Protecting lithium metal anodes in lithium–sulfur batteries: A review

Lithium–sulfur (Li–S) batteries are considered as one of the most promising next-generation energy storage devices because of their ultrahigh theoretical energy density beyond lithium-ion batteries. The cycling stability of Li metal anode largely determines the prospect of practical applications of...

Full description

Saved in:
Bibliographic Details
Published inEnergy material advances Vol. 4
Main Authors Bi, Chen-Xi, Hou, Li-Peng, Li, Zheng, Zhao, Meng, Zhang, Xue-Qiang, Li, Bo-Quan, Zhang, Qiang, Huang, Jia-Qi
Format Journal Article
LanguageEnglish
Published American Association for the Advancement of Science (AAAS) 2023
Online AccessGet full text

Cover

Loading…
Abstract Lithium–sulfur (Li–S) batteries are considered as one of the most promising next-generation energy storage devices because of their ultrahigh theoretical energy density beyond lithium-ion batteries. The cycling stability of Li metal anode largely determines the prospect of practical applications of Li–S batteries. This review systematically summarizes the current advances of Li anode protection in Li–S batteries regarding both fundamental understanding and regulation methodology. First, the main challenges of Li metal anode instability are introduced with emphasis on the influence from lithium polysulfides. Then, a timeline with 4 stages is presented to afford an overview of the developing history of this field. Following that, 3 Li anode protection strategies are discussed in detail in aspects of guiding uniform Li plating/stripping, reducing polysulfide concentration in anolyte, and reducing polysulfide reaction activity with Li metal. Finally, 3 viewpoints are proposed to inspire future research and development of advanced Li metal anode for practical Li–S batteries.
AbstractList Lithium–sulfur (Li–S) batteries are considered as one of the most promising next-generation energy storage devices because of their ultrahigh theoretical energy density beyond lithium-ion batteries. The cycling stability of Li metal anode largely determines the prospect of practical applications of Li–S batteries. This review systematically summarizes the current advances of Li anode protection in Li–S batteries regarding both fundamental understanding and regulation methodology. First, the main challenges of Li metal anode instability are introduced with emphasis on the influence from lithium polysulfides. Then, a timeline with 4 stages is presented to afford an overview of the developing history of this field. Following that, 3 Li anode protection strategies are discussed in detail in aspects of guiding uniform Li plating/stripping, reducing polysulfide concentration in anolyte, and reducing polysulfide reaction activity with Li metal. Finally, 3 viewpoints are proposed to inspire future research and development of advanced Li metal anode for practical Li–S batteries.
Author Zhao, Meng
Zhang, Xue-Qiang
Li, Zheng
Hou, Li-Peng
Li, Bo-Quan
Zhang, Qiang
Huang, Jia-Qi
Bi, Chen-Xi
Author_xml – sequence: 1
  givenname: Chen-Xi
  surname: Bi
  fullname: Bi, Chen-Xi
  organization: School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China., Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
– sequence: 2
  givenname: Li-Peng
  surname: Hou
  fullname: Hou, Li-Peng
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
– sequence: 3
  givenname: Zheng
  surname: Li
  fullname: Li, Zheng
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
– sequence: 4
  givenname: Meng
  surname: Zhao
  fullname: Zhao, Meng
  organization: School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China., Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
– sequence: 5
  givenname: Xue-Qiang
  surname: Zhang
  fullname: Zhang, Xue-Qiang
  organization: School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China., Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
– sequence: 6
  givenname: Bo-Quan
  surname: Li
  fullname: Li, Bo-Quan
  organization: School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China., Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
– sequence: 7
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
– sequence: 8
  givenname: Jia-Qi
  surname: Huang
  fullname: Huang, Jia-Qi
  organization: School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China., Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
BookMark eNp9kDFOwzAYhS1UJErpBZhygRTHTmKXraqgVKoEA8yWY_8OrpIY2W5RN-7ADTkJoQVUMTC9pyd93_DO0aBzHSB0meEJzTNKr6ADX-9aGaXeTjDO8AkaknJKUlbmeHDUz9A4hDXGmHBWMEqHaPHgXQQVbVcnjY3PdtMmLUTZJLJzGkJiu5_94-09bBqz8UklYwRvIVwns8TD1sLrBTo1sgkw_s4Rerq9eZzfpav7xXI-W6WKFiymDCtJS46Z0lRpmRucK8q4UkRr0JQTw7nRjOcFqQgxfaWKlEZnBFjJdEVHaHnwaifX4sXbVvqdcNKK_eB8LaSPVjUgWIlBTXMNjGR576gKqIqyUGSqMDVQ9C5ycCnvQvBgfn0ZFvtnxfGz4uvZHuJ_IGWjjNZ10Uvb_Id-Ai_Oh7Q
CitedBy_id crossref_primary_10_1016_j_nanoen_2024_110234
crossref_primary_10_1039_D3EE02020G
crossref_primary_10_1016_j_est_2024_110938
crossref_primary_10_1002_adfm_202409812
crossref_primary_10_1002_ange_202318785
crossref_primary_10_1002_ange_202400343
crossref_primary_10_1002_batt_202400544
crossref_primary_10_1016_j_ensm_2023_102914
crossref_primary_10_1021_acsenergylett_4c03177
crossref_primary_10_1002_adfm_202306933
crossref_primary_10_1007_s11426_024_2275_2
crossref_primary_10_1016_j_jechem_2024_02_002
crossref_primary_10_1002_ange_202312172
crossref_primary_10_1016_j_ensm_2024_103449
crossref_primary_10_1007_s12598_024_02631_x
crossref_primary_10_1016_j_heliyon_2024_e27181
crossref_primary_10_1016_j_jechem_2025_01_030
crossref_primary_10_1016_j_partic_2024_01_011
crossref_primary_10_1002_asia_202400919
crossref_primary_10_1007_s10853_025_10622_1
crossref_primary_10_1039_D4NR00571F
crossref_primary_10_1016_j_cclet_2024_109500
crossref_primary_10_1016_j_est_2024_113412
crossref_primary_10_1021_acsapm_4c00572
crossref_primary_10_1007_s12598_024_02931_2
crossref_primary_10_1016_j_cej_2024_151949
crossref_primary_10_1021_acsami_3c18071
crossref_primary_10_1002_ange_202406277
crossref_primary_10_1039_D4TA03930K
crossref_primary_10_1002_anie_202318785
crossref_primary_10_1016_S1872_5805_23_60744_9
crossref_primary_10_1002_aenm_202300611
crossref_primary_10_1002_aenm_202402609
crossref_primary_10_1002_metm_6
crossref_primary_10_1007_s10008_023_05709_1
crossref_primary_10_1016_j_jechem_2024_06_026
crossref_primary_10_1016_j_nxmate_2024_100395
crossref_primary_10_1016_j_cclet_2023_108570
crossref_primary_10_1002_anie_202406277
crossref_primary_10_1002_sus2_191
crossref_primary_10_1021_acsaem_4c00667
crossref_primary_10_1002_anie_202312172
crossref_primary_10_1021_acsenergylett_3c01395
crossref_primary_10_1016_j_jpowsour_2024_235950
crossref_primary_10_1002_adfm_202304568
crossref_primary_10_1002_cey2_423
crossref_primary_10_3390_nano15010035
crossref_primary_10_1002_aenm_202301770
crossref_primary_10_1016_j_cej_2024_149610
crossref_primary_10_1021_acsaelm_4c00409
crossref_primary_10_3389_fbael_2024_1377192
crossref_primary_10_1080_15325008_2023_2239238
crossref_primary_10_1007_s40820_023_01120_7
crossref_primary_10_1016_j_cej_2024_150719
crossref_primary_10_1021_accountsmr_4c00368
crossref_primary_10_1039_D4TA07994A
crossref_primary_10_1016_j_matt_2025_101996
crossref_primary_10_1016_j_rser_2025_115453
crossref_primary_10_1016_j_est_2024_114779
crossref_primary_10_1016_j_mser_2025_100954
crossref_primary_10_1039_D4TA08756A
crossref_primary_10_1016_j_compositesb_2023_110821
crossref_primary_10_1016_j_mser_2025_100955
crossref_primary_10_1016_j_mtphys_2024_101453
crossref_primary_10_1016_j_coelec_2023_101285
crossref_primary_10_1016_j_ceja_2024_100657
crossref_primary_10_34133_energymatadv_0084
crossref_primary_10_1039_D4NJ04982A
crossref_primary_10_1016_j_jallcom_2024_173482
crossref_primary_10_1016_j_jechem_2024_01_072
crossref_primary_10_1002_anie_202414770
crossref_primary_10_1016_j_matt_2023_03_032
crossref_primary_10_1016_j_jcis_2024_02_164
crossref_primary_10_1016_j_apenergy_2024_125162
crossref_primary_10_1016_j_partic_2023_04_005
crossref_primary_10_1039_D4MH00674G
crossref_primary_10_1002_anie_202400343
crossref_primary_10_34133_energymatadv_0130
crossref_primary_10_1021_acs_chemrev_3c00919
crossref_primary_10_1002_adma_202411197
crossref_primary_10_1021_acsami_4c09967
crossref_primary_10_1016_j_jechem_2023_05_020
crossref_primary_10_1016_j_ensm_2024_103232
crossref_primary_10_1016_j_ensm_2025_104046
crossref_primary_10_1039_D3QM00491K
crossref_primary_10_1007_s11051_024_05930_7
crossref_primary_10_1021_jacs_3c05715
crossref_primary_10_1016_j_cej_2024_153472
crossref_primary_10_1021_acssuschemeng_3c03195
crossref_primary_10_1016_j_jpowsour_2024_234315
crossref_primary_10_34133_energymatadv_0186
crossref_primary_10_1016_j_jechem_2024_10_050
crossref_primary_10_1016_j_jechem_2023_07_003
crossref_primary_10_1002_adfm_202410742
crossref_primary_10_1007_s40820_024_01573_4
crossref_primary_10_1007_s40820_023_01300_5
crossref_primary_10_1002_cphc_202300693
crossref_primary_10_1002_aenm_202403733
crossref_primary_10_1021_acsaem_3c01606
crossref_primary_10_1002_adfm_202421858
crossref_primary_10_3866_PKU_WHXB202311030
crossref_primary_10_1016_j_apsusc_2024_161263
crossref_primary_10_1039_D4EB00034J
crossref_primary_10_1016_j_apenergy_2025_125720
crossref_primary_10_1016_j_jechem_2023_03_015
crossref_primary_10_1002_adfm_202401470
crossref_primary_10_1016_j_cej_2023_148020
crossref_primary_10_1002_adma_202302771
crossref_primary_10_1149_1945_7111_ad5b8c
crossref_primary_10_1002_ange_202414770
Cites_doi 10.1038/nnano.2016.32
10.1016/j.ensm.2015.09.008
10.1149/2.009401jes
10.1021/cm500575q
10.1038/nmat2460
10.1149/2.1441707jes
10.1038/s41467-017-00974-x
10.1021/acs.nanolett.5b04166
10.1016/0378-7753(83)87029-3
10.1002/aenm.201802833
10.1016/j.matt.2019.05.016
10.1002/anie.202000375
10.1039/C8EE01419A
10.1021/ja203983r
10.1002/aenm.201502459
10.1021/jp400153m
10.1149/1.1837858
10.1002/smll.201905585
10.1039/C2CC36986A
10.1149/2.0181501jes
10.1016/j.jpowsour.2012.06.100
10.1126/sciadv.abq3445
10.1002/adfm.201605989
10.1016/j.jechem.2021.12.024
10.1021/ja308170k
10.1002/aenm.201902254
10.1039/c0jm04225k
10.1002/anie.202003136
10.1039/C4CC05535G
10.1016/S0378-7753(03)00300-8
10.1016/j.joule.2022.07.003
10.1039/c3ta12634j
10.1016/j.jpowsour.2014.04.018
10.1038/s41586-019-1481-z
10.1149/2.005306eel
10.1016/j.jpowsour.2010.07.020
10.1021/acscentsci.6b00260
10.1039/C6EE01674J
10.1002/admi.201300115
10.1039/C6TA10204B
10.1038/ncomms4015
10.1002/admt.201600052
10.1149/2.002207jes
10.1038/srep08763
10.1002/adfm.201303296
10.1002/anie.201807367
10.1002/adma.201402569
10.1016/j.chempr.2017.01.003
10.1002/anie.202204776
10.1021/acscentsci.0c00449
10.1016/j.mtcomm.2021.102276
10.1039/b919877f
10.1039/c3ra41517a
10.1002/anie.202201406
10.1038/nnano.2017.129
10.1016/j.joule.2018.02.001
10.1038/srep14949
10.1016/j.ensm.2016.09.003
10.1002/adma.201801213
10.1149/1.2407783
10.1016/j.ensm.2018.06.022
10.1021/ac2032244
10.1002/adma.202003012
10.1016/j.tsf.2011.07.068
10.1039/C7EE01430A
10.1002/anie.202103470
10.1002/anie.201909339
10.1002/aenm.201903937
10.1021/nn507178a
10.1002/adfm.201808756
10.1021/jacs.7b05251
10.1002/aenm.202002654
10.1021/ja312241y
10.1149/2.006311jes
10.1038/ncomms2513
10.1021/acsenergylett.7b00164
10.1021/jz401763d
10.1021/acs.chemmater.7b03654
10.1002/adfm.201707536
10.1149/1.2133098
10.1038/nmat3191
10.1002/adma.201604219
10.1002/advs.202103910
10.1002/anie.201913540
10.1021/jp408037e
10.1021/nn2017167
10.1002/ente.202000700
10.1038/s41560-018-0214-0
10.1038/s41467-018-06879-7
10.1016/j.nanoen.2019.104373
10.1038/ncomms6682
10.1149/1.2096981
10.1038/s41565-018-0061-y
10.1038/srep12146
10.1002/smll.201702737
10.1038/s41467-019-12542-6
10.1021/acsnano.9b07121
10.1149/1.1806394
10.1002/aenm.201601392
10.1016/j.ensm.2021.08.012
10.1126/science.aam6014
10.1021/acsami.5b01412
10.1002/smll.201600809
10.1016/j.cej.2022.139348
10.1021/jp407158y
10.1002/adma.202100404
10.1002/adma.202201555
10.1038/ncomms8436
10.1016/j.mattod.2020.10.021
10.1002/aenm.201402290
10.1021/acs.nanolett.7b01020
10.1002/smll.201602539
10.1002/adma.201903955
10.1039/C4EE00372A
10.1021/acsami.6b03897
10.1002/anie.201904240
10.1016/j.matt.2020.04.011
10.1021/acs.chemrev.6b00504
10.1149/2.111308jes
10.1002/aenm.202103589
10.1002/aenm.201903645
10.1038/s41467-017-02808-2
10.1002/adma.201906357
10.1016/j.electacta.2012.03.081
10.1002/aenm.201400993
10.1039/C9TA06971B
10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P
10.1021/acs.chemrev.7b00115
10.1002/aenm.201501636
10.1002/aenm.202103291
10.1038/s41557-018-0203-8
10.1021/nn304037d
10.1039/c4cp00461b
10.1016/j.joule.2020.02.006
10.1016/j.jpowsour.2013.09.144
10.1002/smll.201905260
10.1021/acsaem.8b00317
10.1002/admt.201900806
10.1016/S1388-2481(02)00358-2
10.1039/D0EE01074J
10.1002/adma.202004128
10.1021/nn404601h
10.1002/adma.201602704
10.1039/D0TA06862D
10.1039/C5RA23635E
10.1016/j.trechm.2019.06.007
10.1016/j.jechem.2019.03.014
10.1002/adma.202205284
10.1002/adfm.201907343
10.1002/aenm.202003293
10.1038/s41560-021-00787-9
10.1038/s41467-020-20339-1
10.1002/aenm.201803774
10.1002/adma.201703891
10.1002/aenm.202000779
10.1002/smll.201800616
10.1021/acs.chemmater.7b00374
10.1002/anie.202101958
10.1002/adfm.201400845
10.1002/anie.201912701
10.1002/adfm.202107764
10.1021/acscentsci.7b00123
10.1149/1.2129079
10.1021/acsami.8b11890
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.34133/energymatadv.0010
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2692-7640
ExternalDocumentID oai_doaj_org_article_760ec94de72146fdb5eb565c29c03fe5
10_34133_energymatadv_0010
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
OK1
ID FETCH-LOGICAL-c357t-70ca36807cd3cda4f04c378cc2dded382f88fd78452b22ffd73c26fd12e767db3
IEDL.DBID DOA
ISSN 2692-7640
IngestDate Wed Aug 27 01:28:06 EDT 2025
Tue Jul 01 02:23:41 EDT 2025
Thu Apr 24 23:13:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-70ca36807cd3cda4f04c378cc2dded382f88fd78452b22ffd73c26fd12e767db3
OpenAccessLink https://doaj.org/article/760ec94de72146fdb5eb565c29c03fe5
ParticipantIDs doaj_primary_oai_doaj_org_article_760ec94de72146fdb5eb565c29c03fe5
crossref_primary_10_34133_energymatadv_0010
crossref_citationtrail_10_34133_energymatadv_0010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationTitle Energy material advances
PublicationYear 2023
Publisher American Association for the Advancement of Science (AAAS)
Publisher_xml – name: American Association for the Advancement of Science (AAAS)
References Zhao W (e_1_3_3_78_2) 2023; 453
Hou TZ (e_1_3_3_104_2) 2016; 12
Nanda S (e_1_3_3_173_2) 2021; 11
Qiao RM (e_1_3_3_172_2) 2014; 1
Chen H (e_1_3_3_100_2) 2020; 2
Zhang R (e_1_3_3_65_2) 2018; 2
Sun ML (e_1_3_3_39_2) 2018; 10
Zhang H (e_1_3_3_54_2) 2021; 27
Cha E (e_1_3_3_73_2) 2018; 13
Kang HS (e_1_3_3_45_2) 2016; 1
e_1_3_3_117_2
Xie J (e_1_3_3_89_2) 2022; 61
Zhang K (e_1_3_3_130_2) 2022; 32
Loaiza LC (e_1_3_3_156_2) 2020; 16
Hagen M (e_1_3_3_44_2) 2014; 264
Li W (e_1_3_3_123_2) 2014; 26
Yoshida K (e_1_3_3_42_2) 2011; 133
Hou LP (e_1_3_3_85_2) 2022; 68
Hou LP (e_1_3_3_47_2) 2022; 8
e_1_3_3_12_2
Yamin H (e_1_3_3_31_2) 1983; 9
Yuan Z (e_1_3_3_7_2) 2016; 16
Huang C (e_1_3_3_162_2) 2014; 5
e_1_3_3_174_2
Hagen M (e_1_3_3_43_2) 2014; 248
Hou LP (e_1_3_3_149_2) 2022; 34
Hou LP (e_1_3_3_87_2) 2022; 61
Su CC (e_1_3_3_135_2) 2019; 58
Peled E (e_1_3_3_33_2) 1989; 136
Lu DP (e_1_3_3_24_2) 2015; 5
Li XG (e_1_3_3_14_2) 2017; 8
Zhang XQ (e_1_3_3_88_2) 2017; 27
Jia WS (e_1_3_3_97_2) 2016; 8
e_1_3_3_9_2
Bi CX (e_1_3_3_68_2) 2022; 9
Babu G (e_1_3_3_109_2) 2015; 5
Hu Y (e_1_3_3_94_2) 2020; 68
Ding F (e_1_3_3_96_2) 2013; 135
Jin ZQ (e_1_3_3_127_2) 2013; 3
Su CC (e_1_3_3_46_2) 2018; 57
e_1_3_3_124_2
Wood KN (e_1_3_3_19_2) 2016; 2
Dokko K (e_1_3_3_147_2) 2013; 160
e_1_3_3_76_2
Jagannathan M (e_1_3_3_158_2) 2013; 160
Bai P (e_1_3_3_50_2) 2016; 9
Zhou TH (e_1_3_3_110_2) 2017; 10
e_1_3_3_38_2
Wu F (e_1_3_3_129_2) 2018; 15
Chang J (e_1_3_3_61_2) 2018; 9
Li WY (e_1_3_3_84_2) 2015; 6
Li S (e_1_3_3_128_2) 2021; 11
Peled E (e_1_3_3_17_2) 1997; 144
Yan K (e_1_3_3_64_2) 2016; 1
e_1_3_3_11_2
e_1_3_3_72_2
Wang AX (e_1_3_3_57_2) 2018; 30
e_1_3_3_154_2
Bonnick P (e_1_3_3_131_2) 2019; 7
Peled E (e_1_3_3_171_2) 2017; 164
e_1_3_3_60_2
Zhang L (e_1_3_3_83_2) 2018; 11
Rao BML (e_1_3_3_160_2) 1977; 124
Wang JL (e_1_3_3_8_2) 2002; 4
Liu YY (e_1_3_3_70_2) 2022; 12
Bruce PG (e_1_3_3_4_2) 2011; 11
Dey AN (e_1_3_3_151_2) 1971; 118
Han JW (e_1_3_3_53_2) 2018; 9
Ji X (e_1_3_3_6_2) 2009; 8
Park JW (e_1_3_3_143_2) 2013; 117
Helen M (e_1_3_3_118_2) 2015; 5
Lee YM (e_1_3_3_35_2) 2003; 119
Chung SH (e_1_3_3_122_2) 2014; 24
e_1_3_3_49_2
Lacey MJ (e_1_3_3_82_2) 2016; 6
Sun K (e_1_3_3_13_2) 2018; 1
e_1_3_3_142_2
e_1_3_3_169_2
Azimi N (e_1_3_3_91_2) 2015; 7
Ueno K (e_1_3_3_145_2) 2013; 117
Ma YW (e_1_3_3_10_2) 2015; 5
e_1_3_3_22_2
Drvarič Talian S (e_1_3_3_136_2) 2017; 29
Xu H (e_1_3_3_99_2) 2020; 32
e_1_3_3_71_2
e_1_3_3_79_2
Zhang SS (e_1_3_3_86_2) 2012; 159
Herbert EG (e_1_3_3_81_2) 2011; 520
Jin ZQ (e_1_3_3_125_2) 2012; 218
Moy D (e_1_3_3_37_2) 2015; 162
Luo D (e_1_3_3_93_2) 2021; 12
Cuisinier M (e_1_3_3_141_2) 2014; 7
Liu M (e_1_3_3_126_2) 2017; 13
Fan L (e_1_3_3_75_2) 2017; 5
Nandasiri MI (e_1_3_3_98_2) 2017; 29
Chen X (e_1_3_3_105_2) 2017; 2
e_1_3_3_18_2
Gao XJ (e_1_3_3_56_2) 2020; 10
Park CM (e_1_3_3_152_2) 2010; 39
Shin ES (e_1_3_3_138_2) 2013; 49
Ji B (e_1_3_3_159_2) 2017; 29
e_1_3_3_90_2
e_1_3_3_157_2
Talian SD (e_1_3_3_28_2) 2020; 167
Duan BC (e_1_3_3_41_2) 2013; 2
Han B (e_1_3_3_175_2) 2021; 33
Ye H (e_1_3_3_113_2) 2019; 13
e_1_3_3_111_2
e_1_3_3_134_2
e_1_3_3_176_2
e_1_3_3_52_2
Yuan Y (e_1_3_3_77_2) 2019; 37
Tokranov A (e_1_3_3_92_2) 2013; 161
Li YY (e_1_3_3_95_2) 2022; 92
Wang JL (e_1_3_3_32_2) 2002; 14
Xu R (e_1_3_3_69_2) 2019; 1
Wang JL (e_1_3_3_120_2) 2015; 27
Cuisinier M (e_1_3_3_5_2) 2013; 4
Lee CW (e_1_3_3_177_2) 2017; 3
e_1_3_3_107_2
Zhan YX (e_1_3_3_51_2) 2021; 9
He JR (e_1_3_3_66_2) 2020; 10
Zheng J (e_1_3_3_137_2) 2019; 9
Agostini M (e_1_3_3_101_2) 2020; 16
e_1_3_3_168_2
Kang N (e_1_3_3_67_2) 2019; 10
Kong LL (e_1_3_3_161_2) 2019; 29
e_1_3_3_103_2
Mandai T (e_1_3_3_146_2) 2014; 16
Yu XW (e_1_3_3_133_2) 2016; 6
e_1_3_3_21_2
e_1_3_3_74_2
Qie L (e_1_3_3_27_2) 2016; 6
Lin SX (e_1_3_3_62_2) 2018; 14
Zhang LL (e_1_3_3_108_2) 2019; 31
Wei JY (e_1_3_3_15_2) 2020; 32
Pang Q (e_1_3_3_140_2) 2018; 3
Feng K (e_1_3_3_150_2) 2018; 14
Zhao M (e_1_3_3_3_2) 2019; 59
Chen PY (e_1_3_3_165_2) 2021; 60
Nanda S (e_1_3_3_26_2) 2020; 13
Jin S (e_1_3_3_58_2) 2016; 28
Barchasz C (e_1_3_3_112_2) 2012; 84
e_1_3_3_36_2
e_1_3_3_59_2
Chen WJ (e_1_3_3_119_2) 2020; 59
Zhang M (e_1_3_3_55_2) 2020; 8
e_1_3_3_114_2
Qian JF (e_1_3_3_139_2) 2015; 6
e_1_3_3_170_2
Xia SX (e_1_3_3_164_2) 2020; 24
Zhao J (e_1_3_3_80_2) 2017; 139
Wang WW (e_1_3_3_16_2) 2019; 18
Shi P (e_1_3_3_48_2) 2020; 5
Liang X (e_1_3_3_106_2) 2016; 6
Zhan YX (e_1_3_3_63_2) 2022; 12
Lu ZY (e_1_3_3_163_2) 2020; 30
Liu H (e_1_3_3_25_2) 2019; 9
Mikhaylik YV (e_1_3_3_34_2) 2004; 151
Zheng S (e_1_3_3_115_2) 2013; 7
Rauh RD (e_1_3_3_30_2) 1979; 126
Park JW (e_1_3_3_144_2) 2013; 117
Wu F (e_1_3_3_132_2) 2020; 33
Zhang WJ (e_1_3_3_153_2) 2011; 196
Yan C (e_1_3_3_29_2) 2019; 1
Dörfler S (e_1_3_3_166_2) 2020; 4
Duan BC (e_1_3_3_116_2) 2013; 1
Liu N (e_1_3_3_40_2) 2011; 5
e_1_3_3_121_2
Zhang XQ (e_1_3_3_148_2) 2021; 60
Marom R (e_1_3_3_155_2) 2011; 21
Lv DP (e_1_3_3_167_2) 2015; 5
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_102_2
Fang C (e_1_3_3_23_2) 2019; 572
References_xml – ident: e_1_3_3_59_2
  doi: 10.1038/nnano.2016.32
– ident: e_1_3_3_121_2
  doi: 10.1016/j.ensm.2015.09.008
– volume: 161
  start-page: A58
  issue: 1
  year: 2013
  ident: e_1_3_3_92_2
  article-title: The origin of stress in the solid electrolyte interphase on carbon electrodes for Li ion batteries
  publication-title: J Electrochem Soc
  doi: 10.1149/2.009401jes
– volume: 26
  start-page: 3403
  issue: 11
  year: 2014
  ident: e_1_3_3_123_2
  article-title: V2O5 polysulfide anion barrier for long-lived Li–S batteries
  publication-title: Chem Mater
  doi: 10.1021/cm500575q
– volume: 8
  start-page: 500
  issue: 6
  year: 2009
  ident: e_1_3_3_6_2
  article-title: A highly ordered nanostructured carbon–sulphur cathode for lithium−sulphur batteries
  publication-title: Nat Mater
  doi: 10.1038/nmat2460
– volume: 164
  start-page: A1703
  issue: 7
  year: 2017
  ident: e_1_3_3_171_2
  article-title: Review-SEI: Past, present and future
  publication-title: J Electrochem Soc
  doi: 10.1149/2.1441707jes
– volume: 8
  start-page: 850
  issue: 1
  year: 2017
  ident: e_1_3_3_14_2
  article-title: Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium–sulfur batteries
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00974-x
– volume: 16
  start-page: 519
  issue: 1
  year: 2016
  ident: e_1_3_3_7_2
  article-title: Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.5b04166
– volume: 9
  start-page: 281
  issue: 3
  year: 1983
  ident: e_1_3_3_31_2
  article-title: Electrochemistry of a nonaqueous lithium/sulfur cell
  publication-title: J Power Sources
  doi: 10.1016/0378-7753(83)87029-3
– ident: e_1_3_3_49_2
  doi: 10.1002/aenm.201802833
– volume: 1
  start-page: 317
  issue: 2
  year: 2019
  ident: e_1_3_3_69_2
  article-title: Artificial interphases for highly stable lithium metal anode
  publication-title: Matter
  doi: 10.1016/j.matt.2019.05.016
– ident: e_1_3_3_71_2
  doi: 10.1002/anie.202000375
– ident: e_1_3_3_2_2
  doi: 10.1039/C8EE01419A
– volume: 133
  start-page: 13121
  issue: 33
  year: 2011
  ident: e_1_3_3_42_2
  article-title: Oxidative-stability enhancement and charge transport mechanism in glyme–lithium salt equimolar complexes
  publication-title: J Am Chem Soc
  doi: 10.1021/ja203983r
– volume: 8
  start-page: 1
  year: 2022
  ident: e_1_3_3_47_2
  article-title: An encapsulating lithium-polysulfide electrolyte for practical lithium–sulfur batteries
  publication-title: Chem
– volume: 6
  start-page: 1502459
  issue: 7
  year: 2016
  ident: e_1_3_3_27_2
  article-title: A high energy lithium–sulfur battery with ultrahigh-loading lithium polysulfide cathode and its failure mechanism
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201502459
– volume: 117
  start-page: 4431
  issue: 9
  year: 2013
  ident: e_1_3_3_143_2
  article-title: Solvent effect of room temperature ionic liquids on electrochemical reactions in lithium–sulfur batteries
  publication-title: J Phys Chem C
  doi: 10.1021/jp400153m
– volume: 144
  start-page: L208
  issue: 8
  year: 1997
  ident: e_1_3_3_17_2
  article-title: Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1837858
– volume: 16
  issue: 2
  year: 2020
  ident: e_1_3_3_101_2
  article-title: Designing highly conductive functional groups improving guest-host interactions in Li/S batteries
  publication-title: Small
  doi: 10.1002/smll.201905585
– volume: 49
  start-page: 2004
  issue: 20
  year: 2013
  ident: e_1_3_3_138_2
  article-title: Polysulfide dissolution control: The common ion effect
  publication-title: Chem Commun
  doi: 10.1039/C2CC36986A
– volume: 162
  start-page: A1
  issue: 1
  year: 2015
  ident: e_1_3_3_37_2
  article-title: Direct measurement of polysulfide shuttle current: A window into understanding the performance of lithium–sulfur cells
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0181501jes
– volume: 218
  start-page: 163
  year: 2012
  ident: e_1_3_3_125_2
  article-title: Application of lithiated Nafion ionomer film as functional separator for lithium–sulfur cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.06.100
– ident: e_1_3_3_154_2
  doi: 10.1126/sciadv.abq3445
– volume: 27
  start-page: 8
  issue: 10
  year: 2017
  ident: e_1_3_3_88_2
  article-title: Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201605989
– volume: 68
  start-page: 300
  year: 2022
  ident: e_1_3_3_85_2
  article-title: High-valence sulfur-containing species in solid electrolyte interphase stabilizes lithium metal anodes in lithium–sulfur batteries
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2021.12.024
– ident: e_1_3_3_117_2
  doi: 10.1021/ja308170k
– volume: 9
  start-page: 1902254
  issue: 44
  year: 2019
  ident: e_1_3_3_25_2
  article-title: Plating/stripping behavior of actual lithium metal anode
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201902254
– volume: 21
  start-page: 9938
  issue: 27
  year: 2011
  ident: e_1_3_3_155_2
  article-title: A review of advanced and practical lithium battery materials
  publication-title: J Mater Chem
  doi: 10.1039/c0jm04225k
– ident: e_1_3_3_111_2
  doi: 10.1002/anie.202003136
– ident: e_1_3_3_74_2
  doi: 10.1039/C4CC05535G
– volume: 119
  start-page: 964
  year: 2003
  ident: e_1_3_3_35_2
  article-title: Electrochemical performance of lithium/sulfur batteries with protected Li anodes
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(03)00300-8
– ident: e_1_3_3_18_2
  doi: 10.1016/j.joule.2022.07.003
– volume: 1
  start-page: 13261
  issue: 42
  year: 2013
  ident: e_1_3_3_116_2
  article-title: Carbyne polysulfide as a novel cathode material for lithium/sulfur batteries
  publication-title: J Mater Chem A
  doi: 10.1039/c3ta12634j
– volume: 264
  start-page: 30
  year: 2014
  ident: e_1_3_3_44_2
  article-title: Cell energy density and electrolyte/sulfur ratio in Li–S cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.04.018
– volume: 92
  year: 2022
  ident: e_1_3_3_95_2
  article-title: Eliminating anion depletion region and promoting Li+ solvation via anionphilic metal organic framework for dendrite-free lithium deposition
  publication-title: Nano Energy
– volume: 572
  start-page: 511
  issue: 7770
  year: 2019
  ident: e_1_3_3_23_2
  article-title: Quantifying inactive lithium in lithium metal batteries
  publication-title: Nature
  doi: 10.1038/s41586-019-1481-z
– volume: 2
  start-page: A47
  issue: 6
  year: 2013
  ident: e_1_3_3_41_2
  article-title: Li–B alloy as anode material for lithium/sulfur battery
  publication-title: ECS Electrochem Lett
  doi: 10.1149/2.005306eel
– volume: 196
  start-page: 13
  issue: 1
  year: 2011
  ident: e_1_3_3_153_2
  article-title: A review of the electrochemical performance of alloy anodes for lithium-ion batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2010.07.020
– volume: 2
  start-page: 790
  issue: 11
  year: 2016
  ident: e_1_3_3_19_2
  article-title: Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.6b00260
– volume: 9
  start-page: 3221
  issue: 10
  year: 2016
  ident: e_1_3_3_50_2
  article-title: Transition of lithium growth mechanisms in liquid electrolytes
  publication-title: Energy Environ Sci
  doi: 10.1039/C6EE01674J
– volume: 1
  start-page: 1300115
  issue: 3
  year: 2014
  ident: e_1_3_3_172_2
  article-title: Distinct solid-electrolyte-interphases on Sn (100) and (001) electrodes studied by soft X-ray spectroscopy
  publication-title: Adv Mater Interfaces
  doi: 10.1002/admi.201300115
– volume: 5
  start-page: 3483
  issue: 7
  year: 2017
  ident: e_1_3_3_75_2
  article-title: Regulating Li deposition at artificial solid electrolyte interphases
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA10204B
– volume: 5
  start-page: 3015
  year: 2014
  ident: e_1_3_3_162_2
  article-title: Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures
  publication-title: Nat Commun
  doi: 10.1038/ncomms4015
– volume: 1
  start-page: 1600052
  issue: 6
  year: 2016
  ident: e_1_3_3_45_2
  article-title: A scaled-up lithium (ion)–sulfur battery: Newly faced problems and solutions
  publication-title: Adv Mater Technol
  doi: 10.1002/admt.201600052
– volume: 159
  start-page: A920
  issue: 7
  year: 2012
  ident: e_1_3_3_86_2
  article-title: Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte
  publication-title: J Electrochem Soc
  doi: 10.1149/2.002207jes
– volume: 5
  start-page: 1
  issue: 1
  year: 2015
  ident: e_1_3_3_109_2
  article-title: Electrocatalysis of lithium polysulfides: Current collectors as electrodes in Li/S battery configuration
  publication-title: Sci Rep
  doi: 10.1038/srep08763
– ident: e_1_3_3_102_2
  doi: 10.1002/adfm.201303296
– volume: 57
  start-page: 12033
  issue: 37
  year: 2018
  ident: e_1_3_3_46_2
  article-title: The relationship between the relative solvating power of electrolytes and shuttling effect of lithium polysulfides in lithium–sulfur batteries
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201807367
– volume: 27
  start-page: 569
  issue: 3
  year: 2015
  ident: e_1_3_3_120_2
  article-title: Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries
  publication-title: Adv Mater
  doi: 10.1002/adma.201402569
– ident: e_1_3_3_79_2
  doi: 10.1016/j.chempr.2017.01.003
– volume: 61
  issue: 29
  year: 2022
  ident: e_1_3_3_89_2
  article-title: Fluorinating the solid electrolyte interphase by rational molecular design for practical lithium-metal batteries
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202204776
– ident: e_1_3_3_168_2
  doi: 10.1021/acscentsci.0c00449
– volume: 27
  year: 2021
  ident: e_1_3_3_54_2
  article-title: Effect of the defect densities of reduced graphene oxide network on the stability of lithium metal anodes
  publication-title: Mater Today Commun
  doi: 10.1016/j.mtcomm.2021.102276
– volume: 39
  start-page: 3115
  issue: 8
  year: 2010
  ident: e_1_3_3_152_2
  article-title: Li-alloy based anode materials for Li secondary batteries
  publication-title: Chem Soc Rev
  doi: 10.1039/b919877f
– volume: 3
  start-page: 8889
  issue: 23
  year: 2013
  ident: e_1_3_3_127_2
  article-title: Electrochemical performance of lithium/sulfur batteries using perfluorinated ionomer electrolyte with lithium sulfonyl dicyanomethide functional groups as functional separator
  publication-title: RSC Adv
  doi: 10.1039/c3ra41517a
– volume: 61
  issue: 20
  year: 2022
  ident: e_1_3_3_87_2
  article-title: Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202201406
– ident: e_1_3_3_157_2
  doi: 10.1038/nnano.2017.129
– volume: 2
  start-page: 764
  issue: 4
  year: 2018
  ident: e_1_3_3_65_2
  article-title: Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2018.02.001
– volume: 5
  start-page: 14949
  issue: 1
  year: 2015
  ident: e_1_3_3_10_2
  article-title: Lithium sulfur primary battery with super high energy density: Based on the cauliflower-like structured C/S cathode
  publication-title: Sci Rep
  doi: 10.1038/srep14949
– ident: e_1_3_3_11_2
  doi: 10.1016/j.ensm.2016.09.003
– ident: e_1_3_3_52_2
  doi: 10.1002/adma.201801213
– volume: 118
  start-page: 1547
  issue: 10
  year: 1971
  ident: e_1_3_3_151_2
  article-title: Electrochemical alloying of lithium in organic electrolytes
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2407783
– ident: e_1_3_3_76_2
  doi: 10.1016/j.ensm.2018.06.022
– volume: 84
  start-page: 3973
  issue: 9
  year: 2012
  ident: e_1_3_3_112_2
  article-title: Lithium/sulfur cell discharge mechanism: An original approach for intermediate species identification
  publication-title: Anal Chem
  doi: 10.1021/ac2032244
– volume: 32
  start-page: 2003012
  issue: 37
  year: 2020
  ident: e_1_3_3_15_2
  article-title: Shielding polysulfide intermediates by an organosulfur-containing solid electrolyte interphase on the lithium anode in lithium–sulfur batteries
  publication-title: Adv Mater
  doi: 10.1002/adma.202003012
– volume: 520
  start-page: 413
  issue: 1
  year: 2011
  ident: e_1_3_3_81_2
  article-title: Mechanical characterization of LiPON films using nanoindentation
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2011.07.068
– volume: 10
  start-page: 1694
  issue: 7
  year: 2017
  ident: e_1_3_3_110_2
  article-title: Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries
  publication-title: Energy Environ Sci
  doi: 10.1039/C7EE01430A
– volume: 60
  start-page: 15503
  issue: 28
  year: 2021
  ident: e_1_3_3_148_2
  article-title: Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium–sulfur batteries
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202103470
– volume: 59
  start-page: 12636
  issue: 31
  year: 2019
  ident: e_1_3_3_3_2
  article-title: Lithium–sulfur batteries under lean electrolyte conditions: Challenges and opportunities
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201909339
– volume: 11
  start-page: 24
  year: 2018
  ident: e_1_3_3_83_2
  article-title: The synergetic interaction between LiNO3 and lithium polysulfides for suppressing shuttle effect of lithium–sulfur batteries
  publication-title: Energy Stor Mater
– ident: e_1_3_3_90_2
  doi: 10.1002/aenm.201903937
– ident: e_1_3_3_124_2
  doi: 10.1021/nn507178a
– volume: 29
  start-page: 1808756
  issue: 13
  year: 2019
  ident: e_1_3_3_161_2
  article-title: Lithium–magnesium alloy as a stable anode for lithium–sulfur battery
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201808756
– volume: 139
  start-page: 11550
  issue: 33
  year: 2017
  ident: e_1_3_3_80_2
  article-title: Surface fluorination of reactive battery anode materials for enhanced stability
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.7b05251
– volume: 10
  start-page: 2002654
  issue: 41
  year: 2020
  ident: e_1_3_3_66_2
  article-title: 3D CoSe@C aerogel as a host for dendrite-free lithium-metal anode and efficient sulfur cathode in Li–S full cells
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202002654
– volume: 135
  start-page: 4450
  issue: 11
  year: 2013
  ident: e_1_3_3_96_2
  article-title: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism
  publication-title: J Am Chem Soc
  doi: 10.1021/ja312241y
– volume: 160
  start-page: A1922
  issue: 10
  year: 2013
  ident: e_1_3_3_158_2
  article-title: Electrochemical charge/discharge behavior and phase transitions during cell cycling of Li(Mg) alloy anodes for high capacity Li ion batteries
  publication-title: J Electrochem Soc
  doi: 10.1149/2.006311jes
– volume: 10
  start-page: 2903753
  issue: 7
  year: 2020
  ident: e_1_3_3_56_2
  article-title: 3D vertically aligned Li metal anodes with ultrahigh cycling currents and capacities of 10 mA cm−2/20 mAh cm−2 realized by selective nucleation within microchannel walls
  publication-title: Adv Energy Mater
– ident: e_1_3_3_12_2
  doi: 10.1038/ncomms2513
– volume: 2
  start-page: 795
  issue: 4
  year: 2017
  ident: e_1_3_3_105_2
  article-title: An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S– Or Li–binding on first-row transition-metal sulfides?
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.7b00164
– volume: 4
  start-page: 3227
  issue: 19
  year: 2013
  ident: e_1_3_3_5_2
  article-title: Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy
  publication-title: J Phys Chem Lett
  doi: 10.1021/jz401763d
– ident: e_1_3_3_36_2
– volume: 29
  start-page: 10037
  issue: 23
  year: 2017
  ident: e_1_3_3_136_2
  article-title: Fluorinated ether based electrolyte for high-energy lithium–sulfur batteries: Li+ solvation role behind reduced polysulfide solubility
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.7b03654
– ident: e_1_3_3_9_2
  doi: 10.1002/adfm.201707536
– volume: 167
  issue: 8
  year: 2020
  ident: e_1_3_3_28_2
  article-title: Electrochemical kinetics study of interaction between Li metal and polysulfides
  publication-title: J Electrochem Soc
– volume: 124
  start-page: 1490
  issue: 10
  year: 1977
  ident: e_1_3_3_160_2
  article-title: Lithium–aluminum electrode
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2133098
– volume: 11
  start-page: 19
  issue: 1
  year: 2011
  ident: e_1_3_3_4_2
  article-title: Li−O2 and Li−S batteries with high energy storage
  publication-title: Nat Mater
  doi: 10.1038/nmat3191
– volume: 29
  start-page: 1604219
  issue: 7
  year: 2017
  ident: e_1_3_3_159_2
  article-title: A novel and generalized lithium-ion-battery configuration utilizing al foil as both anode and current collector for enhanced energy density
  publication-title: Adv Mater
  doi: 10.1002/adma.201604219
– volume: 9
  start-page: 2103910
  issue: 2
  year: 2022
  ident: e_1_3_3_68_2
  article-title: Anode material options toward 500 Wh kg−1 lithium–sulfur batteries
  publication-title: Adv Sci
  doi: 10.1002/advs.202103910
– ident: e_1_3_3_114_2
  doi: 10.1002/anie.201913540
– volume: 117
  start-page: 20531
  issue: 40
  year: 2013
  ident: e_1_3_3_144_2
  article-title: Ionic liquid electrolytes for lithium–sulfur batteries
  publication-title: J Phys Chem C
  doi: 10.1021/jp408037e
– volume: 5
  start-page: 6487
  issue: 8
  year: 2011
  ident: e_1_3_3_40_2
  article-title: Prelithiated silicon nanowires as an anode for lithium ion batteries
  publication-title: ACS Nano
  doi: 10.1021/nn2017167
– volume: 9
  start-page: 2000700
  issue: 2
  year: 2021
  ident: e_1_3_3_51_2
  article-title: The insights of lithium metal plating/stripping in porous hosts: Progress and perspectives
  publication-title: Energy Technol
  doi: 10.1002/ente.202000700
– volume: 3
  start-page: 783
  issue: 9
  year: 2018
  ident: e_1_3_3_140_2
  article-title: Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries
  publication-title: Nat Energy
  doi: 10.1038/s41560-018-0214-0
– volume: 9
  start-page: 4480
  issue: 1
  year: 2018
  ident: e_1_3_3_61_2
  article-title: Flexible and stable high-energy lithium–sulfur full batteries with only 100% oversized lithium
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-06879-7
– volume: 68
  year: 2020
  ident: e_1_3_3_94_2
  article-title: Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium–sulfur battery
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104373
– ident: e_1_3_3_107_2
  doi: 10.1038/ncomms6682
– volume: 136
  start-page: 1621
  issue: 6
  year: 1989
  ident: e_1_3_3_33_2
  article-title: Lithium–sulfur battery—Evaluation of dioxolane-based electrolytes
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2096981
– volume: 13
  start-page: 337
  issue: 4
  year: 2018
  ident: e_1_3_3_73_2
  article-title: 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries
  publication-title: Nat Nanotechnol
  doi: 10.1038/s41565-018-0061-y
– volume: 5
  start-page: 12146
  year: 2015
  ident: e_1_3_3_118_2
  article-title: Single step transformation of Sulphur to Li2S2/Li2S in Li–S batteries
  publication-title: Sci Rep
  doi: 10.1038/srep12146
– volume: 14
  start-page: 1702737
  issue: 8
  year: 2018
  ident: e_1_3_3_150_2
  article-title: Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications
  publication-title: Small
  doi: 10.1002/smll.201702737
– volume: 10
  start-page: 4597
  issue: 1
  year: 2019
  ident: e_1_3_3_67_2
  article-title: Cathode porosity is a missing key parameter to optimize lithium−sulfur battery energy density
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12542-6
– volume: 13
  start-page: 14208
  issue: 12
  year: 2019
  ident: e_1_3_3_113_2
  article-title: Stepwise electrocatalysis as a strategy against polysulfide shuttling in Li–S batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07121
– volume: 151
  start-page: A1969
  issue: 11
  year: 2004
  ident: e_1_3_3_34_2
  article-title: Polysulfide shuttle study in the Li/S battery system
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1806394
– volume: 6
  start-page: 1601392
  issue: 24
  year: 2016
  ident: e_1_3_3_133_2
  article-title: Polysulfide-shuttle control in lithium-sulfur batteries with a chemically/electrochemically compatible NaSICON-type solid electrolyte
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201601392
– ident: e_1_3_3_176_2
  doi: 10.1016/j.ensm.2021.08.012
– ident: e_1_3_3_174_2
  doi: 10.1126/science.aam6014
– volume: 7
  start-page: 9169
  issue: 17
  year: 2015
  ident: e_1_3_3_91_2
  article-title: Understanding the effect of a fluorinated ether on the performance of lithium–sulfur batteries
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b01412
– volume: 12
  start-page: 3283
  issue: 24
  year: 2016
  ident: e_1_3_3_104_2
  article-title: Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium–sulfur batteries
  publication-title: Small
  doi: 10.1002/smll.201600809
– volume: 453
  year: 2023
  ident: e_1_3_3_78_2
  article-title: Moisture-assistant chlorinated separator with dual-protective interface for ultralong-life and high-rate lithium metal batteries
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.139348
– volume: 117
  start-page: 20509
  issue: 40
  year: 2013
  ident: e_1_3_3_145_2
  article-title: Anionic effects on solvate ionic liquid electrolytes in rechargeable lithium–sulfur batteries
  publication-title: J Phys Chem C
  doi: 10.1021/jp407158y
– volume: 33
  start-page: 2100404
  issue: 22
  year: 2021
  ident: e_1_3_3_175_2
  article-title: Poor stability of Li2CO3 in the solid electrolyte interphase of a lithium-metal anode revealed by cryo-electron microscopy
  publication-title: Adv Mater
  doi: 10.1002/adma.202100404
– ident: e_1_3_3_169_2
  doi: 10.1002/adma.202201555
– volume: 6
  start-page: 7436
  issue: 1
  year: 2015
  ident: e_1_3_3_84_2
  article-title: The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
  publication-title: Nat Commun
  doi: 10.1038/ncomms8436
– ident: e_1_3_3_134_2
  doi: 10.1016/j.mattod.2020.10.021
– volume: 5
  start-page: 1402290
  issue: 16
  year: 2015
  ident: e_1_3_3_167_2
  article-title: High energy density lithium–sulfur batteries: Challenges of thick sulfur cathodes
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201402290
– ident: e_1_3_3_60_2
  doi: 10.1021/acs.nanolett.7b01020
– volume: 13
  start-page: 1602539
  issue: 12
  year: 2017
  ident: e_1_3_3_126_2
  article-title: Suppressing self-discharge and shuttle effect of lithium–sulfur batteries with V2O5-decorated carbon nanofiber interlayer
  publication-title: Small
  doi: 10.1002/smll.201602539
– volume: 1
  start-page: 1
  issue: 3
  year: 2016
  ident: e_1_3_3_64_2
  article-title: Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
  publication-title: Nat Energy
– volume: 31
  start-page: 1903955
  issue: 40
  year: 2019
  ident: e_1_3_3_108_2
  article-title: Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium–sulfur batteries
  publication-title: Adv Mater
  doi: 10.1002/adma.201903955
– volume: 7
  start-page: 2697
  issue: 8
  year: 2014
  ident: e_1_3_3_141_2
  article-title: Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries
  publication-title: Energy Environ Sci
  doi: 10.1039/C4EE00372A
– volume: 8
  start-page: 15399
  issue: 24
  year: 2016
  ident: e_1_3_3_97_2
  article-title: Extremely accessible potassium nitrate (KNO3) as the highly efficient electrolyte additive in lithium battery
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b03897
– volume: 58
  start-page: 10591
  issue: 31
  year: 2019
  ident: e_1_3_3_135_2
  article-title: A selection rule for hydrofluoroether electrolyte cosolvent: Establishing a linear free-energy relationship in lithium–sulfur batteries
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201904240
– volume: 2
  start-page: 1605
  issue: 6
  year: 2020
  ident: e_1_3_3_100_2
  article-title: Electrode design with integration of high tortuosity and sulfur-philicity for high-performance lithium–sulfur battery
  publication-title: Matter
  doi: 10.1016/j.matt.2020.04.011
– ident: e_1_3_3_142_2
  doi: 10.1021/acs.chemrev.6b00504
– volume: 160
  start-page: A1304
  issue: 8
  year: 2013
  ident: e_1_3_3_147_2
  article-title: Solvate ionic liquid electrolyte for Li–S batteries
  publication-title: J Electrochem Soc
  doi: 10.1149/2.111308jes
– volume: 33
  start-page: 26
  year: 2020
  ident: e_1_3_3_132_2
  article-title: Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects
  publication-title: Energy Stor Mater
– volume: 12
  start-page: 2103589
  issue: 9
  year: 2022
  ident: e_1_3_3_70_2
  article-title: Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202103589
– ident: e_1_3_3_72_2
  doi: 10.1002/aenm.201903645
– volume: 9
  start-page: 402
  issue: 1
  year: 2018
  ident: e_1_3_3_53_2
  article-title: Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02808-2
– volume: 32
  issue: 7
  year: 2020
  ident: e_1_3_3_99_2
  article-title: Integrating conductivity, immobility, and catalytic ability into high-N carbon/graphene sheets as an effective sulfur host
  publication-title: Adv Mater
  doi: 10.1002/adma.201906357
– ident: e_1_3_3_38_2
  doi: 10.1016/j.electacta.2012.03.081
– volume: 5
  start-page: 1400993
  issue: 3
  year: 2015
  ident: e_1_3_3_24_2
  article-title: Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201400993
– volume: 15
  start-page: 148
  year: 2018
  ident: e_1_3_3_129_2
  article-title: Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes
  publication-title: Energy Stor Mater
– volume: 7
  start-page: 24173
  issue: 42
  year: 2019
  ident: e_1_3_3_131_2
  article-title: A high performance all solid state lithium sulfur battery with lithium thiophosphate solid electrolyte
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA06971B
– volume: 6
  start-page: 1
  issue: 1
  year: 2015
  ident: e_1_3_3_139_2
  article-title: High rate and stable cycling of lithium metal anode
  publication-title: Nat Commun
– volume: 14
  start-page: 963
  issue: 13
  year: 2002
  ident: e_1_3_3_32_2
  article-title: A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries
  publication-title: Adv Mater
  doi: 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P
– volume: 24
  start-page: 329
  year: 2020
  ident: e_1_3_3_164_2
  article-title: Stabilized lithium metal anode by an efficient coating for high-performance Li–S batteries
  publication-title: Energy Stor Mater
– ident: e_1_3_3_22_2
  doi: 10.1021/acs.chemrev.7b00115
– volume: 6
  start-page: 1501636
  issue: 6
  year: 2016
  ident: e_1_3_3_106_2
  article-title: Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: The goldilocks principle
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201501636
– volume: 12
  start-page: 2103291
  issue: 2
  year: 2022
  ident: e_1_3_3_63_2
  article-title: Failure mechanism of lithiophilic sites in composite lithium metal anode under practical conditions
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202103291
– ident: e_1_3_3_21_2
  doi: 10.1038/s41557-018-0203-8
– ident: e_1_3_3_103_2
  doi: 10.1021/nn304037d
– volume: 16
  start-page: 8761
  issue: 19
  year: 2014
  ident: e_1_3_3_146_2
  article-title: Criteria for solvate ionic liquids
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c4cp00461b
– volume: 4
  start-page: 539
  issue: 3
  year: 2020
  ident: e_1_3_3_166_2
  article-title: Challenges and key parameters of lithium–sulfur batteries on pouch cell level
  publication-title: Joule
  doi: 10.1016/j.joule.2020.02.006
– volume: 248
  start-page: 1058
  year: 2014
  ident: e_1_3_3_43_2
  article-title: Studies on preventing Li dendrite formation in Li–S batteries by using pre-lithiated Si microwire anodes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.09.144
– volume: 16
  issue: 5
  year: 2020
  ident: e_1_3_3_156_2
  article-title: Si and Ge-based anode materials for Li-, Na-, and K-ion batteries: A perspective from structure to electrochemical mechanism
  publication-title: Small
  doi: 10.1002/smll.201905260
– volume: 1
  start-page: 2608
  issue: 6
  year: 2018
  ident: e_1_3_3_13_2
  article-title: Electrolyte with low polysulfide solubility for Li–S batteries
  publication-title: ACS Appl Energy Mater
  doi: 10.1021/acsaem.8b00317
– volume: 5
  start-page: 1900806
  issue: 1
  year: 2020
  ident: e_1_3_3_48_2
  article-title: A review of composite lithium metal anode for practical applications
  publication-title: Adv Mater Technol
  doi: 10.1002/admt.201900806
– volume: 4
  start-page: 499
  issue: 6
  year: 2002
  ident: e_1_3_3_8_2
  article-title: Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte
  publication-title: Electrochem Commun
  doi: 10.1016/S1388-2481(02)00358-2
– volume: 13
  start-page: 2501
  issue: 8
  year: 2020
  ident: e_1_3_3_26_2
  article-title: Lithium degradation in lithium–sulfur batteries: Insights into inventory depletion and interphasial evolution with cycling
  publication-title: Energy Environ Sci
  doi: 10.1039/D0EE01074J
– ident: e_1_3_3_170_2
  doi: 10.1002/adma.202004128
– volume: 7
  start-page: 10995
  issue: 12
  year: 2013
  ident: e_1_3_3_115_2
  article-title: In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries
  publication-title: ACS Nano
  doi: 10.1021/nn404601h
– volume: 28
  start-page: 9094
  issue: 41
  year: 2016
  ident: e_1_3_3_58_2
  article-title: Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li–S batteries
  publication-title: Adv Mater
  doi: 10.1002/adma.201602704
– volume: 8
  start-page: 18987
  issue: 36
  year: 2020
  ident: e_1_3_3_55_2
  article-title: Integrating conductivity and active sites: Fe/Fe3C@GNC as an trapping-catalyst interlayer and dendrite-free lithium host for the lithium–sulfur cell with outstanding rate performance
  publication-title: J Mater Chem A
  doi: 10.1039/D0TA06862D
– volume: 6
  start-page: 3632
  issue: 5
  year: 2016
  ident: e_1_3_3_82_2
  article-title: The Li–S battery: An investigation of redox shuttle and self-discharge behaviour with LiNO3-containing electrolytes
  publication-title: RSC Adv
  doi: 10.1039/C5RA23635E
– volume: 1
  start-page: 693
  issue: 7
  year: 2019
  ident: e_1_3_3_29_2
  article-title: Lithium-anode protection in lithium–sulfur batteries
  publication-title: Trends Chem
  doi: 10.1016/j.trechm.2019.06.007
– volume: 37
  start-page: 197
  year: 2019
  ident: e_1_3_3_77_2
  article-title: Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2019.03.014
– volume: 34
  start-page: 2205284
  issue: 45
  year: 2022
  ident: e_1_3_3_149_2
  article-title: Weakening the solvating power of solvents to encapsulate lithium polysulfides enables long-cycling lithium–sulfur batteries
  publication-title: Adv Mater
  doi: 10.1002/adma.202205284
– volume: 30
  start-page: 1907343
  issue: 7
  year: 2020
  ident: e_1_3_3_163_2
  article-title: Constructing a high-strength solid electrolyte layer by in vivo alloying with aluminum for an ultrahigh-rate lithium metal anode
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201907343
– volume: 11
  start-page: 2003293
  issue: 11
  year: 2021
  ident: e_1_3_3_173_2
  article-title: Delineating the lithium–electrolyte interfacial chemistry and the dynamics of lithium deposition in lithium–sulfur batteries
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202003293
– ident: e_1_3_3_20_2
  doi: 10.1038/s41560-021-00787-9
– volume: 12
  start-page: 186
  issue: 1
  year: 2021
  ident: e_1_3_3_93_2
  article-title: Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-20339-1
– volume: 9
  start-page: 1803774
  issue: 16
  year: 2019
  ident: e_1_3_3_137_2
  article-title: High-fluorinated electrolytes for Li–S batteries
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201803774
– volume: 30
  start-page: 1703891
  issue: 1
  year: 2018
  ident: e_1_3_3_57_2
  article-title: Bending-tolerant anodes for lithium-metal batteries
  publication-title: Adv Mater
  doi: 10.1002/adma.201703891
– volume: 11
  start-page: 2000779
  issue: 2
  year: 2021
  ident: e_1_3_3_128_2
  article-title: Inhibition of polysulfide shuttles in Li–S batteries: Modified separators and solid-state electrolytes
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202000779
– volume: 14
  start-page: 1800616
  issue: 21
  year: 2018
  ident: e_1_3_3_62_2
  article-title: A host-configured lithium–sulfur cell built on 3D nickel photonic crystal with superior electrochemical performances
  publication-title: Small
  doi: 10.1002/smll.201800616
– volume: 29
  start-page: 4728
  issue: 11
  year: 2017
  ident: e_1_3_3_98_2
  article-title: In situ chemical imaging of solid-electrolyte interphase layer evolution in Li–S batteries
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.7b00374
– volume: 60
  start-page: 18031
  issue: 33
  year: 2021
  ident: e_1_3_3_165_2
  article-title: Selective permeable lithium-ion channels on lithium metal for practical lithium–sulfur pouch cells
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202101958
– volume: 18
  start-page: 414
  year: 2019
  ident: e_1_3_3_16_2
  article-title: Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium–sulfur batteries
  publication-title: Energy Stor Mater
– volume: 24
  start-page: 5299
  issue: 33
  year: 2014
  ident: e_1_3_3_122_2
  article-title: Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium–sulfur batteries
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201400845
– volume: 59
  start-page: 10732
  issue: 27
  year: 2020
  ident: e_1_3_3_119_2
  article-title: Electrolyte regulation towards stable lithium-metal anodes in lithium–sulfur batteries with sulfurized polyacrylonitrile cathodes
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201912701
– volume: 32
  start-page: 2107764
  issue: 5
  year: 2022
  ident: e_1_3_3_130_2
  article-title: An ion-dipole-reinforced polyether electrolyte with ion-solvation cages enabling high–voltage-tolerant and ion-conductive solid-state lithium metal batteries
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202107764
– volume: 3
  start-page: 605
  issue: 6
  year: 2017
  ident: e_1_3_3_177_2
  article-title: Directing the lithium–sulfur reaction pathway via sparingly solvating electrolytes for high energy density batteries
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.7b00123
– volume: 126
  start-page: 523
  issue: 4
  year: 1979
  ident: e_1_3_3_30_2
  article-title: A lithium/dissolved sulfur battery with an organic electrolyte
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2129079
– volume: 10
  start-page: 35175
  issue: 41
  year: 2018
  ident: e_1_3_3_39_2
  article-title: Assessment on the self-discharge behavior of lithium–sulfur batteries with LiNO3-possessing electrolytes
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b11890
SSID ssj0002875733
Score 2.560808
Snippet Lithium–sulfur (Li–S) batteries are considered as one of the most promising next-generation energy storage devices because of their ultrahigh theoretical...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
Title Protecting lithium metal anodes in lithium–sulfur batteries: A review
URI https://doaj.org/article/760ec94de72146fdb5eb565c29c03fe5
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCGorqxEztsBVEqJBADlbpFfoqiNkVtw8x_4B_ySzg7aRUWWNgSy46iu5PvO5_vO4QuwEQSMBSfGmQkYi4xkdKsG8lUKJllnArtM7oPj-lgyO5HyajR6svfCavogSvBdXhKrM6Ysdy3oHZGJVYBCNFxpgl1NrCXgs9rBFOv4ciIe6K_qkrGb9S0Y0MtHcBAad59_oH88EQNwv7gWfo7aLuGhLhX_cou2rDFHtpqEAXuo7unik4BXjDg5pdxOcVTC7gZy2Jm7AKPi9X418fnopy4co5VoM6ESPgK93BVonKAhv3b55tBVLdAiDRN-DLiREuaCsK1odpI5gjTlAutY9iWDBWxE8IZLlgSqzh28Eh1DFLqxpan3Ch6iFrFrLBHCFMDztuSRFIpWaaVIM4aBehCZNzplLZRdyWOXNf84L5NxSSHOCGIMG-K0F-GI210uV7zVrFj_Dr72kt5PdMzW4cB0Hde6zv_S9_H__GRE7Tp28ZXRymnqLWcl_YMwMVSnQc7-gbIkdJX
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protecting+lithium+metal+anodes+in+lithium%E2%80%93sulfur+batteries%3A+A+review&rft.jtitle=Energy+material+advances&rft.au=Bi%2C+Chen-Xi&rft.au=Hou%2C+Li-Peng&rft.au=Li%2C+Zheng&rft.au=Zhao%2C+Meng&rft.date=2023&rft.issn=2692-7640&rft.eissn=2692-7640&rft.volume=4&rft_id=info:doi/10.34133%2Fenergymatadv.0010&rft.externalDBID=n%2Fa&rft.externalDocID=10_34133_energymatadv_0010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-7640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-7640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-7640&client=summon