Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric Actuators

Piezoelectric actuators (PEAs) have been widely used in nanotechnology due to their characteristics of fast response, large mass ratio, and high stiffness. However, hysteresis, which is an inherent nonlinear property of PEAs, greatly deteriorates the control performance of PEAs. In this paper, a non...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 62; no. 12; pp. 7717 - 7727
Main Authors Cheng, Long, Liu, Weichuan, Hou, Zeng-Guang, Yu, Junzhi, Tan, Min
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Piezoelectric actuators (PEAs) have been widely used in nanotechnology due to their characteristics of fast response, large mass ratio, and high stiffness. However, hysteresis, which is an inherent nonlinear property of PEAs, greatly deteriorates the control performance of PEAs. In this paper, a nonlinear model predictive control (NMPC) approach is proposed for the displacement tracking problem of PEAs. First, a "nonlinear autoregressive-moving-average with exogenous inputs" (NARMAX) model of PEAs is implemented by multilayer neural networks; second, the tracking control problem is converted into an optimization problem by the principle of NMPC, and then, it is solved by the Levenberg-Marquardt algorithm. The most distinguished feature of the proposed approach is that the inversion model of hysteresis is no longer a necessity, which avoids the inversion imprecision problem encountered in the widely used inversion-based control algorithms. To verify the effectiveness of the proposed modeling and control methods, experiments are made on a commercial PEA product (P-753.1CD, Physik Instrumente), and comparisons with some existing controllers and a commercial proportional-integral-derivative controller are conducted. Experimental results show that the proposed scheme has satisfactory modeling and control performance.
AbstractList Piezoelectric actuators (PEAs) have been widely used in nanotechnology due to their characteristics of fast response, large mass ratio, and high stiffness. However, hysteresis, which is an inherent nonlinear property of PEAs, greatly deteriorates the control performance of PEAs. In this paper, a nonlinear model predictive control (NMPC) approach is proposed for the displacement tracking problem of PEAs. First, a "nonlinear autoregressive-moving-average with exogenous inputs" (NARMAX) model of PEAs is implemented by multilayer neural networks; second, the tracking control problem is converted into an optimization problem by the principle of NMPC, and then, it is solved by the Levenberg-Marquardt algorithm. The most distinguished feature of the proposed approach is that the inversion model of hysteresis is no longer a necessity, which avoids the inversion imprecision problem encountered in the widely used inversion-based control algorithms. To verify the effectiveness of the proposed modeling and control methods, experiments are made on a commercial PEA product (P-753.1CD, Physik Instrumente), and comparisons with some existing controllers and a commercial proportional-integral-derivative controller are conducted. Experimental results show that the proposed scheme has satisfactory modeling and control performance.
Author Min Tan
Zeng-Guang Hou
Junzhi Yu
Long Cheng
Weichuan Liu
Author_xml – sequence: 1
  givenname: Long
  surname: Cheng
  fullname: Cheng, Long
– sequence: 2
  givenname: Weichuan
  surname: Liu
  fullname: Liu, Weichuan
– sequence: 3
  givenname: Zeng-Guang
  surname: Hou
  fullname: Hou, Zeng-Guang
– sequence: 4
  givenname: Junzhi
  surname: Yu
  fullname: Yu, Junzhi
– sequence: 5
  givenname: Min
  surname: Tan
  fullname: Tan, Min
BookMark eNp9kMFLwzAUxoNMcJveBS8Fz51Jm_S1xzmmDuYcOM8hTV8gszYzTRX96-3Y8ODB07t8v-_j_UZk0LgGCblkdMIYLW42i_kkoUxMEi4ETbITMmRCQFwUPB-QIU0gjynl2RkZte2WUsYFE0PyvMLOqzpeYfh0_jW-VS1W0co1tW1Q-ejRVVhHa4-V1cF-YDRzTfCujozz0drit8MadfBWR1MdOhWcb8_JqVF1ixfHOyYvd_PN7CFePt0vZtNlrFMBIc5VRsFUCk2lgesyTZSqDDUFpLnmUAFXOSRgSsqh4KosUlZCqQQUmOgsZemYXB96d969d9gGuXWdb_pJyfoO6OGC9il6SGnv2tajkTtv35T_kozKvTrZq5N7dfKorkeyP4i2QQW7f13Z-j_w6gBaRPzdASY4B0h_AF01ffc
CODEN ITIED6
CitedBy_id crossref_primary_10_1088_0964_1726_25_10_105029
crossref_primary_10_1002_oca_2642
crossref_primary_10_1016_j_engappai_2024_109238
crossref_primary_10_1007_s12541_018_0197_6
crossref_primary_10_1016_j_ultras_2022_106727
crossref_primary_10_1109_ACCESS_2019_2934117
crossref_primary_10_1109_TIM_2020_3038007
crossref_primary_10_1109_ACCESS_2017_2779175
crossref_primary_10_1109_TIE_2016_2573270
crossref_primary_10_3390_aerospace12010064
crossref_primary_10_3390_app13010402
crossref_primary_10_1016_j_arcontrol_2019_07_003
crossref_primary_10_30521_jes_727975
crossref_primary_10_1016_j_neucom_2018_11_001
crossref_primary_10_3390_fractalfract6070370
crossref_primary_10_1016_j_precisioneng_2022_01_002
crossref_primary_10_1109_TSMC_2016_2531653
crossref_primary_10_1016_j_neucom_2017_09_032
crossref_primary_10_1016_j_ijmecsci_2023_108496
crossref_primary_10_1016_j_cej_2019_123628
crossref_primary_10_3390_mi12111325
crossref_primary_10_1177_17298814211057698
crossref_primary_10_1109_TNNLS_2021_3085321
crossref_primary_10_1007_s40313_020_00641_5
crossref_primary_10_1109_TNNLS_2019_2923241
crossref_primary_10_1007_s12559_020_09722_8
crossref_primary_10_1109_TIE_2017_2652346
crossref_primary_10_1016_j_ymssp_2019_106501
crossref_primary_10_1109_TASE_2018_2867939
crossref_primary_10_1016_j_ifacol_2020_12_1386
crossref_primary_10_1007_s00542_023_05511_z
crossref_primary_10_1109_TMECH_2019_2946344
crossref_primary_10_1016_j_neucom_2018_01_002
crossref_primary_10_1016_j_sna_2021_113007
crossref_primary_10_1177_0954406220928370
crossref_primary_10_1109_TMECH_2024_3375459
crossref_primary_10_1109_TIE_2017_2740826
crossref_primary_10_3390_s23031690
crossref_primary_10_1109_TIE_2015_2492942
crossref_primary_10_1016_j_sna_2021_113353
crossref_primary_10_1155_2019_7272387
crossref_primary_10_3390_math6110242
crossref_primary_10_1016_j_arcontrol_2019_01_003
crossref_primary_10_1109_TETCI_2017_2716377
crossref_primary_10_1109_TASE_2021_3104478
crossref_primary_10_1109_TIE_2017_2698377
crossref_primary_10_1145_3465630
crossref_primary_10_1177_09544070221080158
crossref_primary_10_1016_j_ymssp_2022_109046
crossref_primary_10_3390_ma15186480
crossref_primary_10_1109_TMECH_2020_2973175
crossref_primary_10_1016_j_ymssp_2021_108543
crossref_primary_10_1109_TIE_2016_2617830
crossref_primary_10_1016_j_ifacol_2021_11_150
crossref_primary_10_1016_j_ymssp_2024_111715
crossref_primary_10_1109_TNNLS_2018_2802650
crossref_primary_10_3390_biomimetics8080559
crossref_primary_10_1109_TMAG_2017_2702168
crossref_primary_10_1109_TCYB_2020_3012607
crossref_primary_10_1177_09544062221138835
crossref_primary_10_1016_j_sna_2021_112542
crossref_primary_10_1109_ACCESS_2020_3013935
crossref_primary_10_1109_TIE_2016_2645498
crossref_primary_10_1088_1361_665X_ab3770
crossref_primary_10_1109_TIE_2016_2644603
crossref_primary_10_1109_TSMC_2016_2557227
crossref_primary_10_23919_JSEE_2023_000172
crossref_primary_10_1016_j_mechatronics_2021_102543
crossref_primary_10_1109_TCYB_2017_2711961
crossref_primary_10_1002_rnc_6517
crossref_primary_10_1109_ACCESS_2020_3037216
crossref_primary_10_1109_ACCESS_2017_2787663
crossref_primary_10_3390_mi14101961
crossref_primary_10_1007_s00542_024_05649_4
crossref_primary_10_1007_s40313_017_0327_x
crossref_primary_10_1109_ACCESS_2020_2964305
crossref_primary_10_1109_TII_2021_3133893
crossref_primary_10_1109_TSMC_2017_2754863
crossref_primary_10_4236_jamp_2020_812201
crossref_primary_10_1007_s11431_022_2081_7
crossref_primary_10_1109_TMECH_2021_3121498
crossref_primary_10_1007_s43236_023_00608_0
crossref_primary_10_1115_1_4049130
crossref_primary_10_1109_TASE_2023_3263535
crossref_primary_10_1049_cth2_12586
crossref_primary_10_1177_1687814019845156
crossref_primary_10_1080_00207721_2020_1803441
crossref_primary_10_3390_s22010364
crossref_primary_10_1177_1045389X231157365
crossref_primary_10_1016_j_ceramint_2018_02_030
crossref_primary_10_1109_TIE_2018_2840523
crossref_primary_10_1049_cth2_12132
crossref_primary_10_1109_TIE_2021_3106007
crossref_primary_10_1109_TIM_2021_3092784
crossref_primary_10_1016_j_ymssp_2020_107235
crossref_primary_10_1016_j_ymssp_2019_01_033
crossref_primary_10_1007_s00521_020_04963_y
crossref_primary_10_1109_TMECH_2015_2431819
crossref_primary_10_1007_s40435_024_01502_8
crossref_primary_10_1080_00207721_2019_1567863
crossref_primary_10_1109_TIE_2022_3153800
crossref_primary_10_1109_TIE_2016_2607698
crossref_primary_10_1002_rnc_3702
crossref_primary_10_1007_s00521_016_2556_5
crossref_primary_10_1016_j_neunet_2017_05_004
crossref_primary_10_1109_TIE_2017_2674633
crossref_primary_10_1109_TIE_2020_3037989
crossref_primary_10_1007_s11071_024_10296_5
crossref_primary_10_1109_TCYB_2020_2979694
crossref_primary_10_1109_TIE_2019_2934022
crossref_primary_10_1109_TSMC_2016_2642118
crossref_primary_10_1002_asjc_2554
crossref_primary_10_1016_j_sna_2019_111808
crossref_primary_10_1109_TSMC_2024_3486364
crossref_primary_10_1007_s12541_020_00423_8
crossref_primary_10_3390_mi12111366
crossref_primary_10_1109_TIM_2022_3152307
crossref_primary_10_1109_TSMC_2019_2901277
crossref_primary_10_1115_1_4039281
crossref_primary_10_1049_iet_cta_2016_1058
crossref_primary_10_1088_1361_665X_ad588f
crossref_primary_10_1177_1045389X231190819
crossref_primary_10_1109_TSMC_2016_2592682
crossref_primary_10_1109_TIE_2020_2970635
crossref_primary_10_1109_TIE_2023_3335469
crossref_primary_10_1088_1361_665X_ad7ca9
crossref_primary_10_1016_j_precisioneng_2023_02_006
crossref_primary_10_1016_j_sna_2019_05_046
crossref_primary_10_1109_TIE_2020_3037992
crossref_primary_10_3233_JAE_190086
crossref_primary_10_1007_s11071_024_10531_z
crossref_primary_10_1177_1045389X241297522
crossref_primary_10_1016_j_amc_2023_128522
crossref_primary_10_1177_0142331220932398
crossref_primary_10_1109_ACCESS_2020_3013570
crossref_primary_10_1016_j_conengprac_2023_105695
crossref_primary_10_1109_JSEN_2022_3205693
crossref_primary_10_1007_s00542_016_2942_z
crossref_primary_10_1007_s11071_023_08892_y
crossref_primary_10_1007_s41315_020_00134_3
crossref_primary_10_1016_j_engappai_2024_108126
crossref_primary_10_1109_TMECH_2020_3034315
crossref_primary_10_1016_j_isatra_2019_08_001
crossref_primary_10_1016_j_ymssp_2020_107133
crossref_primary_10_1007_s42452_019_1526_9
crossref_primary_10_1177_09544070221150023
crossref_primary_10_1007_s11071_023_09258_0
crossref_primary_10_1016_j_isatra_2018_03_027
crossref_primary_10_1002_cben_202000017
crossref_primary_10_1109_TSMC_2015_2506618
crossref_primary_10_1109_TIE_2022_3206693
crossref_primary_10_1109_TSMC_2019_2937002
crossref_primary_10_1049_el_2018_7490
crossref_primary_10_3390_act12070261
crossref_primary_10_1016_j_neucom_2016_07_002
crossref_primary_10_1109_TNNLS_2016_2580609
crossref_primary_10_3390_s23146246
crossref_primary_10_1007_s42235_022_00313_x
crossref_primary_10_1016_j_isatra_2020_08_024
crossref_primary_10_1109_ACCESS_2020_3025968
crossref_primary_10_3390_act10110278
crossref_primary_10_1016_j_engappai_2022_105327
crossref_primary_10_1088_1361_665X_ab874b
crossref_primary_10_1109_TIE_2018_2868274
crossref_primary_10_3390_mi14112009
crossref_primary_10_3390_technologies12040051
crossref_primary_10_1002_rnc_7810
crossref_primary_10_1080_19475411_2024_2395293
crossref_primary_10_1016_j_sna_2020_112431
crossref_primary_10_1016_j_scs_2021_102822
Cites_doi 10.1109/TMECH.2009.2023986
10.1109/TIE.2013.2290758
10.1109/TMECH.2011.2128339
10.1109/TCST.2007.902956
10.1016/j.mechatronics.2007.07.006
10.1109/CCDC.2015.7162056
10.1109/TMECH.2012.2194792
10.1007/978-3-319-04229-9
10.1109/TCST.2005.854336
10.1109/20.43892
10.1016/j.fss.2004.09.015
10.1088/0964-1726/19/6/065027
10.1007/978-1-4471-3398-8
10.1109/3516.891044
10.1007/s00521-007-0150-6
10.1007/978-1-4471-0453-7
10.1109/ACC.2015.7172198
10.1137/0111030
10.1109/TIE.2011.2166235
10.1109/87.491195
10.1109/TMECH.2010.2052366
10.1109/CDC.2001.914608
10.1115/1.2192819
10.1109/TIE.2012.2221114
10.1109/TMECH.2005.844708
10.3166/ejc.9.407-418
10.1109/TIE.2013.2258292
10.1109/TIE.2012.2206339
10.4236/mme.2013.31001
10.1109/TIE.2013.2258305
10.1109/TIE.2013.2257153
10.1109/TCST.2007.903345
10.1063/1.2982238
10.1109/TMECH.2015.2431819
10.1016/j.sna.2008.09.022
10.1109/TII.2012.2205582
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2015.2455026
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 7727
ExternalDocumentID 3883116471
10_1109_TIE_2015_2455026
7154477
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61422310; 61370032; 61375102; 61225017; 61421004
  funderid: 10.13039/501100001809
– fundername: Beijing Nova Program
  grantid: Z121101002512066
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c357t-8a607fdaefdc74cb32aadf0f9738c47d74a8727fb04794ab931b7ba579e2c6313
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Mon Jun 30 10:22:11 EDT 2025
Tue Jul 01 00:16:12 EDT 2025
Thu Apr 24 22:54:14 EDT 2025
Tue Aug 26 16:39:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords predictive control
Neural networks
nonlinear autoregressive–moving-average with exogenous inputs (NARMAX)
piezoelectric actuator (PEA)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-8a607fdaefdc74cb32aadf0f9738c47d74a8727fb04794ab931b7ba579e2c6313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1738772790
PQPubID 85464
PageCount 11
ParticipantIDs ieee_primary_7154477
crossref_primary_10_1109_TIE_2015_2455026
crossref_citationtrail_10_1109_TIE_2015_2455026
proquest_journals_1738772790
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-Dec.
2015-12-00
20151201
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-Dec.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref37
ref36
ref14
ref31
ref30
ref33
ref11
ref10
ref2
ref1
ref39
ref16
ref19
tan (ref15) 2001
lawrynczuk (ref38) 2014
peng (ref18) 0
tatjewski (ref24) 2007
ref26
ref20
ref42
venkataraman (ref17) 0
ref41
ref22
ref21
rawlings (ref23) 2009
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
camacho (ref25) 1999
ref5
fletcher (ref34) 1987
norgaard (ref35) 2000
ref40
chen (ref32) 1999; 49
References_xml – ident: ref30
  doi: 10.1109/TMECH.2009.2023986
– ident: ref21
  doi: 10.1109/TIE.2013.2290758
– ident: ref8
  doi: 10.1109/TMECH.2011.2128339
– ident: ref12
  doi: 10.1109/TCST.2007.902956
– ident: ref29
  doi: 10.1016/j.mechatronics.2007.07.006
– ident: ref42
  doi: 10.1109/CCDC.2015.7162056
– ident: ref26
  doi: 10.1109/TMECH.2012.2194792
– year: 2014
  ident: ref38
  publication-title: Computationally Efficient Model Predictive Control Algorithms A Neural Network Approach
  doi: 10.1007/978-3-319-04229-9
– ident: ref19
  doi: 10.1109/TCST.2005.854336
– ident: ref4
  doi: 10.1109/20.43892
– ident: ref31
  doi: 10.1016/j.fss.2004.09.015
– ident: ref1
  doi: 10.1088/0964-1726/19/6/065027
– year: 1999
  ident: ref25
  publication-title: Model Predictive Control
  doi: 10.1007/978-1-4471-3398-8
– ident: ref28
  doi: 10.1109/3516.891044
– ident: ref39
  doi: 10.1007/s00521-007-0150-6
– year: 2000
  ident: ref35
  publication-title: Neural Networks for Modelling and Control of Dynamic Systems
  doi: 10.1007/978-1-4471-0453-7
– ident: ref41
  doi: 10.1109/ACC.2015.7172198
– ident: ref36
  doi: 10.1137/0111030
– ident: ref22
  doi: 10.1109/TIE.2011.2166235
– ident: ref13
  doi: 10.1109/87.491195
– ident: ref16
  doi: 10.1109/TMECH.2010.2052366
– year: 1987
  ident: ref34
  publication-title: Practical Methods of Optimization
– year: 2009
  ident: ref23
  publication-title: Model Predictive Control Theory and Design
– start-page: 4448
  year: 0
  ident: ref17
  article-title: Approximate inversion of hysteresis: Theory and numerical results
  publication-title: Proc 39th IEEE Conf Decision Control
  doi: 10.1109/CDC.2001.914608
– ident: ref7
  doi: 10.1115/1.2192819
– start-page: 3684
  year: 0
  ident: ref18
  article-title: $H_{2}$-optimal digital control of piezoelectric actuators
  publication-title: Proc 8th World Congr Intell Control Autom
– ident: ref11
  doi: 10.1109/TIE.2012.2221114
– ident: ref14
  doi: 10.1109/TMECH.2005.844708
– ident: ref5
  doi: 10.3166/ejc.9.407-418
– ident: ref27
  doi: 10.1109/TIE.2013.2258292
– year: 2007
  ident: ref24
  publication-title: Advanced control of industrial processes Structures and Algorithms
– year: 2001
  ident: ref15
  publication-title: Control of hysteresis Theory and experimental results
– ident: ref10
  doi: 10.1109/TIE.2012.2206339
– ident: ref3
  doi: 10.4236/mme.2013.31001
– ident: ref20
  doi: 10.1109/TIE.2013.2258305
– ident: ref6
  doi: 10.1109/TIE.2013.2257153
– ident: ref2
  doi: 10.1109/TCST.2007.903345
– ident: ref33
  doi: 10.1063/1.2982238
– ident: ref40
  doi: 10.1109/TMECH.2015.2431819
– ident: ref9
  doi: 10.1016/j.sna.2008.09.022
– volume: 49
  start-page: 1012
  year: 1999
  ident: ref32
  article-title: Representation of non-linear systems: The NARMAX model
  publication-title: Int J Control
– ident: ref37
  doi: 10.1109/TII.2012.2205582
SSID ssj0014515
Score 2.5811818
SecondaryResourceType review_article
Snippet Piezoelectric actuators (PEAs) have been widely used in nanotechnology due to their characteristics of fast response, large mass ratio, and high stiffness....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7717
SubjectTerms Biological neural networks
Computational modeling
Control algorithms
Feedforward neural networks
Hysteresis
Integrated circuit modeling
NARMAX
Neural networks
Optimization
Piezoelectric actuator
predictive control
Title Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric Actuators
URI https://ieeexplore.ieee.org/document/7154477
https://www.proquest.com/docview/1738772790
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH8BTnrwC40omh68mLgxtm5dj0ggaAIhERJuS9t1CZGAQbjw19u3joWoMd52aJuur3sfe-_9fgAPVIRG80fSMcZOOJT7zBEhlyZK8XWk4lBTDxuch6NoMKWvs3BWgaeyF0ZrnRefaRcf81x-ulJb_FXWYggdw1gVqiZws71aZcaAhpatwEfEWBP07VOSHm9NXnpYwxW6PrbwIozCgQnKOVV-KOLcuvRPYbjfly0qeXe3G-mq3TfIxv9u_AxOCjeTdOy9OIeKXl7A8QH4YB3eEJdDLJyRLQR3no09S8nIQmeINUGWtAUZrzGTgzqRdG1VOzFuLhnP9W5lKXTminSwCwVpey5h2u9NugOnoFhwVBCyjROLyGNZKnSWKkaVDHwh0szLOAtiRVnKqIiNh5PJHIleSB60JZMiZFz7KgrawRXUlqulvgYi2jKNlOcrRCflAZVUBlrFsTROARPUa0Brf-qJKvDHkQZjkeRxiMcTI6cE5ZQUcmrAYznjw2Jv_DG2jsdejitOvAHNvWCT4uP8TNrm5UxQwbh38_usWzjCtW3VShNqm_VW3xnfYyPv80v3BcTm1Pk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ74OKgHX2hEUXvwYuLCPtrt9qhEAwqEREi8bdpuNzESMAgXf72d7UKIGuNtD23a7XTnsTPzfQBXVDKr-WPlWWMnPSpC7kkmlI1SQhPrhBnqY4Nztxe3hvTxhb2swc2yF8YYUxSfmTo-Frn8bKLn-KuswRE6hvN12LR2nwWuW2uZM6DM8RWEiBlrw75FUtIXjUH7Hqu4WD3EJl4EUlgxQgWryg9VXNiXhz3oLnbmykre6vOZquvPb6CN_936PuyWjia5dTfjANbM-BB2VuAHK_CMyBxy5PVcKbh3Zy1aRnoOPENOCfKkjUh_irkc1Iqk6eraiXV0Sf_VfE4cic6rJrfYh4LEPUcwfLgfNFteSbLg6YjxmZfI2Od5Jk2eaU61ikIps9zPBY8STXnGqUysj5OrAoteKhEFiivJuDChjqMgOoaN8WRsToDIQGWx9kON-KQiooqqyOgkUdYt4JL6VWgsTj3VJQI5EmGM0iIS8UVq5ZSinNJSTlW4Xs54d-gbf4yt4LEvx5UnXoXaQrBp-Xl-pIF9ORtWcOGf_j7rErZag24n7bR7T2ewjeu4GpYabMymc3NuPZGZuigu4BcLDdhC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural-Network-Based+Nonlinear+Model+Predictive+Control+for+Piezoelectric+Actuators&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Long+Cheng&rft.au=Weichuan+Liu&rft.au=Zeng-Guang+Hou&rft.au=Junzhi+Yu&rft.date=2015-12-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=62&rft.issue=12&rft.spage=7717&rft.epage=7727&rft_id=info:doi/10.1109%2FTIE.2015.2455026&rft.externalDocID=7154477
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon