Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric Actuators
Piezoelectric actuators (PEAs) have been widely used in nanotechnology due to their characteristics of fast response, large mass ratio, and high stiffness. However, hysteresis, which is an inherent nonlinear property of PEAs, greatly deteriorates the control performance of PEAs. In this paper, a non...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 62; no. 12; pp. 7717 - 7727 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Piezoelectric actuators (PEAs) have been widely used in nanotechnology due to their characteristics of fast response, large mass ratio, and high stiffness. However, hysteresis, which is an inherent nonlinear property of PEAs, greatly deteriorates the control performance of PEAs. In this paper, a nonlinear model predictive control (NMPC) approach is proposed for the displacement tracking problem of PEAs. First, a "nonlinear autoregressive-moving-average with exogenous inputs" (NARMAX) model of PEAs is implemented by multilayer neural networks; second, the tracking control problem is converted into an optimization problem by the principle of NMPC, and then, it is solved by the Levenberg-Marquardt algorithm. The most distinguished feature of the proposed approach is that the inversion model of hysteresis is no longer a necessity, which avoids the inversion imprecision problem encountered in the widely used inversion-based control algorithms. To verify the effectiveness of the proposed modeling and control methods, experiments are made on a commercial PEA product (P-753.1CD, Physik Instrumente), and comparisons with some existing controllers and a commercial proportional-integral-derivative controller are conducted. Experimental results show that the proposed scheme has satisfactory modeling and control performance. |
---|---|
AbstractList | Piezoelectric actuators (PEAs) have been widely used in nanotechnology due to their characteristics of fast response, large mass ratio, and high stiffness. However, hysteresis, which is an inherent nonlinear property of PEAs, greatly deteriorates the control performance of PEAs. In this paper, a nonlinear model predictive control (NMPC) approach is proposed for the displacement tracking problem of PEAs. First, a "nonlinear autoregressive-moving-average with exogenous inputs" (NARMAX) model of PEAs is implemented by multilayer neural networks; second, the tracking control problem is converted into an optimization problem by the principle of NMPC, and then, it is solved by the Levenberg-Marquardt algorithm. The most distinguished feature of the proposed approach is that the inversion model of hysteresis is no longer a necessity, which avoids the inversion imprecision problem encountered in the widely used inversion-based control algorithms. To verify the effectiveness of the proposed modeling and control methods, experiments are made on a commercial PEA product (P-753.1CD, Physik Instrumente), and comparisons with some existing controllers and a commercial proportional-integral-derivative controller are conducted. Experimental results show that the proposed scheme has satisfactory modeling and control performance. |
Author | Min Tan Zeng-Guang Hou Junzhi Yu Long Cheng Weichuan Liu |
Author_xml | – sequence: 1 givenname: Long surname: Cheng fullname: Cheng, Long – sequence: 2 givenname: Weichuan surname: Liu fullname: Liu, Weichuan – sequence: 3 givenname: Zeng-Guang surname: Hou fullname: Hou, Zeng-Guang – sequence: 4 givenname: Junzhi surname: Yu fullname: Yu, Junzhi – sequence: 5 givenname: Min surname: Tan fullname: Tan, Min |
BookMark | eNp9kMFLwzAUxoNMcJveBS8Fz51Jm_S1xzmmDuYcOM8hTV8gszYzTRX96-3Y8ODB07t8v-_j_UZk0LgGCblkdMIYLW42i_kkoUxMEi4ETbITMmRCQFwUPB-QIU0gjynl2RkZte2WUsYFE0PyvMLOqzpeYfh0_jW-VS1W0co1tW1Q-ejRVVhHa4-V1cF-YDRzTfCujozz0drit8MadfBWR1MdOhWcb8_JqVF1ixfHOyYvd_PN7CFePt0vZtNlrFMBIc5VRsFUCk2lgesyTZSqDDUFpLnmUAFXOSRgSsqh4KosUlZCqQQUmOgsZemYXB96d969d9gGuXWdb_pJyfoO6OGC9il6SGnv2tajkTtv35T_kozKvTrZq5N7dfKorkeyP4i2QQW7f13Z-j_w6gBaRPzdASY4B0h_AF01ffc |
CODEN | ITIED6 |
CitedBy_id | crossref_primary_10_1088_0964_1726_25_10_105029 crossref_primary_10_1002_oca_2642 crossref_primary_10_1016_j_engappai_2024_109238 crossref_primary_10_1007_s12541_018_0197_6 crossref_primary_10_1016_j_ultras_2022_106727 crossref_primary_10_1109_ACCESS_2019_2934117 crossref_primary_10_1109_TIM_2020_3038007 crossref_primary_10_1109_ACCESS_2017_2779175 crossref_primary_10_1109_TIE_2016_2573270 crossref_primary_10_3390_aerospace12010064 crossref_primary_10_3390_app13010402 crossref_primary_10_1016_j_arcontrol_2019_07_003 crossref_primary_10_30521_jes_727975 crossref_primary_10_1016_j_neucom_2018_11_001 crossref_primary_10_3390_fractalfract6070370 crossref_primary_10_1016_j_precisioneng_2022_01_002 crossref_primary_10_1109_TSMC_2016_2531653 crossref_primary_10_1016_j_neucom_2017_09_032 crossref_primary_10_1016_j_ijmecsci_2023_108496 crossref_primary_10_1016_j_cej_2019_123628 crossref_primary_10_3390_mi12111325 crossref_primary_10_1177_17298814211057698 crossref_primary_10_1109_TNNLS_2021_3085321 crossref_primary_10_1007_s40313_020_00641_5 crossref_primary_10_1109_TNNLS_2019_2923241 crossref_primary_10_1007_s12559_020_09722_8 crossref_primary_10_1109_TIE_2017_2652346 crossref_primary_10_1016_j_ymssp_2019_106501 crossref_primary_10_1109_TASE_2018_2867939 crossref_primary_10_1016_j_ifacol_2020_12_1386 crossref_primary_10_1007_s00542_023_05511_z crossref_primary_10_1109_TMECH_2019_2946344 crossref_primary_10_1016_j_neucom_2018_01_002 crossref_primary_10_1016_j_sna_2021_113007 crossref_primary_10_1177_0954406220928370 crossref_primary_10_1109_TMECH_2024_3375459 crossref_primary_10_1109_TIE_2017_2740826 crossref_primary_10_3390_s23031690 crossref_primary_10_1109_TIE_2015_2492942 crossref_primary_10_1016_j_sna_2021_113353 crossref_primary_10_1155_2019_7272387 crossref_primary_10_3390_math6110242 crossref_primary_10_1016_j_arcontrol_2019_01_003 crossref_primary_10_1109_TETCI_2017_2716377 crossref_primary_10_1109_TASE_2021_3104478 crossref_primary_10_1109_TIE_2017_2698377 crossref_primary_10_1145_3465630 crossref_primary_10_1177_09544070221080158 crossref_primary_10_1016_j_ymssp_2022_109046 crossref_primary_10_3390_ma15186480 crossref_primary_10_1109_TMECH_2020_2973175 crossref_primary_10_1016_j_ymssp_2021_108543 crossref_primary_10_1109_TIE_2016_2617830 crossref_primary_10_1016_j_ifacol_2021_11_150 crossref_primary_10_1016_j_ymssp_2024_111715 crossref_primary_10_1109_TNNLS_2018_2802650 crossref_primary_10_3390_biomimetics8080559 crossref_primary_10_1109_TMAG_2017_2702168 crossref_primary_10_1109_TCYB_2020_3012607 crossref_primary_10_1177_09544062221138835 crossref_primary_10_1016_j_sna_2021_112542 crossref_primary_10_1109_ACCESS_2020_3013935 crossref_primary_10_1109_TIE_2016_2645498 crossref_primary_10_1088_1361_665X_ab3770 crossref_primary_10_1109_TIE_2016_2644603 crossref_primary_10_1109_TSMC_2016_2557227 crossref_primary_10_23919_JSEE_2023_000172 crossref_primary_10_1016_j_mechatronics_2021_102543 crossref_primary_10_1109_TCYB_2017_2711961 crossref_primary_10_1002_rnc_6517 crossref_primary_10_1109_ACCESS_2020_3037216 crossref_primary_10_1109_ACCESS_2017_2787663 crossref_primary_10_3390_mi14101961 crossref_primary_10_1007_s00542_024_05649_4 crossref_primary_10_1007_s40313_017_0327_x crossref_primary_10_1109_ACCESS_2020_2964305 crossref_primary_10_1109_TII_2021_3133893 crossref_primary_10_1109_TSMC_2017_2754863 crossref_primary_10_4236_jamp_2020_812201 crossref_primary_10_1007_s11431_022_2081_7 crossref_primary_10_1109_TMECH_2021_3121498 crossref_primary_10_1007_s43236_023_00608_0 crossref_primary_10_1115_1_4049130 crossref_primary_10_1109_TASE_2023_3263535 crossref_primary_10_1049_cth2_12586 crossref_primary_10_1177_1687814019845156 crossref_primary_10_1080_00207721_2020_1803441 crossref_primary_10_3390_s22010364 crossref_primary_10_1177_1045389X231157365 crossref_primary_10_1016_j_ceramint_2018_02_030 crossref_primary_10_1109_TIE_2018_2840523 crossref_primary_10_1049_cth2_12132 crossref_primary_10_1109_TIE_2021_3106007 crossref_primary_10_1109_TIM_2021_3092784 crossref_primary_10_1016_j_ymssp_2020_107235 crossref_primary_10_1016_j_ymssp_2019_01_033 crossref_primary_10_1007_s00521_020_04963_y crossref_primary_10_1109_TMECH_2015_2431819 crossref_primary_10_1007_s40435_024_01502_8 crossref_primary_10_1080_00207721_2019_1567863 crossref_primary_10_1109_TIE_2022_3153800 crossref_primary_10_1109_TIE_2016_2607698 crossref_primary_10_1002_rnc_3702 crossref_primary_10_1007_s00521_016_2556_5 crossref_primary_10_1016_j_neunet_2017_05_004 crossref_primary_10_1109_TIE_2017_2674633 crossref_primary_10_1109_TIE_2020_3037989 crossref_primary_10_1007_s11071_024_10296_5 crossref_primary_10_1109_TCYB_2020_2979694 crossref_primary_10_1109_TIE_2019_2934022 crossref_primary_10_1109_TSMC_2016_2642118 crossref_primary_10_1002_asjc_2554 crossref_primary_10_1016_j_sna_2019_111808 crossref_primary_10_1109_TSMC_2024_3486364 crossref_primary_10_1007_s12541_020_00423_8 crossref_primary_10_3390_mi12111366 crossref_primary_10_1109_TIM_2022_3152307 crossref_primary_10_1109_TSMC_2019_2901277 crossref_primary_10_1115_1_4039281 crossref_primary_10_1049_iet_cta_2016_1058 crossref_primary_10_1088_1361_665X_ad588f crossref_primary_10_1177_1045389X231190819 crossref_primary_10_1109_TSMC_2016_2592682 crossref_primary_10_1109_TIE_2020_2970635 crossref_primary_10_1109_TIE_2023_3335469 crossref_primary_10_1088_1361_665X_ad7ca9 crossref_primary_10_1016_j_precisioneng_2023_02_006 crossref_primary_10_1016_j_sna_2019_05_046 crossref_primary_10_1109_TIE_2020_3037992 crossref_primary_10_3233_JAE_190086 crossref_primary_10_1007_s11071_024_10531_z crossref_primary_10_1177_1045389X241297522 crossref_primary_10_1016_j_amc_2023_128522 crossref_primary_10_1177_0142331220932398 crossref_primary_10_1109_ACCESS_2020_3013570 crossref_primary_10_1016_j_conengprac_2023_105695 crossref_primary_10_1109_JSEN_2022_3205693 crossref_primary_10_1007_s00542_016_2942_z crossref_primary_10_1007_s11071_023_08892_y crossref_primary_10_1007_s41315_020_00134_3 crossref_primary_10_1016_j_engappai_2024_108126 crossref_primary_10_1109_TMECH_2020_3034315 crossref_primary_10_1016_j_isatra_2019_08_001 crossref_primary_10_1016_j_ymssp_2020_107133 crossref_primary_10_1007_s42452_019_1526_9 crossref_primary_10_1177_09544070221150023 crossref_primary_10_1007_s11071_023_09258_0 crossref_primary_10_1016_j_isatra_2018_03_027 crossref_primary_10_1002_cben_202000017 crossref_primary_10_1109_TSMC_2015_2506618 crossref_primary_10_1109_TIE_2022_3206693 crossref_primary_10_1109_TSMC_2019_2937002 crossref_primary_10_1049_el_2018_7490 crossref_primary_10_3390_act12070261 crossref_primary_10_1016_j_neucom_2016_07_002 crossref_primary_10_1109_TNNLS_2016_2580609 crossref_primary_10_3390_s23146246 crossref_primary_10_1007_s42235_022_00313_x crossref_primary_10_1016_j_isatra_2020_08_024 crossref_primary_10_1109_ACCESS_2020_3025968 crossref_primary_10_3390_act10110278 crossref_primary_10_1016_j_engappai_2022_105327 crossref_primary_10_1088_1361_665X_ab874b crossref_primary_10_1109_TIE_2018_2868274 crossref_primary_10_3390_mi14112009 crossref_primary_10_3390_technologies12040051 crossref_primary_10_1002_rnc_7810 crossref_primary_10_1080_19475411_2024_2395293 crossref_primary_10_1016_j_sna_2020_112431 crossref_primary_10_1016_j_scs_2021_102822 |
Cites_doi | 10.1109/TMECH.2009.2023986 10.1109/TIE.2013.2290758 10.1109/TMECH.2011.2128339 10.1109/TCST.2007.902956 10.1016/j.mechatronics.2007.07.006 10.1109/CCDC.2015.7162056 10.1109/TMECH.2012.2194792 10.1007/978-3-319-04229-9 10.1109/TCST.2005.854336 10.1109/20.43892 10.1016/j.fss.2004.09.015 10.1088/0964-1726/19/6/065027 10.1007/978-1-4471-3398-8 10.1109/3516.891044 10.1007/s00521-007-0150-6 10.1007/978-1-4471-0453-7 10.1109/ACC.2015.7172198 10.1137/0111030 10.1109/TIE.2011.2166235 10.1109/87.491195 10.1109/TMECH.2010.2052366 10.1109/CDC.2001.914608 10.1115/1.2192819 10.1109/TIE.2012.2221114 10.1109/TMECH.2005.844708 10.3166/ejc.9.407-418 10.1109/TIE.2013.2258292 10.1109/TIE.2012.2206339 10.4236/mme.2013.31001 10.1109/TIE.2013.2258305 10.1109/TIE.2013.2257153 10.1109/TCST.2007.903345 10.1063/1.2982238 10.1109/TMECH.2015.2431819 10.1016/j.sna.2008.09.022 10.1109/TII.2012.2205582 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TIE.2015.2455026 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9948 |
EndPage | 7727 |
ExternalDocumentID | 3883116471 10_1109_TIE_2015_2455026 7154477 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61422310; 61370032; 61375102; 61225017; 61421004 funderid: 10.13039/501100001809 – fundername: Beijing Nova Program grantid: Z121101002512066 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c357t-8a607fdaefdc74cb32aadf0f9738c47d74a8727fb04794ab931b7ba579e2c6313 |
IEDL.DBID | RIE |
ISSN | 0278-0046 |
IngestDate | Mon Jun 30 10:22:11 EDT 2025 Tue Jul 01 00:16:12 EDT 2025 Thu Apr 24 22:54:14 EDT 2025 Tue Aug 26 16:39:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | predictive control Neural networks nonlinear autoregressive–moving-average with exogenous inputs (NARMAX) piezoelectric actuator (PEA) |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-8a607fdaefdc74cb32aadf0f9738c47d74a8727fb04794ab931b7ba579e2c6313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1738772790 |
PQPubID | 85464 |
PageCount | 11 |
ParticipantIDs | ieee_primary_7154477 crossref_primary_10_1109_TIE_2015_2455026 crossref_citationtrail_10_1109_TIE_2015_2455026 proquest_journals_1738772790 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-Dec. 2015-12-00 20151201 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-Dec. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on industrial electronics (1982) |
PublicationTitleAbbrev | TIE |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref37 ref36 ref14 ref31 ref30 ref33 ref11 ref10 ref2 ref1 ref39 ref16 ref19 tan (ref15) 2001 lawrynczuk (ref38) 2014 peng (ref18) 0 tatjewski (ref24) 2007 ref26 ref20 ref42 venkataraman (ref17) 0 ref41 ref22 ref21 rawlings (ref23) 2009 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 camacho (ref25) 1999 ref5 fletcher (ref34) 1987 norgaard (ref35) 2000 ref40 chen (ref32) 1999; 49 |
References_xml | – ident: ref30 doi: 10.1109/TMECH.2009.2023986 – ident: ref21 doi: 10.1109/TIE.2013.2290758 – ident: ref8 doi: 10.1109/TMECH.2011.2128339 – ident: ref12 doi: 10.1109/TCST.2007.902956 – ident: ref29 doi: 10.1016/j.mechatronics.2007.07.006 – ident: ref42 doi: 10.1109/CCDC.2015.7162056 – ident: ref26 doi: 10.1109/TMECH.2012.2194792 – year: 2014 ident: ref38 publication-title: Computationally Efficient Model Predictive Control Algorithms A Neural Network Approach doi: 10.1007/978-3-319-04229-9 – ident: ref19 doi: 10.1109/TCST.2005.854336 – ident: ref4 doi: 10.1109/20.43892 – ident: ref31 doi: 10.1016/j.fss.2004.09.015 – ident: ref1 doi: 10.1088/0964-1726/19/6/065027 – year: 1999 ident: ref25 publication-title: Model Predictive Control doi: 10.1007/978-1-4471-3398-8 – ident: ref28 doi: 10.1109/3516.891044 – ident: ref39 doi: 10.1007/s00521-007-0150-6 – year: 2000 ident: ref35 publication-title: Neural Networks for Modelling and Control of Dynamic Systems doi: 10.1007/978-1-4471-0453-7 – ident: ref41 doi: 10.1109/ACC.2015.7172198 – ident: ref36 doi: 10.1137/0111030 – ident: ref22 doi: 10.1109/TIE.2011.2166235 – ident: ref13 doi: 10.1109/87.491195 – ident: ref16 doi: 10.1109/TMECH.2010.2052366 – year: 1987 ident: ref34 publication-title: Practical Methods of Optimization – year: 2009 ident: ref23 publication-title: Model Predictive Control Theory and Design – start-page: 4448 year: 0 ident: ref17 article-title: Approximate inversion of hysteresis: Theory and numerical results publication-title: Proc 39th IEEE Conf Decision Control doi: 10.1109/CDC.2001.914608 – ident: ref7 doi: 10.1115/1.2192819 – start-page: 3684 year: 0 ident: ref18 article-title: $H_{2}$-optimal digital control of piezoelectric actuators publication-title: Proc 8th World Congr Intell Control Autom – ident: ref11 doi: 10.1109/TIE.2012.2221114 – ident: ref14 doi: 10.1109/TMECH.2005.844708 – ident: ref5 doi: 10.3166/ejc.9.407-418 – ident: ref27 doi: 10.1109/TIE.2013.2258292 – year: 2007 ident: ref24 publication-title: Advanced control of industrial processes Structures and Algorithms – year: 2001 ident: ref15 publication-title: Control of hysteresis Theory and experimental results – ident: ref10 doi: 10.1109/TIE.2012.2206339 – ident: ref3 doi: 10.4236/mme.2013.31001 – ident: ref20 doi: 10.1109/TIE.2013.2258305 – ident: ref6 doi: 10.1109/TIE.2013.2257153 – ident: ref2 doi: 10.1109/TCST.2007.903345 – ident: ref33 doi: 10.1063/1.2982238 – ident: ref40 doi: 10.1109/TMECH.2015.2431819 – ident: ref9 doi: 10.1016/j.sna.2008.09.022 – volume: 49 start-page: 1012 year: 1999 ident: ref32 article-title: Representation of non-linear systems: The NARMAX model publication-title: Int J Control – ident: ref37 doi: 10.1109/TII.2012.2205582 |
SSID | ssj0014515 |
Score | 2.5811818 |
SecondaryResourceType | review_article |
Snippet | Piezoelectric actuators (PEAs) have been widely used in nanotechnology due to their characteristics of fast response, large mass ratio, and high stiffness.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7717 |
SubjectTerms | Biological neural networks Computational modeling Control algorithms Feedforward neural networks Hysteresis Integrated circuit modeling NARMAX Neural networks Optimization Piezoelectric actuator predictive control |
Title | Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric Actuators |
URI | https://ieeexplore.ieee.org/document/7154477 https://www.proquest.com/docview/1738772790 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH8BTnrwC40omh68mLgxtm5dj0ggaAIhERJuS9t1CZGAQbjw19u3joWoMd52aJuur3sfe-_9fgAPVIRG80fSMcZOOJT7zBEhlyZK8XWk4lBTDxuch6NoMKWvs3BWgaeyF0ZrnRefaRcf81x-ulJb_FXWYggdw1gVqiZws71aZcaAhpatwEfEWBP07VOSHm9NXnpYwxW6PrbwIozCgQnKOVV-KOLcuvRPYbjfly0qeXe3G-mq3TfIxv9u_AxOCjeTdOy9OIeKXl7A8QH4YB3eEJdDLJyRLQR3no09S8nIQmeINUGWtAUZrzGTgzqRdG1VOzFuLhnP9W5lKXTminSwCwVpey5h2u9NugOnoFhwVBCyjROLyGNZKnSWKkaVDHwh0szLOAtiRVnKqIiNh5PJHIleSB60JZMiZFz7KgrawRXUlqulvgYi2jKNlOcrRCflAZVUBlrFsTROARPUa0Brf-qJKvDHkQZjkeRxiMcTI6cE5ZQUcmrAYznjw2Jv_DG2jsdejitOvAHNvWCT4uP8TNrm5UxQwbh38_usWzjCtW3VShNqm_VW3xnfYyPv80v3BcTm1Pk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ74OKgHX2hEUXvwYuLCPtrt9qhEAwqEREi8bdpuNzESMAgXf72d7UKIGuNtD23a7XTnsTPzfQBXVDKr-WPlWWMnPSpC7kkmlI1SQhPrhBnqY4Nztxe3hvTxhb2swc2yF8YYUxSfmTo-Frn8bKLn-KuswRE6hvN12LR2nwWuW2uZM6DM8RWEiBlrw75FUtIXjUH7Hqu4WD3EJl4EUlgxQgWryg9VXNiXhz3oLnbmykre6vOZquvPb6CN_936PuyWjia5dTfjANbM-BB2VuAHK_CMyBxy5PVcKbh3Zy1aRnoOPENOCfKkjUh_irkc1Iqk6eraiXV0Sf_VfE4cic6rJrfYh4LEPUcwfLgfNFteSbLg6YjxmZfI2Od5Jk2eaU61ikIps9zPBY8STXnGqUysj5OrAoteKhEFiivJuDChjqMgOoaN8WRsToDIQGWx9kON-KQiooqqyOgkUdYt4JL6VWgsTj3VJQI5EmGM0iIS8UVq5ZSinNJSTlW4Xs54d-gbf4yt4LEvx5UnXoXaQrBp-Xl-pIF9ORtWcOGf_j7rErZag24n7bR7T2ewjeu4GpYabMymc3NuPZGZuigu4BcLDdhC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural-Network-Based+Nonlinear+Model+Predictive+Control+for+Piezoelectric+Actuators&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Long+Cheng&rft.au=Weichuan+Liu&rft.au=Zeng-Guang+Hou&rft.au=Junzhi+Yu&rft.date=2015-12-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=62&rft.issue=12&rft.spage=7717&rft.epage=7727&rft_id=info:doi/10.1109%2FTIE.2015.2455026&rft.externalDocID=7154477 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |