippet We present an algorithm that uses block encoding on a quantum computer to exactly construct a Krylov space, which can be used as the basis for the Lanczos...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 1018
Title Exact and efficient Lanczos method on a quantum computer
URI https://doaj.org/article/79d6b7da69f0479390fbe26e9b77bcb1
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwGLQQEwsCAaK85IENWc3DzxFQq4qBiUrdLNv5PCCRUkglxK_ncxwgGwtLhiiKkvuGu0vsO0KuQxXBaF4x9D-ecdcY5jSPjMsAtXGVdrFP-3yUiyV_WInVqOorrQnL8cAZuKkyjfSqcdLElIaOFj16qCQYr5QPPhufohqZqef-k5GSUvO8SwYZsC6nG5aawtOP3yqtxkotHyMmGgX298wyPyD7gySkt_lRDskOtEdEzz5c6Cj6fAp9ygOSA00blj_X7zTXPtN1Sx3dbBGb7QsNQz3DMVnOZ0_3Cza0HLBQC9UxkxLiI_dQOg2lgRoMul0A6cqA9k0ZFCVJtTVlrKUROjQosZTkoYjIJF7XJ2S3XbdwSqiQDQTHAXwTeEApIHRhChlk6UAgCU3Izfcb29ccZmHRBPT42I1N-NhCWDwmfCbkLoHyc2UKou5P4HjsMB7713jO_uMm52Tvd3YXZLd728IlaoHOX_Vj_wJDYa_v
link.rule.ids 314,780,784,864,2102,27924,27925
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+and+efficient+Lanczos+method+on+a+quantum+computer&rft.jtitle=Quantum+%28Vienna%2C+Austria%29&rft.au=William+Kirby&rft.au=Mario+Motta&rft.au=Antonio+Mezzacapo&rft.date=2023-05-23&rft.pub=Verein+zur+F%C3%B6rderung+des+Open+Access+Publizierens+in+den+Quantenwissenschaften&rft.eissn=2521-327X&rft.volume=7&rft.spage=1018&rft_id=info:doi/10.22331%2Fq-2023-05-23-1018&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_79d6b7da69f0479390fbe26e9b77bcb1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2521-327X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2521-327X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2521-327X&client=summon