Global Model Learning for Large Deformation Control of Elastic Deformable Linear Objects: An Efficient and Adaptive Approach
The robotic manipulation of deformable linear objects (DLOs) has broad application prospects in many fields. However, a key issue is to obtain the exact deformation models (i.e., how robot motion affects DLO deformation), which are hard to theoretically calculate and vary among different DLOs. Thus,...
Saved in:
Published in | IEEE transactions on robotics Vol. 39; no. 1; pp. 1 - 20 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1552-3098 1941-0468 |
DOI | 10.1109/TRO.2022.3200546 |
Cover
Abstract | The robotic manipulation of deformable linear objects (DLOs) has broad application prospects in many fields. However, a key issue is to obtain the exact deformation models (i.e., how robot motion affects DLO deformation), which are hard to theoretically calculate and vary among different DLOs. Thus, the shape control of DLOs is challenging, especially for large deformation control that requires global and more accurate models. In this article, we propose a coupled offline and online data-driven method for efficiently learning a global deformation model, allowing for both accurate modeling through offline learning and further updating for new DLOs via online adaptation. Specifically, the model approximated by a neural network is first trained offline on random data, then seamlessly migrated to the online phase, and further updated online during actual manipulation. Several strategies are introduced to improve the model's efficiency and generalization ability. We propose a convex-optimization-based controller and analyze the system's stability using the Lyapunov method. Detailed simulations and real-world experiments demonstrate that our method can efficiently and precisely estimate the deformation model and achieve the large deformation control of untrained DLOs in 2-D and 3-D dual-arm manipulation tasks better than the existing methods. It accomplishes all 24 tasks with different desired shapes on different DLOs in the real world, using only simulation data for the offline learning. |
---|---|
AbstractList | The robotic manipulation of deformable linear objects (DLOs) has broad application prospects in many fields. However, a key issue is to obtain the exact deformation models (i.e., how robot motion affects DLO deformation), which are hard to theoretically calculate and vary among different DLOs. Thus, the shape control of DLOs is challenging, especially for large deformation control that requires global and more accurate models. In this article, we propose a coupled offline and online data-driven method for efficiently learning a global deformation model, allowing for both accurate modeling through offline learning and further updating for new DLOs via online adaptation. Specifically, the model approximated by a neural network is first trained offline on random data, then seamlessly migrated to the online phase, and further updated online during actual manipulation. Several strategies are introduced to improve the model's efficiency and generalization ability. We propose a convex-optimization-based controller and analyze the system's stability using the Lyapunov method. Detailed simulations and real-world experiments demonstrate that our method can efficiently and precisely estimate the deformation model and achieve the large deformation control of untrained DLOs in 2-D and 3-D dual-arm manipulation tasks better than the existing methods. It accomplishes all 24 tasks with different desired shapes on different DLOs in the real world, using only simulation data for the offline learning. |
Author | Zhong, Hanzhong Li, Xiang Lv, Kangchen Song, Shiji Yu, Mingrui |
Author_xml | – sequence: 1 givenname: Mingrui orcidid: 0000-0002-8928-8121 surname: Yu fullname: Yu, Mingrui organization: Department of Automation, Tsinghua University, Beijing, China – sequence: 2 givenname: Kangchen orcidid: 0000-0001-5748-7372 surname: Lv fullname: Lv, Kangchen organization: Department of Automation, Tsinghua University, Beijing, China – sequence: 3 givenname: Hanzhong orcidid: 0000-0002-2539-9252 surname: Zhong fullname: Zhong, Hanzhong organization: Department of Automation, Tsinghua University, Beijing, China – sequence: 4 givenname: Shiji orcidid: 0000-0001-7361-9283 surname: Song fullname: Song, Shiji organization: Department of Automation, Tsinghua University, Beijing, China – sequence: 5 givenname: Xiang orcidid: 0000-0002-0699-1904 surname: Li fullname: Li, Xiang organization: Department of Automation, Tsinghua University, Beijing, China |
BookMark | eNp9kM1rGzEQxUVIoHbSeyEXQc_r6Gt3pd6M6yaFDYaQnhetNHJkNpKrlQuF_PFR6qSHHHKaB_N-85g3R6chBkDoCyULSom6ur_bLBhhbMEZIbVoTtCMKkErIhp5WnRds4oTJT-h-TTtCGFCET5DT9djHPSIb6OFEXegU_Bhi11MuNNpC_g7FP2os48Br2LIKY44Orwe9ZS9eVsPI-DOh4LjzbADk6dveBnw2jlvPISMdbB4afU--z-Al_t9ito8XKAzp8cJPr_Oc_Trx_p-dVN1m-ufq2VXGV63uZJCOMVIO0jQtTXQNoPiA211oziIRgtCiTDOOmulHYDWreBFyoEzkLqx_Bx9Pd4tsb8PMOV-Fw8plMietcXMBVWyuJqjy6Q4TQlcb3z-93hO2o89Jf1L031pun9pun9tuoDkHbhP_lGnvx8hl0fEA8B_u5JStpLxZ2_-i8E |
CODEN | ITREAE |
CitedBy_id | crossref_primary_10_1186_s40648_024_00283_1 crossref_primary_10_1016_j_ifacol_2023_10_750 crossref_primary_10_1016_j_birob_2025_100217 crossref_primary_10_1109_LRA_2025_3536276 crossref_primary_10_1002_aisy_202300827 crossref_primary_10_1109_TRO_2024_3463470 crossref_primary_10_1016_j_ifacol_2024_10_254 crossref_primary_10_20965_ijat_2023_p0399 crossref_primary_10_1016_j_aei_2024_102874 crossref_primary_10_1177_02783649241276886 crossref_primary_10_1109_LRA_2024_3486215 crossref_primary_10_1109_ACCESS_2024_3438624 crossref_primary_10_1177_02783649231198900 crossref_primary_10_1016_j_robot_2024_104652 crossref_primary_10_1016_j_robot_2024_104673 crossref_primary_10_1109_TMECH_2024_3382590 crossref_primary_10_1109_TRO_2025_3532500 crossref_primary_10_1109_LRA_2023_3264779 crossref_primary_10_1109_TRO_2023_3269347 crossref_primary_10_1109_LRA_2023_3346758 crossref_primary_10_1109_TRO_2023_3306618 crossref_primary_10_1002_aisy_202300835 crossref_primary_10_1109_TRO_2023_3299533 crossref_primary_10_1109_LRA_2024_3362643 crossref_primary_10_1109_LRA_2024_3357310 crossref_primary_10_1109_LRA_2023_3342672 crossref_primary_10_1109_TMECH_2022_3209080 crossref_primary_10_1016_j_inffus_2024_102913 crossref_primary_10_1016_j_cej_2023_143131 crossref_primary_10_1109_LRA_2024_3440101 |
Cites_doi | 10.1109/TRO.2016.2533639 10.1177/0278364906064819 10.1109/ICRA.2018.8460694 10.1109/IROS.2018.8594520 10.1109/TRO.2013.2275651 10.1109/ICRA48506.2021.9560919 10.1109/ICRA.2017.7989247 10.1109/LRA.2018.2852770 10.1109/TIE.2011.2164773 10.1109/IROS.2012.6386002 10.1109/ICRA48506.2021.9560955 10.1177/0278364912473169 10.1109/ICRA.2015.7139627 10.3390/robotics7040074 10.1126/scirobotics.abd8170 10.1109/ICRA48506.2021.9561556 10.1109/ICRA48506.2021.9561636 10.1109/IROS.2013.6697007 10.1109/ICRA.2017.7989202 10.1109/ICRA48506.2021.9561766 10.1177/0278364918779698 10.1109/TRO.2007.907486 10.1109/ETFA.2019.8868987 10.1109/LRA.2022.3158376 10.1109/MRA.2022.3147415 10.1109/ICCV.2015.169 10.1109/ICRA48506.2021.9561012 10.1109/LRA.2020.2969931 10.1126/scirobotics.abd8803 10.1177/0278364919841431 10.1109/ICRA46639.2022.9812244 10.1109/IROS.2018.8594291 10.1109/MRA.2019.2963161 10.1109/TRO.2021.3139838 10.1109/87.294335 10.1109/IROS40897.2019.8968157 10.1016/j.robot.2021.103798 10.1109/IROS40897.2019.8967827 10.1109/LRA.2021.3130377 10.1177/02783649211027233 10.3389/frobt.2020.00082 10.1109/ICRA48506.2021.9561984 10.1177/0278364920918299 10.1109/LRA.2020.3007114 10.1109/IROS.2018.8593780 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TRO.2022.3200546 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0468 |
EndPage | 20 |
ExternalDocumentID | 10_1109_TRO_2022_3200546 9888782 |
Genre | orig-research |
GrantInformation_xml | – fundername: Science and Technology Innovation 2030 Key Project grantid: 2021ZD0201404 – fundername: Shenzhen Municipal Science and Technology Innovation Council; Science and Technology Innovation Council of Shenzhen grantid: JCYJ20170816164748290 funderid: 10.13039/501100015805 – fundername: National Natural Science Foundation of China grantid: U21A20517; 52075290 funderid: 10.13039/501100001809 – fundername: Institute for Guo Qiang, Tsinghua University |
GroupedDBID | .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS VJK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c357t-844f9207b8ea5dce76b93b17a693e46a40104cfdfdd8dbe15743dd88b32e8a6d3 |
IEDL.DBID | RIE |
ISSN | 1552-3098 |
IngestDate | Mon Jun 30 02:40:20 EDT 2025 Tue Jul 01 00:42:38 EDT 2025 Thu Apr 24 22:50:53 EDT 2025 Wed Aug 27 02:29:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-844f9207b8ea5dce76b93b17a693e46a40104cfdfdd8dbe15743dd88b32e8a6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8928-8121 0000-0002-2539-9252 0000-0001-7361-9283 0000-0002-0699-1904 0000-0001-5748-7372 |
PQID | 2774334198 |
PQPubID | 27625 |
PageCount | 20 |
ParticipantIDs | ieee_primary_9888782 crossref_citationtrail_10_1109_TRO_2022_3200546 crossref_primary_10_1109_TRO_2022_3200546 proquest_journals_2774334198 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on robotics |
PublicationTitleAbbrev | TRO |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref52 ref11 ref10 ref17 ref19 ref18 ref51 ref50 (ref47) 2021 (ref46) 2019 ref45 Yan (ref16) 2020 ref42 ref44 ref43 Kingma (ref41) 2014 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 Quigley (ref49) 2009 ref2 ref1 ref39 ref38 Juliani (ref48) 2018 ref24 ref23 Lin (ref21) 2020 ref26 ref25 ref20 ref22 ref28 ref27 ref29 Slotine (ref53) 1991; 199 |
References_xml | – ident: ref24 doi: 10.1109/TRO.2016.2533639 – ident: ref9 doi: 10.1177/0278364906064819 – ident: ref5 doi: 10.1109/ICRA.2018.8460694 – ident: ref44 doi: 10.1109/IROS.2018.8594520 – ident: ref23 doi: 10.1109/TRO.2013.2275651 – ident: ref34 doi: 10.1109/ICRA48506.2021.9560919 – ident: ref36 doi: 10.1109/ICRA.2017.7989247 – ident: ref37 doi: 10.1109/LRA.2018.2852770 – ident: ref42 doi: 10.1109/TIE.2011.2164773 – ident: ref35 doi: 10.1109/IROS.2012.6386002 – ident: ref17 doi: 10.1109/ICRA48506.2021.9560955 – ident: ref30 doi: 10.1177/0278364912473169 – volume-title: Proc. 4th Conf. Robot Learn. year: 2020 ident: ref21 article-title: SoftGym: Benchmarking deep reinforcement learning for deformable object manipulation – start-page: 5 volume-title: Proc. ICRA Workshop Open Source Softw. year: 2009 ident: ref49 article-title: ROS: An open-source robot operating system – ident: ref31 doi: 10.1109/ICRA.2015.7139627 – ident: ref3 doi: 10.3390/robotics7040074 – ident: ref12 doi: 10.1126/scirobotics.abd8170 – ident: ref6 doi: 10.1109/ICRA48506.2021.9561556 – ident: ref19 doi: 10.1109/ICRA48506.2021.9561636 – ident: ref39 doi: 10.1109/IROS.2013.6697007 – ident: ref43 doi: 10.1109/ICRA.2017.7989202 – volume-title: Unity Real-Time Development Platform year: 2021 ident: ref47 – ident: ref8 doi: 10.1109/ICRA48506.2021.9561766 – ident: ref1 doi: 10.1177/0278364918779698 – volume-title: Proc. 3rd Int. Conf. Learn. Represent. year: 2014 ident: ref41 article-title: Adam: A method for stochastic optimization – ident: ref10 doi: 10.1109/TRO.2007.907486 – volume-title: Proc. 4th Conf. Robot Learn. year: 2020 ident: ref16 article-title: Learning predictive representations for deformable objects using contrastive estimation – volume: 199 volume-title: Applied Nonlinear Control year: 1991 ident: ref53 – ident: ref4 doi: 10.1109/ETFA.2019.8868987 – ident: ref38 doi: 10.1109/LRA.2022.3158376 – ident: ref14 doi: 10.1109/MRA.2022.3147415 – volume-title: ObiUnified Particle Physics for Unity 3D year: 2019 ident: ref46 – ident: ref40 doi: 10.1109/ICCV.2015.169 – ident: ref52 doi: 10.1109/ICRA48506.2021.9561012 – ident: ref18 doi: 10.1109/LRA.2020.2969931 – ident: ref2 doi: 10.1126/scirobotics.abd8803 – ident: ref50 doi: 10.1177/0278364919841431 – ident: ref29 doi: 10.1109/ICRA46639.2022.9812244 – ident: ref33 doi: 10.1109/IROS.2018.8594291 – ident: ref7 doi: 10.1109/MRA.2019.2963161 – ident: ref32 doi: 10.1109/TRO.2021.3139838 – ident: ref45 doi: 10.1109/87.294335 – ident: ref26 doi: 10.1109/IROS40897.2019.8968157 – ident: ref28 doi: 10.1016/j.robot.2021.103798 – ident: ref51 doi: 10.1109/IROS40897.2019.8967827 – ident: ref20 doi: 10.1109/LRA.2021.3130377 – ident: ref13 doi: 10.1177/02783649211027233 – ident: ref15 doi: 10.3389/frobt.2020.00082 – ident: ref22 doi: 10.1109/ICRA48506.2021.9561984 – ident: ref11 doi: 10.1177/0278364920918299 – year: 2018 ident: ref48 article-title: Unity: A general platform for intelligent agents – ident: ref27 doi: 10.1109/LRA.2020.3007114 – ident: ref25 doi: 10.1109/IROS.2018.8593780 |
SSID | ssj0024903 |
Score | 2.561376 |
Snippet | The robotic manipulation of deformable linear objects (DLOs) has broad application prospects in many fields. However, a key issue is to obtain the exact... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adaptation models Adaptive control Data models Deformable linear objects (DLOs) Deformable models Elastic deformation Formability Jacobian matrices Learning model learning Neural networks Optimization Robot dynamics robotic manipulation Shape Shape control Stability analysis Strain Task analysis |
Title | Global Model Learning for Large Deformation Control of Elastic Deformable Linear Objects: An Efficient and Adaptive Approach |
URI | https://ieeexplore.ieee.org/document/9888782 https://www.proquest.com/docview/2774334198 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxsxEB6SnJpDX2mo27TMoZdC1l6vtLtSbyZ1CKWuIdiQ26LHKIeYdUjsS-mP72gfbmhC6U2wmkVoRtI30sw3AJ9CHlzmTUhCKW0iM2sSXXqRFHpMBVE5tnnMRp79KC6W8ttVfrUHp7tcGCJqgs9oGJvNW75fu228Khtpdtf4RNuHfTazNlfrD6-ebqogR0axRKRa9U-SqR4tLufsCGbZUMQrlAh1HxxBTU2VRxtxc7qcv4BZP642qORmuN3Yofv5F2Xj_w78JTzvYCZOWrt4BXtUv4bDB-SDR_CrpfvHWA1thR3P6jUyiMXvMTwcv9IusxHP2oh2XAecMt7mv_af7YqQHVoWx7mNlzr3X3BS47ShpuBRoak9Try5jfsqTjoK8zewPJ8uzi6SrhZD4kRebhIlZdBZWlpFJveOysJqYcelKbQgWRgZ_ToXfPBeeUvjnJEJN5UVGSlTeHEMB_W6preAKU-Fko49tdJLR7kSgTGVMU5on_E8DWDUq6dyHVF5rJexqhqHJdUVK7SKCq06hQ7g807itiXp-Effo6ifXb9ONQM46S2g6lbxfZUxNhaR8E69e1rqPTyL5efbKO4TONjcbekDg5SN_dhY52-3BOQY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VcgAOvAoiUGAOXJDYZLP27trcopIqQNJKKJV6W_kx7oFoU7XJpeLHM95HqAAhbpbWs7I8tucbe-YbgHchDy7zJiShlDaRmTWJLr1ICj2mgqgc2zxmIy9OitmZ_HKen-_Bh10uDBE1wWc0jM3mLd-v3TZelY00u2ts0e7AXbb7Mm-ztX4x6-mmDnLkFEtEqlX_KJnq0fLbKbuCWTYU8RIlgt1bRqipqvLHUdzYl-NHsOhH1oaVfB9uN3bobn4jbfzfoT-Ghx3QxEm7Mp7AHtVP4cEt-sED-NES_mOsh7bCjmn1AhnG4jwGiOMn2uU24lEb047rgFNG3PzX_rNdEbJLy-J4auO1zvVHnNQ4bcgpeFRoao8Tby7jyYqTjsT8GZwdT5dHs6SrxpA4kZebREkZdJaWVpHJvaOysFrYcWkKLUgWRkbPzgUfvFfe0jhnbMJNZUVGyhRePIf9el3TC8CUp0JJx75a6aWjXInAqMoYJ7TPeJ4GMOrVU7mOqjxWzFhVjcuS6ooVWkWFVp1CB_B-J3HZ0nT8o-9B1M-uX6eaARz2K6Dq9vF1lTE6FpHyTr38u9RbuDdbLubV_PPJ11dwPxajb2O6D2F_c7Wl1wxZNvZNs1J_As9952U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Model+Learning+for+Large+Deformation+Control+of+Elastic+Deformable+Linear+Objects%3A+An+Efficient+and+Adaptive+Approach&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Yu%2C+Mingrui&rft.au=Lv%2C+Kangchen&rft.au=Zhong%2C+Hanzhong&rft.au=Song%2C+Shiji&rft.date=2023-02-01&rft.issn=1552-3098&rft.eissn=1941-0468&rft.volume=39&rft.issue=1&rft.spage=417&rft.epage=436&rft_id=info:doi/10.1109%2FTRO.2022.3200546&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TRO_2022_3200546 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon |