Global Model Learning for Large Deformation Control of Elastic Deformable Linear Objects: An Efficient and Adaptive Approach

The robotic manipulation of deformable linear objects (DLOs) has broad application prospects in many fields. However, a key issue is to obtain the exact deformation models (i.e., how robot motion affects DLO deformation), which are hard to theoretically calculate and vary among different DLOs. Thus,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on robotics Vol. 39; no. 1; pp. 1 - 20
Main Authors Yu, Mingrui, Lv, Kangchen, Zhong, Hanzhong, Song, Shiji, Li, Xiang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1552-3098
1941-0468
DOI10.1109/TRO.2022.3200546

Cover

Abstract The robotic manipulation of deformable linear objects (DLOs) has broad application prospects in many fields. However, a key issue is to obtain the exact deformation models (i.e., how robot motion affects DLO deformation), which are hard to theoretically calculate and vary among different DLOs. Thus, the shape control of DLOs is challenging, especially for large deformation control that requires global and more accurate models. In this article, we propose a coupled offline and online data-driven method for efficiently learning a global deformation model, allowing for both accurate modeling through offline learning and further updating for new DLOs via online adaptation. Specifically, the model approximated by a neural network is first trained offline on random data, then seamlessly migrated to the online phase, and further updated online during actual manipulation. Several strategies are introduced to improve the model's efficiency and generalization ability. We propose a convex-optimization-based controller and analyze the system's stability using the Lyapunov method. Detailed simulations and real-world experiments demonstrate that our method can efficiently and precisely estimate the deformation model and achieve the large deformation control of untrained DLOs in 2-D and 3-D dual-arm manipulation tasks better than the existing methods. It accomplishes all 24 tasks with different desired shapes on different DLOs in the real world, using only simulation data for the offline learning.
AbstractList The robotic manipulation of deformable linear objects (DLOs) has broad application prospects in many fields. However, a key issue is to obtain the exact deformation models (i.e., how robot motion affects DLO deformation), which are hard to theoretically calculate and vary among different DLOs. Thus, the shape control of DLOs is challenging, especially for large deformation control that requires global and more accurate models. In this article, we propose a coupled offline and online data-driven method for efficiently learning a global deformation model, allowing for both accurate modeling through offline learning and further updating for new DLOs via online adaptation. Specifically, the model approximated by a neural network is first trained offline on random data, then seamlessly migrated to the online phase, and further updated online during actual manipulation. Several strategies are introduced to improve the model's efficiency and generalization ability. We propose a convex-optimization-based controller and analyze the system's stability using the Lyapunov method. Detailed simulations and real-world experiments demonstrate that our method can efficiently and precisely estimate the deformation model and achieve the large deformation control of untrained DLOs in 2-D and 3-D dual-arm manipulation tasks better than the existing methods. It accomplishes all 24 tasks with different desired shapes on different DLOs in the real world, using only simulation data for the offline learning.
Author Zhong, Hanzhong
Li, Xiang
Lv, Kangchen
Song, Shiji
Yu, Mingrui
Author_xml – sequence: 1
  givenname: Mingrui
  orcidid: 0000-0002-8928-8121
  surname: Yu
  fullname: Yu, Mingrui
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Kangchen
  orcidid: 0000-0001-5748-7372
  surname: Lv
  fullname: Lv, Kangchen
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Hanzhong
  orcidid: 0000-0002-2539-9252
  surname: Zhong
  fullname: Zhong, Hanzhong
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Shiji
  orcidid: 0000-0001-7361-9283
  surname: Song
  fullname: Song, Shiji
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 5
  givenname: Xiang
  orcidid: 0000-0002-0699-1904
  surname: Li
  fullname: Li, Xiang
  organization: Department of Automation, Tsinghua University, Beijing, China
BookMark eNp9kM1rGzEQxUVIoHbSeyEXQc_r6Gt3pd6M6yaFDYaQnhetNHJkNpKrlQuF_PFR6qSHHHKaB_N-85g3R6chBkDoCyULSom6ur_bLBhhbMEZIbVoTtCMKkErIhp5WnRds4oTJT-h-TTtCGFCET5DT9djHPSIb6OFEXegU_Bhi11MuNNpC_g7FP2os48Br2LIKY44Orwe9ZS9eVsPI-DOh4LjzbADk6dveBnw2jlvPISMdbB4afU--z-Al_t9ito8XKAzp8cJPr_Oc_Trx_p-dVN1m-ufq2VXGV63uZJCOMVIO0jQtTXQNoPiA211oziIRgtCiTDOOmulHYDWreBFyoEzkLqx_Bx9Pd4tsb8PMOV-Fw8plMietcXMBVWyuJqjy6Q4TQlcb3z-93hO2o89Jf1L031pun9pun9tuoDkHbhP_lGnvx8hl0fEA8B_u5JStpLxZ2_-i8E
CODEN ITREAE
CitedBy_id crossref_primary_10_1186_s40648_024_00283_1
crossref_primary_10_1016_j_ifacol_2023_10_750
crossref_primary_10_1016_j_birob_2025_100217
crossref_primary_10_1109_LRA_2025_3536276
crossref_primary_10_1002_aisy_202300827
crossref_primary_10_1109_TRO_2024_3463470
crossref_primary_10_1016_j_ifacol_2024_10_254
crossref_primary_10_20965_ijat_2023_p0399
crossref_primary_10_1016_j_aei_2024_102874
crossref_primary_10_1177_02783649241276886
crossref_primary_10_1109_LRA_2024_3486215
crossref_primary_10_1109_ACCESS_2024_3438624
crossref_primary_10_1177_02783649231198900
crossref_primary_10_1016_j_robot_2024_104652
crossref_primary_10_1016_j_robot_2024_104673
crossref_primary_10_1109_TMECH_2024_3382590
crossref_primary_10_1109_TRO_2025_3532500
crossref_primary_10_1109_LRA_2023_3264779
crossref_primary_10_1109_TRO_2023_3269347
crossref_primary_10_1109_LRA_2023_3346758
crossref_primary_10_1109_TRO_2023_3306618
crossref_primary_10_1002_aisy_202300835
crossref_primary_10_1109_TRO_2023_3299533
crossref_primary_10_1109_LRA_2024_3362643
crossref_primary_10_1109_LRA_2024_3357310
crossref_primary_10_1109_LRA_2023_3342672
crossref_primary_10_1109_TMECH_2022_3209080
crossref_primary_10_1016_j_inffus_2024_102913
crossref_primary_10_1016_j_cej_2023_143131
crossref_primary_10_1109_LRA_2024_3440101
Cites_doi 10.1109/TRO.2016.2533639
10.1177/0278364906064819
10.1109/ICRA.2018.8460694
10.1109/IROS.2018.8594520
10.1109/TRO.2013.2275651
10.1109/ICRA48506.2021.9560919
10.1109/ICRA.2017.7989247
10.1109/LRA.2018.2852770
10.1109/TIE.2011.2164773
10.1109/IROS.2012.6386002
10.1109/ICRA48506.2021.9560955
10.1177/0278364912473169
10.1109/ICRA.2015.7139627
10.3390/robotics7040074
10.1126/scirobotics.abd8170
10.1109/ICRA48506.2021.9561556
10.1109/ICRA48506.2021.9561636
10.1109/IROS.2013.6697007
10.1109/ICRA.2017.7989202
10.1109/ICRA48506.2021.9561766
10.1177/0278364918779698
10.1109/TRO.2007.907486
10.1109/ETFA.2019.8868987
10.1109/LRA.2022.3158376
10.1109/MRA.2022.3147415
10.1109/ICCV.2015.169
10.1109/ICRA48506.2021.9561012
10.1109/LRA.2020.2969931
10.1126/scirobotics.abd8803
10.1177/0278364919841431
10.1109/ICRA46639.2022.9812244
10.1109/IROS.2018.8594291
10.1109/MRA.2019.2963161
10.1109/TRO.2021.3139838
10.1109/87.294335
10.1109/IROS40897.2019.8968157
10.1016/j.robot.2021.103798
10.1109/IROS40897.2019.8967827
10.1109/LRA.2021.3130377
10.1177/02783649211027233
10.3389/frobt.2020.00082
10.1109/ICRA48506.2021.9561984
10.1177/0278364920918299
10.1109/LRA.2020.3007114
10.1109/IROS.2018.8593780
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TRO.2022.3200546
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0468
EndPage 20
ExternalDocumentID 10_1109_TRO_2022_3200546
9888782
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Innovation 2030 Key Project
  grantid: 2021ZD0201404
– fundername: Shenzhen Municipal Science and Technology Innovation Council; Science and Technology Innovation Council of Shenzhen
  grantid: JCYJ20170816164748290
  funderid: 10.13039/501100015805
– fundername: National Natural Science Foundation of China
  grantid: U21A20517; 52075290
  funderid: 10.13039/501100001809
– fundername: Institute for Guo Qiang, Tsinghua University
GroupedDBID .DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
VJK
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-844f9207b8ea5dce76b93b17a693e46a40104cfdfdd8dbe15743dd88b32e8a6d3
IEDL.DBID RIE
ISSN 1552-3098
IngestDate Mon Jun 30 02:40:20 EDT 2025
Tue Jul 01 00:42:38 EDT 2025
Thu Apr 24 22:50:53 EDT 2025
Wed Aug 27 02:29:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-844f9207b8ea5dce76b93b17a693e46a40104cfdfdd8dbe15743dd88b32e8a6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8928-8121
0000-0002-2539-9252
0000-0001-7361-9283
0000-0002-0699-1904
0000-0001-5748-7372
PQID 2774334198
PQPubID 27625
PageCount 20
ParticipantIDs ieee_primary_9888782
crossref_citationtrail_10_1109_TRO_2022_3200546
crossref_primary_10_1109_TRO_2022_3200546
proquest_journals_2774334198
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on robotics
PublicationTitleAbbrev TRO
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref10
ref17
ref19
ref18
ref51
ref50
(ref47) 2021
(ref46) 2019
ref45
Yan (ref16) 2020
ref42
ref44
ref43
Kingma (ref41) 2014
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
Quigley (ref49) 2009
ref2
ref1
ref39
ref38
Juliani (ref48) 2018
ref24
ref23
Lin (ref21) 2020
ref26
ref25
ref20
ref22
ref28
ref27
ref29
Slotine (ref53) 1991; 199
References_xml – ident: ref24
  doi: 10.1109/TRO.2016.2533639
– ident: ref9
  doi: 10.1177/0278364906064819
– ident: ref5
  doi: 10.1109/ICRA.2018.8460694
– ident: ref44
  doi: 10.1109/IROS.2018.8594520
– ident: ref23
  doi: 10.1109/TRO.2013.2275651
– ident: ref34
  doi: 10.1109/ICRA48506.2021.9560919
– ident: ref36
  doi: 10.1109/ICRA.2017.7989247
– ident: ref37
  doi: 10.1109/LRA.2018.2852770
– ident: ref42
  doi: 10.1109/TIE.2011.2164773
– ident: ref35
  doi: 10.1109/IROS.2012.6386002
– ident: ref17
  doi: 10.1109/ICRA48506.2021.9560955
– ident: ref30
  doi: 10.1177/0278364912473169
– volume-title: Proc. 4th Conf. Robot Learn.
  year: 2020
  ident: ref21
  article-title: SoftGym: Benchmarking deep reinforcement learning for deformable object manipulation
– start-page: 5
  volume-title: Proc. ICRA Workshop Open Source Softw.
  year: 2009
  ident: ref49
  article-title: ROS: An open-source robot operating system
– ident: ref31
  doi: 10.1109/ICRA.2015.7139627
– ident: ref3
  doi: 10.3390/robotics7040074
– ident: ref12
  doi: 10.1126/scirobotics.abd8170
– ident: ref6
  doi: 10.1109/ICRA48506.2021.9561556
– ident: ref19
  doi: 10.1109/ICRA48506.2021.9561636
– ident: ref39
  doi: 10.1109/IROS.2013.6697007
– ident: ref43
  doi: 10.1109/ICRA.2017.7989202
– volume-title: Unity Real-Time Development Platform
  year: 2021
  ident: ref47
– ident: ref8
  doi: 10.1109/ICRA48506.2021.9561766
– ident: ref1
  doi: 10.1177/0278364918779698
– volume-title: Proc. 3rd Int. Conf. Learn. Represent.
  year: 2014
  ident: ref41
  article-title: Adam: A method for stochastic optimization
– ident: ref10
  doi: 10.1109/TRO.2007.907486
– volume-title: Proc. 4th Conf. Robot Learn.
  year: 2020
  ident: ref16
  article-title: Learning predictive representations for deformable objects using contrastive estimation
– volume: 199
  volume-title: Applied Nonlinear Control
  year: 1991
  ident: ref53
– ident: ref4
  doi: 10.1109/ETFA.2019.8868987
– ident: ref38
  doi: 10.1109/LRA.2022.3158376
– ident: ref14
  doi: 10.1109/MRA.2022.3147415
– volume-title: ObiUnified Particle Physics for Unity 3D
  year: 2019
  ident: ref46
– ident: ref40
  doi: 10.1109/ICCV.2015.169
– ident: ref52
  doi: 10.1109/ICRA48506.2021.9561012
– ident: ref18
  doi: 10.1109/LRA.2020.2969931
– ident: ref2
  doi: 10.1126/scirobotics.abd8803
– ident: ref50
  doi: 10.1177/0278364919841431
– ident: ref29
  doi: 10.1109/ICRA46639.2022.9812244
– ident: ref33
  doi: 10.1109/IROS.2018.8594291
– ident: ref7
  doi: 10.1109/MRA.2019.2963161
– ident: ref32
  doi: 10.1109/TRO.2021.3139838
– ident: ref45
  doi: 10.1109/87.294335
– ident: ref26
  doi: 10.1109/IROS40897.2019.8968157
– ident: ref28
  doi: 10.1016/j.robot.2021.103798
– ident: ref51
  doi: 10.1109/IROS40897.2019.8967827
– ident: ref20
  doi: 10.1109/LRA.2021.3130377
– ident: ref13
  doi: 10.1177/02783649211027233
– ident: ref15
  doi: 10.3389/frobt.2020.00082
– ident: ref22
  doi: 10.1109/ICRA48506.2021.9561984
– ident: ref11
  doi: 10.1177/0278364920918299
– year: 2018
  ident: ref48
  article-title: Unity: A general platform for intelligent agents
– ident: ref27
  doi: 10.1109/LRA.2020.3007114
– ident: ref25
  doi: 10.1109/IROS.2018.8593780
SSID ssj0024903
Score 2.561376
Snippet The robotic manipulation of deformable linear objects (DLOs) has broad application prospects in many fields. However, a key issue is to obtain the exact...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptation models
Adaptive control
Data models
Deformable linear objects (DLOs)
Deformable models
Elastic deformation
Formability
Jacobian matrices
Learning
model learning
Neural networks
Optimization
Robot dynamics
robotic manipulation
Shape
Shape control
Stability analysis
Strain
Task analysis
Title Global Model Learning for Large Deformation Control of Elastic Deformable Linear Objects: An Efficient and Adaptive Approach
URI https://ieeexplore.ieee.org/document/9888782
https://www.proquest.com/docview/2774334198
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxsxEB6SnJpDX2mo27TMoZdC1l6vtLtSbyZ1CKWuIdiQ26LHKIeYdUjsS-mP72gfbmhC6U2wmkVoRtI30sw3AJ9CHlzmTUhCKW0iM2sSXXqRFHpMBVE5tnnMRp79KC6W8ttVfrUHp7tcGCJqgs9oGJvNW75fu228Khtpdtf4RNuHfTazNlfrD6-ebqogR0axRKRa9U-SqR4tLufsCGbZUMQrlAh1HxxBTU2VRxtxc7qcv4BZP642qORmuN3Yofv5F2Xj_w78JTzvYCZOWrt4BXtUv4bDB-SDR_CrpfvHWA1thR3P6jUyiMXvMTwcv9IusxHP2oh2XAecMt7mv_af7YqQHVoWx7mNlzr3X3BS47ShpuBRoak9Try5jfsqTjoK8zewPJ8uzi6SrhZD4kRebhIlZdBZWlpFJveOysJqYcelKbQgWRgZ_ToXfPBeeUvjnJEJN5UVGSlTeHEMB_W6preAKU-Fko49tdJLR7kSgTGVMU5on_E8DWDUq6dyHVF5rJexqhqHJdUVK7SKCq06hQ7g807itiXp-Effo6ifXb9ONQM46S2g6lbxfZUxNhaR8E69e1rqPTyL5efbKO4TONjcbekDg5SN_dhY52-3BOQY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VcgAOvAoiUGAOXJDYZLP27trcopIqQNJKKJV6W_kx7oFoU7XJpeLHM95HqAAhbpbWs7I8tucbe-YbgHchDy7zJiShlDaRmTWJLr1ICj2mgqgc2zxmIy9OitmZ_HKen-_Bh10uDBE1wWc0jM3mLd-v3TZelY00u2ts0e7AXbb7Mm-ztX4x6-mmDnLkFEtEqlX_KJnq0fLbKbuCWTYU8RIlgt1bRqipqvLHUdzYl-NHsOhH1oaVfB9uN3bobn4jbfzfoT-Ghx3QxEm7Mp7AHtVP4cEt-sED-NES_mOsh7bCjmn1AhnG4jwGiOMn2uU24lEb047rgFNG3PzX_rNdEbJLy-J4auO1zvVHnNQ4bcgpeFRoao8Tby7jyYqTjsT8GZwdT5dHs6SrxpA4kZebREkZdJaWVpHJvaOysFrYcWkKLUgWRkbPzgUfvFfe0jhnbMJNZUVGyhRePIf9el3TC8CUp0JJx75a6aWjXInAqMoYJ7TPeJ4GMOrVU7mOqjxWzFhVjcuS6ooVWkWFVp1CB_B-J3HZ0nT8o-9B1M-uX6eaARz2K6Dq9vF1lTE6FpHyTr38u9RbuDdbLubV_PPJ11dwPxajb2O6D2F_c7Wl1wxZNvZNs1J_As9952U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Model+Learning+for+Large+Deformation+Control+of+Elastic+Deformable+Linear+Objects%3A+An+Efficient+and+Adaptive+Approach&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Yu%2C+Mingrui&rft.au=Lv%2C+Kangchen&rft.au=Zhong%2C+Hanzhong&rft.au=Song%2C+Shiji&rft.date=2023-02-01&rft.issn=1552-3098&rft.eissn=1941-0468&rft.volume=39&rft.issue=1&rft.spage=417&rft.epage=436&rft_id=info:doi/10.1109%2FTRO.2022.3200546&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TRO_2022_3200546
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon