Identification of surface thermal environment differentiation and driving factors in urban functional zones based on multisource data: a case study of Lanzhou, China
The urban functional zone, serving as a bridge to understanding the complex interactions between human spatial activities and surface thermal environmental changes, explores the driving force information of its internal temperature changes, which is crucial for improving the urban thermal environmen...
Saved in:
Published in | Frontiers in environmental science Vol. 12 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
27.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-665X 2296-665X |
DOI | 10.3389/fenvs.2024.1466542 |
Cover
Loading…
Abstract | The urban functional zone, serving as a bridge to understanding the complex interactions between human spatial activities and surface thermal environmental changes, explores the driving force information of its internal temperature changes, which is crucial for improving the urban thermal environment. However, the impacts of the current urban functional zones on the thermal environment, based on the delineation of human activities, have yet to be sufficiently investigated. To address the issue, we constructed a two-factor weighted dominant function vector model of “population heat—land use scale” to identify urban functional zones. This model is based on multisource data and considers the perspective of urban functional supply and demand matching. We then analyzed the spatial differentiation and driving factors of the relationship between urban functional zones and the surface thermal environment using the random forest algorithm, bivariate spatial autocorrelation, geographical detectors, and geographically weighted regression models. The results showed that there are significant differences in the Land Surface Temperature among different urban functional zones in the central urban area of Lanzhou. Among these, the life service zone has the greatest impact on the surface thermal environment, followed by the industrial zone and catering service zone, while the green space zone has the least impact. The surface thermal environment exhibits high-high clusters in localized spatial clustering patterns with life service, industrial, catering service, and residential zones. In contrast, it tends to exhibit low-high clusters with green spaces. Significant spatial clustering and dependence exist between various functional zones and the surface thermal environment. The land cover types characterized by the Normalized Difference Bare Land and Building Index, the vegetation coverage represented by the Fraction of Vegetation Cover, and the density of industrial activities indicated by the Industrial POI Kernel Density Index are the main drivers of the surface thermal environment in the various functional zones of the central urban area of Lanzhou, and all exhibit significant spatial heterogeneity. |
---|---|
AbstractList | The urban functional zone, serving as a bridge to understanding the complex interactions between human spatial activities and surface thermal environmental changes, explores the driving force information of its internal temperature changes, which is crucial for improving the urban thermal environment. However, the impacts of the current urban functional zones on the thermal environment, based on the delineation of human activities, have yet to be sufficiently investigated. To address the issue, we constructed a two-factor weighted dominant function vector model of “population heat—land use scale” to identify urban functional zones. This model is based on multisource data and considers the perspective of urban functional supply and demand matching. We then analyzed the spatial differentiation and driving factors of the relationship between urban functional zones and the surface thermal environment using the random forest algorithm, bivariate spatial autocorrelation, geographical detectors, and geographically weighted regression models. The results showed that there are significant differences in the Land Surface Temperature among different urban functional zones in the central urban area of Lanzhou. Among these, the life service zone has the greatest impact on the surface thermal environment, followed by the industrial zone and catering service zone, while the green space zone has the least impact. The surface thermal environment exhibits high-high clusters in localized spatial clustering patterns with life service, industrial, catering service, and residential zones. In contrast, it tends to exhibit low-high clusters with green spaces. Significant spatial clustering and dependence exist between various functional zones and the surface thermal environment. The land cover types characterized by the Normalized Difference Bare Land and Building Index, the vegetation coverage represented by the Fraction of Vegetation Cover, and the density of industrial activities indicated by the Industrial POI Kernel Density Index are the main drivers of the surface thermal environment in the various functional zones of the central urban area of Lanzhou, and all exhibit significant spatial heterogeneity. |
Author | Wang, Yixuan Yang, Shuwen |
Author_xml | – sequence: 1 givenname: Yixuan surname: Wang fullname: Wang, Yixuan – sequence: 2 givenname: Shuwen surname: Yang fullname: Yang, Shuwen |
BookMark | eNp9kcFu3CAQhlGVSk2TvEBPPEB3Y8DYuLdq1SYrrZRLK-WGxjBkibxQAY6UvE_fM3g3laoeehoY_u-fEf9HchZiQEI-sWYthBquHYanvOYNb9es7TrZ8nfknPOhW9XL_dlf5w_kKufHpmmY4LJl7Jz83loMxTtvoPgYaHQ0z8mBQVr2mA4w0eruUwyHqqPWO4dpIU5yCJba5J98eKAVKjFl6gOd0wiBujmYRVU9XurGmY6Q0dKKHeap-BznVMdYKPCFAjX1keYy2-dliR2El32cP9PN3ge4JO8dTBmv3uoF-fn924_N7Wp3d7PdfN2tjJB9WamuN8isaB0604wjolSMKcVEr4xoVOdcX9ui5U2HTBkYBB-kxFqk5K0QF2R78rURHvWv5A-QnnUEr4-NmB40pOLNhHocOHOsF8pxaKVT0BrHcEQlUUEvx-qlTl4mxZwTOm18Of5aSeAnzRq9pKeP6eklPf2WXkX5P-ifVf4DvQKglKUW |
CitedBy_id | crossref_primary_10_3390_buildings15070995 crossref_primary_10_3390_land13122181 |
Cites_doi | 10.3390/ijerph17249578 10.11821/xb200104009 10.1016/j.commatsci.2024.112994 10.1016/j.accre.2015.07.001 10.3390/buildings13112806 10.1007/s13201-019-0903-2 10.1016/j.isprsjprs.2019.04.010 10.1080/10095020.2016.1176723 10.1016/j.ecoinf.2023.102293 10.1016/j.buildenv.2017.03.013 10.3390/rs10020281 10.3390/land12091719 10.1007/s11356-021-13695-y 10.1073/pnas.1322280111 10.1186/s40494-023-00948-x 10.1016/j.scs.2021.102818 10.3389/fenvs.2023.1247046 10.1016/j.uclim.2022.101385 10.1080/10106049.2023.2191995 10.3390/rs13020251 10.1016/j.uclim.2023.101425 10.1016/j.jtrangeo.2015.04.008 10.1038/s41586-019-1512-9 10.1016/j.ecolind.2024.111555 10.1023/a:1010933404324 10.1016/j.rse.2020.111866 10.3390/rs10091428 10.1016/j.buildenv.2022.109150 10.1016/j.jue.2004.03.003 10.1016/j.uclim.2023.101553 10.3390/rs13030373 10.3390/buildings13081887 10.1002/wcc.688 10.3390/rs14081851 10.1016/j.rse.2006.09.003 10.3390/ijgi13030095 10.1016/j.scs.2021.102987 10.1016/j.scs.2022.104374 10.1080/15481603.2020.1724707 10.1139/er-2018-0029 10.1007/s41651-023-00166-w 10.1016/j.buildenv.2022.109000 10.1061/jupddm.upeng-4593 10.3390/land11070996 10.1080/01431161.2023.2201389 10.1016/j.ecolind.2024.112330 10.1007/s11442-021-1873-5 10.1016/j.landurbplan.2016.12.001 10.1007/s11442-020-1825-5 10.1016/j.apenergy.2018.10.083 10.1007/s11355-020-00417-8 10.3390/su15097700 10.1007/s13351-024-3081-6 10.1016/j.landurbplan.2012.05.014 10.1016/j.scs.2019.101637 10.1080/13658816.2014.913794 10.1016/j.ecolind.2023.111540 10.3390/ijgi13040120 10.3390/ijgi9030158 10.1016/j.buildenv.2023.110770 10.1016/j.ecolind.2021.107339 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fenvs.2024.1466542 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 2296-665X |
ExternalDocumentID | oai_doaj_org_article_b921f1738f2a45f8a4cf1ebe85e8a75b 10_3389_fenvs_2024_1466542 |
GroupedDBID | 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFS ACXDI ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ KQ8 LK8 M2P M7P M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC ZBA PQGLB PUEGO |
ID | FETCH-LOGICAL-c357t-867ce1d34fefc0bbee5811881378c3086ff70bb34206e18ca932955e932552433 |
IEDL.DBID | DOA |
ISSN | 2296-665X |
IngestDate | Wed Aug 27 01:28:09 EDT 2025 Thu Apr 24 22:58:34 EDT 2025 Tue Jul 01 02:12:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-867ce1d34fefc0bbee5811881378c3086ff70bb34206e18ca932955e932552433 |
OpenAccessLink | https://doaj.org/article/b921f1738f2a45f8a4cf1ebe85e8a75b |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b921f1738f2a45f8a4cf1ebe85e8a75b crossref_citationtrail_10_3389_fenvs_2024_1466542 crossref_primary_10_3389_fenvs_2024_1466542 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-27 |
PublicationDateYYYYMMDD | 2024-09-27 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-27 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in environmental science |
PublicationYear | 2024 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Yang (B51) 2021; 69 Ma (B29) 2023; 78 Adeola Fashae (B1) 2019; 9 Chen (B9) 2023; 11 Wen (B43) 2023; 13 Li (B21) 2022; 11 Li (B25) 2020; 16 Liu (B28) 2020; 9 Liu (B27) 2017; 117 Chen (B8) 2022; 216 Ai (B2) 2024; 158 Chen (B7) 2017; 160 Georgescu (B14) 2014; 111 Chai (B5) 2023; 15 Chen (B6) 2023; 244 Zhao (B59) 2018; 10 Du (B12) 2024; 13 Wang (B40) 2021; 123 Zhang (B58) 2023; 49 Pei (B33) 2014; 28 Xu (B48) 2021; 13 Xiong (B46) 2021; 31 Shi (B36) 2015; 6 Xu (B47) 2023; 13 Wee (B42) 2024; 8 Zhang (B57) 2018; 10 Zhang (B56) 2023; 12 Xie (B45) 2024; 13 Wang (B38) 2022; 47 Wang (B41) 2019; 235 Du (B11) 2020; 57 Li (B22) 2020; 30 Bertinelli (B3) 2004; 56 Yuan (B55) 2007; 106 Manoli (B30) 2019; 573 Gao (B13) 2020; 17 Zhi (B61) 2016; 19 Stone (B37) 2012; 107 Breiman (B4) 2001; 45 Li (B20) 2021; 28 Xue (B49) 2023; 48 Huang (B15) 2024; 150 Li (B23) 2024; 166 Li (B24) 2024; 158 Huang (B16) 2024; 240 Huo (B18) 2021; 12 Wu (B44) 2019; 27 Peng (B34) 2020; 246 Qin (B35) 2001; 56 Yu (B53) 2022; 219 Liu (B26) 2021; 71 Zheng (B60) 2024; 38 Huang (B17) 2019; 152 Yan (B50) 2023; 38 Wang (B39) 2022; 14 Meng (B31) 2023; 11 Chen (B10) 2023; 89 Yu (B52) 2015; 45 Min (B32) 2019; 50 Huo (B19) 2023 Yu (B54) 2021; 13 |
References_xml | – volume: 17 start-page: 9578 year: 2020 ident: B13 article-title: The diversified impacts of urban morphology on land surface temperature among urban functional zones publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph17249578 – volume: 56 start-page: 466 year: 2001 ident: B35 article-title: Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data publication-title: ACTA Geogr. Sinica-Chin. Edition doi: 10.11821/xb200104009 – volume: 240 start-page: 112994 year: 2024 ident: B16 article-title: On analysis of entropy measure via logarithmic regression model and Pearson correlation for Tri-s-triazine publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2024.112994 – volume: 6 start-page: 7 year: 2015 ident: B36 article-title: Influence of urbanization on the thermal environment of meteorological station: satellite-observed evidence publication-title: Adv. Clim. Change Res. doi: 10.1016/j.accre.2015.07.001 – volume: 13 start-page: 2806 year: 2023 ident: B47 article-title: Local climate zone in Xi'an city: a novel classification approach employing spatial indicators and supervised classification publication-title: Buildings doi: 10.3390/buildings13112806 – volume: 9 start-page: 25 year: 2019 ident: B1 article-title: Landuse and surface water quality in an emerging urban city publication-title: Appl. Water Sci. doi: 10.1007/s13201-019-0903-2 – volume: 152 start-page: 119 year: 2019 ident: B17 article-title: Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: a case study of Wuhan, Central China publication-title: ISPRS J. Photogrammetry Remote Sens. doi: 10.1016/j.isprsjprs.2019.04.010 – volume: 19 start-page: 94 year: 2016 ident: B61 article-title: Latent spatio-temporal activity structures: a new approach to inferring intra-urban functional regions via social media check-in data publication-title: Geo-Spatial Inf. Sci. doi: 10.1080/10095020.2016.1176723 – volume: 78 start-page: 102293 year: 2023 ident: B29 article-title: Fine allocation of sectoral carbon emissions at block scale and contribution of functional zones publication-title: Ecol. Inf. doi: 10.1016/j.ecoinf.2023.102293 – volume: 117 start-page: 191 year: 2017 ident: B27 article-title: Analysis of local-scale urban heat island characteristics using an integrated method of mobile measurement and GIS-based spatial interpolation publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.03.013 – volume: 10 start-page: 281 year: 2018 ident: B57 article-title: Multiscale geoscene segmentation for extracting urban functional zones from VHR satellite images publication-title: Remote Sens. doi: 10.3390/rs10020281 – volume: 12 start-page: 1719 year: 2023 ident: B56 article-title: Spatial correlation between water resources and rural settlements in the Yanhe watershed based on bivariate spatial autocorrelation methods publication-title: Land doi: 10.3390/land12091719 – volume: 28 start-page: 41191 year: 2021 ident: B20 article-title: Detecting urban landscape factors controlling seasonal land surface temperature: from the perspective of urban function zones publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-13695-y – volume: 111 start-page: 2909 year: 2014 ident: B14 article-title: Urban adaptation can roll back warming of emerging megapolitan regions publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1322280111 – volume: 11 start-page: 111 year: 2023 ident: B9 article-title: Spatio-temporal characteristics and influencing factors of traditional villages in the Yangtze River Basin: a Geodetector model publication-title: Herit. Sci. doi: 10.1186/s40494-023-00948-x – volume: 69 start-page: 102818 year: 2021 ident: B51 article-title: Understanding land surface temperature impact factors based on local climate zones publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2021.102818 – volume: 11 year: 2023 ident: B31 article-title: Surface urban heat island effect and its spatiotemporal dynamics in metropolitan area: a case study in the Zhengzhou metropolitan area, China publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2023.1247046 – volume: 47 start-page: 101385 year: 2022 ident: B38 article-title: Ventilation analysis of urban functional zoning based on circuit model in Guangzhou in winter, China publication-title: Urban Clim. doi: 10.1016/j.uclim.2022.101385 – volume: 38 start-page: 2191995 year: 2023 ident: B50 article-title: Identification of secondary functional areas and functional structure analysis based on multisource geographic data publication-title: Geocarto Int. doi: 10.1080/10106049.2023.2191995 – volume: 13 start-page: 251 year: 2021 ident: B54 article-title: A new urban functional zone-based climate zoning system for urban temperature study publication-title: Remote Sens. doi: 10.3390/rs13020251 – volume: 48 start-page: 101425 year: 2023 ident: B49 article-title: Diurnal and interannual variations of canopy urban heat island (CUHI) effects over a mountain–valley city with a semi-arid climate publication-title: Urban Clim. doi: 10.1016/j.uclim.2023.101425 – volume: 45 start-page: 32 year: 2015 ident: B52 article-title: The analysis and delimitation of Central Business District using network kernel density estimation publication-title: J. Transp. Geogr. doi: 10.1016/j.jtrangeo.2015.04.008 – volume: 573 start-page: 55 year: 2019 ident: B30 article-title: Magnitude of urban heat islands largely explained by climate and population publication-title: Nature doi: 10.1038/s41586-019-1512-9 – volume: 158 start-page: 111555 year: 2024 ident: B2 article-title: Spatial correlation analysis between human disturbance intensity (HDI) and ecosystem services value (ESV) in the Chengdu-Chongqing urban agglomeration publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2024.111555 – volume: 45 start-page: 5 year: 2001 ident: B4 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/a:1010933404324 – volume: 246 start-page: 111866 year: 2020 ident: B34 article-title: A wavelet coherence approach to prioritizing influencing factors of land surface temperature and associated research scales publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111866 – volume: 10 start-page: 1428 year: 2018 ident: B59 article-title: A geographically weighted regression analysis of the underlying factors related to the surface urban heat island phenomenon publication-title: Remote Sens. doi: 10.3390/rs10091428 – volume: 219 start-page: 109150 year: 2022 ident: B53 article-title: Exploration of urbanization characteristics and their effect on the urban thermal environment in Chengdu, China publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.109150 – volume: 56 start-page: 80 year: 2004 ident: B3 article-title: Urbanization and growth publication-title: J. Urban Econ. doi: 10.1016/j.jue.2004.03.003 – volume: 49 start-page: 101553 year: 2023 ident: B58 article-title: The influences of 2D/3D urban morphology on land surface temperature at the block scale in Chinese megacities publication-title: Urban Clim. doi: 10.1016/j.uclim.2023.101553 – volume: 13 start-page: 373 year: 2021 ident: B48 article-title: Identification and portrait of urban functional zones based on multisource heterogeneous data and ensemble learning publication-title: Remote Sens. doi: 10.3390/rs13030373 – volume: 13 start-page: 1887 year: 2023 ident: B43 article-title: Research on spatial and temporal patterns of heat island variability and influencing factors in urban center areas: a case study of Beijing’s central area publication-title: Buildings doi: 10.3390/buildings13081887 – volume: 12 start-page: e688 year: 2021 ident: B18 article-title: Using big data analytics to synthesize research domains and identify emerging fields in urban climatology publication-title: Wiley Interdiscip. Rev. Clim. Change doi: 10.1002/wcc.688 – volume: 14 start-page: 1851 year: 2022 ident: B39 article-title: Heterogeneous urban thermal contribution of functional construction land zones: a case study in shenzhen, China publication-title: Remote Sens. doi: 10.3390/rs14081851 – volume: 106 start-page: 375 year: 2007 ident: B55 article-title: Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.09.003 – volume: 13 start-page: 95 year: 2024 ident: B45 article-title: Multiscale urban functional zone recognition based on landmark semantic constraints publication-title: ISPRS Int. J. Geo-Information doi: 10.3390/ijgi13030095 – volume: 71 start-page: 102987 year: 2021 ident: B26 article-title: The influence of urban form on surface urban heat island and its planning implications: evidence from 1288 urban clusters in China publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2021.102987 – volume: 89 start-page: 104374 year: 2023 ident: B10 article-title: Relationship between urban spatial form and seasonal land surface temperature under different grid scales publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2022.104374 – volume: 57 start-page: 411 year: 2020 ident: B11 article-title: Large-scale urban functional zone mapping by integrating remote sensing images and open social data publication-title: GIScience Remote Sens. doi: 10.1080/15481603.2020.1724707 – volume: 27 start-page: 241 year: 2019 ident: B44 article-title: A bibliometric review of past trends and future prospects in urban heat island research from 1990 to 2017 publication-title: Environ. Rev. doi: 10.1139/er-2018-0029 – volume: 8 start-page: 4 year: 2024 ident: B42 article-title: Exploring multi-driver influences on Indonesia's biomass fire patterns from 2002 to 2019 through geographically weighted regression publication-title: J. Geovisualization Spatial Anal. doi: 10.1007/s41651-023-00166-w – volume: 216 start-page: 109000 year: 2022 ident: B8 article-title: Contribution of urban functional zones to the spatial distribution of urban thermal environment publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.109000 – volume: 150 start-page: 04024001 year: 2024 ident: B15 article-title: Recognition of functional areas in an old city based on POI: a case study in fuzhou, China publication-title: J. Urban Plan. Dev. doi: 10.1061/jupddm.upeng-4593 – volume: 11 start-page: 996 year: 2022 ident: B21 article-title: Identification of urban functional areas and their mixing degree using point of interest analyses publication-title: Land doi: 10.3390/land11070996 – start-page: 1 year: 2023 ident: B19 article-title: Simulation of urban functional zone air temperature based on urban weather generator (UWG): a case study of Beijing, China publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2023.2201389 – volume: 166 start-page: 112330 year: 2024 ident: B23 article-title: Interaction effects of various impact factors on the snow over the Yangtze and Yellow River headwater region, China publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2024.112330 – volume: 31 start-page: 819 year: 2021 ident: B46 article-title: Effect of human settlements on urban thermal environment and factor analysis based on multi-source data: a case study of Changsha city publication-title: J. Geogr. Sci. doi: 10.1007/s11442-021-1873-5 – volume: 160 start-page: 48 year: 2017 ident: B7 article-title: Delineating urban functional areas with building-level social media data: a dynamic time warping (DTW) distance based k-medoids method publication-title: Landsc. urban Plan. doi: 10.1016/j.landurbplan.2016.12.001 – volume: 30 start-page: 2015 year: 2020 ident: B22 article-title: Monitoring thermal field, humidity field and energy balance over heterogeneous surfaces in the typical valley-city publication-title: J. Geogr. Sci. doi: 10.1007/s11442-020-1825-5 – volume: 235 start-page: 95 year: 2019 ident: B41 article-title: Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model publication-title: Appl. energy doi: 10.1016/j.apenergy.2018.10.083 – volume: 16 start-page: 249 year: 2020 ident: B25 article-title: The influence of urban spatial pattern on land surface temperature for different functional zones publication-title: Landsc. Ecol. Eng. doi: 10.1007/s11355-020-00417-8 – volume: 15 start-page: 7700 year: 2023 ident: B5 article-title: Analysis of the spatial and temporal evolution characteristics and driving forces of the surface thermal environment in Lanzhou city publication-title: Sustainability doi: 10.3390/su15097700 – volume: 38 start-page: 126 year: 2024 ident: B60 article-title: Impact of local climate zones on the urban heat and dry islands in Beijing: spatial heterogeneity and relative contributions publication-title: J. Meteorological Res. doi: 10.1007/s13351-024-3081-6 – volume: 107 start-page: 263 year: 2012 ident: B37 article-title: Managing climate change in cities: will climate action plans work? publication-title: Landsc. Urban Plan. doi: 10.1016/j.landurbplan.2012.05.014 – volume: 50 start-page: 101637 year: 2019 ident: B32 article-title: Spatial distribution and driving force analysis of urban heat island effect based on raster data: a case study of the Nanjing metropolitan area, China publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101637 – volume: 28 start-page: 1988 year: 2014 ident: B33 article-title: A new insight into land use classification based on aggregated mobile phone data publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2014.913794 – volume: 158 start-page: 111540 year: 2024 ident: B24 article-title: Application of geographical detector and geographically weighted regression for assessing landscape ecological risk in the Irtysh River Basin, Central Asia publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2023.111540 – volume: 13 start-page: 120 year: 2024 ident: B12 article-title: How does the 2D/3D urban morphology affect the urban heat island across urban functional zones? A case study of Beijing, China publication-title: ISPRS Int. J. Geo-Information doi: 10.3390/ijgi13040120 – volume: 9 start-page: 158 year: 2020 ident: B28 article-title: Identification of urban functional regions in chengdu based on taxi trajectory time series data publication-title: ISPRS Int. J. Geo-Information doi: 10.3390/ijgi9030158 – volume: 244 start-page: 110770 year: 2023 ident: B6 article-title: Assessing the urban heat island effect of different local climate zones in Guangzhou, China publication-title: Build. Environ. doi: 10.1016/j.buildenv.2023.110770 – volume: 123 start-page: 107339 year: 2021 ident: B40 article-title: Evaluating the suitability of urban development land with A geodetector publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2021.107339 |
SSID | ssj0001325411 |
Score | 2.283076 |
Snippet | The urban functional zone, serving as a bridge to understanding the complex interactions between human spatial activities and surface thermal environmental... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | driving factors Lanzhou city remote sensing surface thermal environment urban functional zones |
Title | Identification of surface thermal environment differentiation and driving factors in urban functional zones based on multisource data: a case study of Lanzhou, China |
URI | https://doaj.org/article/b921f1738f2a45f8a4cf1ebe85e8a75b |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8QwDI4QEwviKd7ywAYVlyZpEzZAh04ImEBiq5I0ESdBQfdg4P_wP7GbHhwLLEyV0qS1Yid-yPbH2KG0zkYhIp5voTKJKjozps6zWunYM877wlPt8M1tMbiXVw_qYQ7qi3LCUnvgtHEnzuQ88lLomFuporbSR45_1ipoWypHty_qvDlnqo2uCHR8OE9VMuiFmZMYmjdqz51LuhwIpumHJppr2N9qlssVttyZhHCWSFllC6FZY5v97wo0fNkdwfE6-0iltbGLtcFLhPF0FK0PQLbcM06eK16DGQDKJLEAbFNDPRpSGAE6rB0YNjAdOdsAKbkUG4R36uEPpONqwGVt3mEK9AMllZ6CBY8voW1PS0Rco5H5-DI9hhaRe4PdX_bvLgZZh7WQeaHKSaaL0gdeCxlD9D3nQlAafQ_NRam9QL8nxhKHhcx7ReDaW7T7jFIBH0rlUohNttggZVsM6hBENCagMedR9RXWcV144QkS2EibbzM-2_fKd43ICQ_jqUKHhHhVtbyqiFdVx6ttdvS15jW14fh19jmx82smtdBuB1Cwqk6wqr8Ea-c_PrLLlogwSjDJyz22OBlNwz5aMRN30ArsJ8yM9LY |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+surface+thermal+environment+differentiation+and+driving+factors+in+urban+functional+zones+based+on+multisource+data%3A+a+case+study+of+Lanzhou%2C+China&rft.jtitle=Frontiers+in+environmental+science&rft.au=Yixuan+Wang&rft.au=Yixuan+Wang&rft.au=Shuwen+Yang&rft.au=Shuwen+Yang&rft.date=2024-09-27&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-665X&rft.volume=12&rft_id=info:doi/10.3389%2Ffenvs.2024.1466542&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b921f1738f2a45f8a4cf1ebe85e8a75b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-665X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-665X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-665X&client=summon |