Protecting lithium metal anodes in lithium–sulfur batteries: A review
Lithium–sulfur (Li–S) batteries are considered as one of the most promising next-generation energy storage devices because of their ultrahigh theoretical energy density beyond lithium-ion batteries. The cycling stability of Li metal anode largely determines the prospect of practical applications of...
Saved in:
Published in | Energy material advances Vol. 4 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Association for the Advancement of Science (AAAS)
2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium–sulfur (Li–S) batteries are considered as one of the most promising next-generation energy storage devices because of their ultrahigh theoretical energy density beyond lithium-ion batteries. The cycling stability of Li metal anode largely determines the prospect of practical applications of Li–S batteries. This review systematically summarizes the current advances of Li anode protection in Li–S batteries regarding both fundamental understanding and regulation methodology. First, the main challenges of Li metal anode instability are introduced with emphasis on the influence from lithium polysulfides. Then, a timeline with 4 stages is presented to afford an overview of the developing history of this field. Following that, 3 Li anode protection strategies are discussed in detail in aspects of guiding uniform Li plating/stripping, reducing polysulfide concentration in anolyte, and reducing polysulfide reaction activity with Li metal. Finally, 3 viewpoints are proposed to inspire future research and development of advanced Li metal anode for practical Li–S batteries. |
---|---|
AbstractList | Lithium–sulfur (Li–S) batteries are considered as one of the most promising next-generation energy storage devices because of their ultrahigh theoretical energy density beyond lithium-ion batteries. The cycling stability of Li metal anode largely determines the prospect of practical applications of Li–S batteries. This review systematically summarizes the current advances of Li anode protection in Li–S batteries regarding both fundamental understanding and regulation methodology. First, the main challenges of Li metal anode instability are introduced with emphasis on the influence from lithium polysulfides. Then, a timeline with 4 stages is presented to afford an overview of the developing history of this field. Following that, 3 Li anode protection strategies are discussed in detail in aspects of guiding uniform Li plating/stripping, reducing polysulfide concentration in anolyte, and reducing polysulfide reaction activity with Li metal. Finally, 3 viewpoints are proposed to inspire future research and development of advanced Li metal anode for practical Li–S batteries. |
Author | Zhao, Meng Zhang, Xue-Qiang Li, Zheng Hou, Li-Peng Li, Bo-Quan Zhang, Qiang Huang, Jia-Qi Bi, Chen-Xi |
Author_xml | – sequence: 1 givenname: Chen-Xi surname: Bi fullname: Bi, Chen-Xi organization: School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China., Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China – sequence: 2 givenname: Li-Peng surname: Hou fullname: Hou, Li-Peng organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China – sequence: 3 givenname: Zheng surname: Li fullname: Li, Zheng organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China – sequence: 4 givenname: Meng surname: Zhao fullname: Zhao, Meng organization: School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China., Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China – sequence: 5 givenname: Xue-Qiang surname: Zhang fullname: Zhang, Xue-Qiang organization: School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China., Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China – sequence: 6 givenname: Bo-Quan surname: Li fullname: Li, Bo-Quan organization: School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China., Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China – sequence: 7 givenname: Qiang surname: Zhang fullname: Zhang, Qiang organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China – sequence: 8 givenname: Jia-Qi surname: Huang fullname: Huang, Jia-Qi organization: School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China., Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China |
BookMark | eNp9kDFOwzAYhS1UJErpBZhygRTHTmKXraqgVKoEA8yWY_8OrpIY2W5RN-7ADTkJoQVUMTC9pyd93_DO0aBzHSB0meEJzTNKr6ADX-9aGaXeTjDO8AkaknJKUlbmeHDUz9A4hDXGmHBWMEqHaPHgXQQVbVcnjY3PdtMmLUTZJLJzGkJiu5_94-09bBqz8UklYwRvIVwns8TD1sLrBTo1sgkw_s4Rerq9eZzfpav7xXI-W6WKFiymDCtJS46Z0lRpmRucK8q4UkRr0JQTw7nRjOcFqQgxfaWKlEZnBFjJdEVHaHnwaifX4sXbVvqdcNKK_eB8LaSPVjUgWIlBTXMNjGR576gKqIqyUGSqMDVQ9C5ycCnvQvBgfn0ZFvtnxfGz4uvZHuJ_IGWjjNZ10Uvb_Id-Ai_Oh7Q |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2024_110234 crossref_primary_10_1039_D3EE02020G crossref_primary_10_1016_j_est_2024_110938 crossref_primary_10_1002_adfm_202409812 crossref_primary_10_1002_ange_202318785 crossref_primary_10_1002_ange_202400343 crossref_primary_10_1002_batt_202400544 crossref_primary_10_1016_j_ensm_2023_102914 crossref_primary_10_1021_acsenergylett_4c03177 crossref_primary_10_1002_adfm_202306933 crossref_primary_10_1007_s11426_024_2275_2 crossref_primary_10_1016_j_jechem_2024_02_002 crossref_primary_10_1002_ange_202312172 crossref_primary_10_1016_j_ensm_2024_103449 crossref_primary_10_1007_s12598_024_02631_x crossref_primary_10_1016_j_heliyon_2024_e27181 crossref_primary_10_1016_j_jechem_2025_01_030 crossref_primary_10_1016_j_partic_2024_01_011 crossref_primary_10_1002_asia_202400919 crossref_primary_10_1007_s10853_025_10622_1 crossref_primary_10_1039_D4NR00571F crossref_primary_10_1016_j_cclet_2024_109500 crossref_primary_10_1016_j_est_2024_113412 crossref_primary_10_1021_acsapm_4c00572 crossref_primary_10_1007_s12598_024_02931_2 crossref_primary_10_1016_j_cej_2024_151949 crossref_primary_10_1021_acsami_3c18071 crossref_primary_10_1002_ange_202406277 crossref_primary_10_1039_D4TA03930K crossref_primary_10_1002_anie_202318785 crossref_primary_10_1016_S1872_5805_23_60744_9 crossref_primary_10_1002_aenm_202300611 crossref_primary_10_1002_aenm_202402609 crossref_primary_10_1002_metm_6 crossref_primary_10_1007_s10008_023_05709_1 crossref_primary_10_1016_j_jechem_2024_06_026 crossref_primary_10_1016_j_nxmate_2024_100395 crossref_primary_10_1016_j_cclet_2023_108570 crossref_primary_10_1002_anie_202406277 crossref_primary_10_1002_sus2_191 crossref_primary_10_1021_acsaem_4c00667 crossref_primary_10_1002_anie_202312172 crossref_primary_10_1021_acsenergylett_3c01395 crossref_primary_10_1016_j_jpowsour_2024_235950 crossref_primary_10_1002_adfm_202304568 crossref_primary_10_1002_cey2_423 crossref_primary_10_3390_nano15010035 crossref_primary_10_1002_aenm_202301770 crossref_primary_10_1016_j_cej_2024_149610 crossref_primary_10_1021_acsaelm_4c00409 crossref_primary_10_3389_fbael_2024_1377192 crossref_primary_10_1080_15325008_2023_2239238 crossref_primary_10_1007_s40820_023_01120_7 crossref_primary_10_1016_j_cej_2024_150719 crossref_primary_10_1021_accountsmr_4c00368 crossref_primary_10_1039_D4TA07994A crossref_primary_10_1016_j_matt_2025_101996 crossref_primary_10_1016_j_rser_2025_115453 crossref_primary_10_1016_j_est_2024_114779 crossref_primary_10_1016_j_mser_2025_100954 crossref_primary_10_1039_D4TA08756A crossref_primary_10_1016_j_compositesb_2023_110821 crossref_primary_10_1016_j_mser_2025_100955 crossref_primary_10_1016_j_mtphys_2024_101453 crossref_primary_10_1016_j_coelec_2023_101285 crossref_primary_10_1016_j_ceja_2024_100657 crossref_primary_10_34133_energymatadv_0084 crossref_primary_10_1039_D4NJ04982A crossref_primary_10_1016_j_jallcom_2024_173482 crossref_primary_10_1016_j_jechem_2024_01_072 crossref_primary_10_1002_anie_202414770 crossref_primary_10_1016_j_matt_2023_03_032 crossref_primary_10_1016_j_jcis_2024_02_164 crossref_primary_10_1016_j_apenergy_2024_125162 crossref_primary_10_1016_j_partic_2023_04_005 crossref_primary_10_1039_D4MH00674G crossref_primary_10_1002_anie_202400343 crossref_primary_10_34133_energymatadv_0130 crossref_primary_10_1021_acs_chemrev_3c00919 crossref_primary_10_1002_adma_202411197 crossref_primary_10_1021_acsami_4c09967 crossref_primary_10_1016_j_jechem_2023_05_020 crossref_primary_10_1016_j_ensm_2024_103232 crossref_primary_10_1016_j_ensm_2025_104046 crossref_primary_10_1039_D3QM00491K crossref_primary_10_1007_s11051_024_05930_7 crossref_primary_10_1021_jacs_3c05715 crossref_primary_10_1016_j_cej_2024_153472 crossref_primary_10_1021_acssuschemeng_3c03195 crossref_primary_10_1016_j_jpowsour_2024_234315 crossref_primary_10_34133_energymatadv_0186 crossref_primary_10_1016_j_jechem_2024_10_050 crossref_primary_10_1016_j_jechem_2023_07_003 crossref_primary_10_1002_adfm_202410742 crossref_primary_10_1007_s40820_024_01573_4 crossref_primary_10_1007_s40820_023_01300_5 crossref_primary_10_1002_cphc_202300693 crossref_primary_10_1002_aenm_202403733 crossref_primary_10_1021_acsaem_3c01606 crossref_primary_10_1002_adfm_202421858 crossref_primary_10_3866_PKU_WHXB202311030 crossref_primary_10_1016_j_apsusc_2024_161263 crossref_primary_10_1039_D4EB00034J crossref_primary_10_1016_j_apenergy_2025_125720 crossref_primary_10_1016_j_jechem_2023_03_015 crossref_primary_10_1002_adfm_202401470 crossref_primary_10_1016_j_cej_2023_148020 crossref_primary_10_1002_adma_202302771 crossref_primary_10_1149_1945_7111_ad5b8c crossref_primary_10_1002_ange_202414770 |
Cites_doi | 10.1038/nnano.2016.32 10.1016/j.ensm.2015.09.008 10.1149/2.009401jes 10.1021/cm500575q 10.1038/nmat2460 10.1149/2.1441707jes 10.1038/s41467-017-00974-x 10.1021/acs.nanolett.5b04166 10.1016/0378-7753(83)87029-3 10.1002/aenm.201802833 10.1016/j.matt.2019.05.016 10.1002/anie.202000375 10.1039/C8EE01419A 10.1021/ja203983r 10.1002/aenm.201502459 10.1021/jp400153m 10.1149/1.1837858 10.1002/smll.201905585 10.1039/C2CC36986A 10.1149/2.0181501jes 10.1016/j.jpowsour.2012.06.100 10.1126/sciadv.abq3445 10.1002/adfm.201605989 10.1016/j.jechem.2021.12.024 10.1021/ja308170k 10.1002/aenm.201902254 10.1039/c0jm04225k 10.1002/anie.202003136 10.1039/C4CC05535G 10.1016/S0378-7753(03)00300-8 10.1016/j.joule.2022.07.003 10.1039/c3ta12634j 10.1016/j.jpowsour.2014.04.018 10.1038/s41586-019-1481-z 10.1149/2.005306eel 10.1016/j.jpowsour.2010.07.020 10.1021/acscentsci.6b00260 10.1039/C6EE01674J 10.1002/admi.201300115 10.1039/C6TA10204B 10.1038/ncomms4015 10.1002/admt.201600052 10.1149/2.002207jes 10.1038/srep08763 10.1002/adfm.201303296 10.1002/anie.201807367 10.1002/adma.201402569 10.1016/j.chempr.2017.01.003 10.1002/anie.202204776 10.1021/acscentsci.0c00449 10.1016/j.mtcomm.2021.102276 10.1039/b919877f 10.1039/c3ra41517a 10.1002/anie.202201406 10.1038/nnano.2017.129 10.1016/j.joule.2018.02.001 10.1038/srep14949 10.1016/j.ensm.2016.09.003 10.1002/adma.201801213 10.1149/1.2407783 10.1016/j.ensm.2018.06.022 10.1021/ac2032244 10.1002/adma.202003012 10.1016/j.tsf.2011.07.068 10.1039/C7EE01430A 10.1002/anie.202103470 10.1002/anie.201909339 10.1002/aenm.201903937 10.1021/nn507178a 10.1002/adfm.201808756 10.1021/jacs.7b05251 10.1002/aenm.202002654 10.1021/ja312241y 10.1149/2.006311jes 10.1038/ncomms2513 10.1021/acsenergylett.7b00164 10.1021/jz401763d 10.1021/acs.chemmater.7b03654 10.1002/adfm.201707536 10.1149/1.2133098 10.1038/nmat3191 10.1002/adma.201604219 10.1002/advs.202103910 10.1002/anie.201913540 10.1021/jp408037e 10.1021/nn2017167 10.1002/ente.202000700 10.1038/s41560-018-0214-0 10.1038/s41467-018-06879-7 10.1016/j.nanoen.2019.104373 10.1038/ncomms6682 10.1149/1.2096981 10.1038/s41565-018-0061-y 10.1038/srep12146 10.1002/smll.201702737 10.1038/s41467-019-12542-6 10.1021/acsnano.9b07121 10.1149/1.1806394 10.1002/aenm.201601392 10.1016/j.ensm.2021.08.012 10.1126/science.aam6014 10.1021/acsami.5b01412 10.1002/smll.201600809 10.1016/j.cej.2022.139348 10.1021/jp407158y 10.1002/adma.202100404 10.1002/adma.202201555 10.1038/ncomms8436 10.1016/j.mattod.2020.10.021 10.1002/aenm.201402290 10.1021/acs.nanolett.7b01020 10.1002/smll.201602539 10.1002/adma.201903955 10.1039/C4EE00372A 10.1021/acsami.6b03897 10.1002/anie.201904240 10.1016/j.matt.2020.04.011 10.1021/acs.chemrev.6b00504 10.1149/2.111308jes 10.1002/aenm.202103589 10.1002/aenm.201903645 10.1038/s41467-017-02808-2 10.1002/adma.201906357 10.1016/j.electacta.2012.03.081 10.1002/aenm.201400993 10.1039/C9TA06971B 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P 10.1021/acs.chemrev.7b00115 10.1002/aenm.201501636 10.1002/aenm.202103291 10.1038/s41557-018-0203-8 10.1021/nn304037d 10.1039/c4cp00461b 10.1016/j.joule.2020.02.006 10.1016/j.jpowsour.2013.09.144 10.1002/smll.201905260 10.1021/acsaem.8b00317 10.1002/admt.201900806 10.1016/S1388-2481(02)00358-2 10.1039/D0EE01074J 10.1002/adma.202004128 10.1021/nn404601h 10.1002/adma.201602704 10.1039/D0TA06862D 10.1039/C5RA23635E 10.1016/j.trechm.2019.06.007 10.1016/j.jechem.2019.03.014 10.1002/adma.202205284 10.1002/adfm.201907343 10.1002/aenm.202003293 10.1038/s41560-021-00787-9 10.1038/s41467-020-20339-1 10.1002/aenm.201803774 10.1002/adma.201703891 10.1002/aenm.202000779 10.1002/smll.201800616 10.1021/acs.chemmater.7b00374 10.1002/anie.202101958 10.1002/adfm.201400845 10.1002/anie.201912701 10.1002/adfm.202107764 10.1021/acscentsci.7b00123 10.1149/1.2129079 10.1021/acsami.8b11890 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.34133/energymatadv.0010 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2692-7640 |
ExternalDocumentID | oai_doaj_org_article_760ec94de72146fdb5eb565c29c03fe5 10_34133_energymatadv_0010 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ OK1 |
ID | FETCH-LOGICAL-c357t-70ca36807cd3cda4f04c378cc2dded382f88fd78452b22ffd73c26fd12e767db3 |
IEDL.DBID | DOA |
ISSN | 2692-7640 |
IngestDate | Wed Aug 27 01:28:06 EDT 2025 Tue Jul 01 02:23:41 EDT 2025 Thu Apr 24 23:13:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-70ca36807cd3cda4f04c378cc2dded382f88fd78452b22ffd73c26fd12e767db3 |
OpenAccessLink | https://doaj.org/article/760ec94de72146fdb5eb565c29c03fe5 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_760ec94de72146fdb5eb565c29c03fe5 crossref_primary_10_34133_energymatadv_0010 crossref_citationtrail_10_34133_energymatadv_0010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-00-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023-00-00 |
PublicationDecade | 2020 |
PublicationTitle | Energy material advances |
PublicationYear | 2023 |
Publisher | American Association for the Advancement of Science (AAAS) |
Publisher_xml | – name: American Association for the Advancement of Science (AAAS) |
References | Zhao W (e_1_3_3_78_2) 2023; 453 Hou TZ (e_1_3_3_104_2) 2016; 12 Nanda S (e_1_3_3_173_2) 2021; 11 Qiao RM (e_1_3_3_172_2) 2014; 1 Chen H (e_1_3_3_100_2) 2020; 2 Zhang R (e_1_3_3_65_2) 2018; 2 Sun ML (e_1_3_3_39_2) 2018; 10 Zhang H (e_1_3_3_54_2) 2021; 27 Cha E (e_1_3_3_73_2) 2018; 13 Kang HS (e_1_3_3_45_2) 2016; 1 e_1_3_3_117_2 Xie J (e_1_3_3_89_2) 2022; 61 Zhang K (e_1_3_3_130_2) 2022; 32 Loaiza LC (e_1_3_3_156_2) 2020; 16 Hagen M (e_1_3_3_44_2) 2014; 264 Li W (e_1_3_3_123_2) 2014; 26 Yoshida K (e_1_3_3_42_2) 2011; 133 Hou LP (e_1_3_3_85_2) 2022; 68 Hou LP (e_1_3_3_47_2) 2022; 8 e_1_3_3_12_2 Yamin H (e_1_3_3_31_2) 1983; 9 Yuan Z (e_1_3_3_7_2) 2016; 16 Huang C (e_1_3_3_162_2) 2014; 5 e_1_3_3_174_2 Hagen M (e_1_3_3_43_2) 2014; 248 Hou LP (e_1_3_3_149_2) 2022; 34 Hou LP (e_1_3_3_87_2) 2022; 61 Su CC (e_1_3_3_135_2) 2019; 58 Peled E (e_1_3_3_33_2) 1989; 136 Lu DP (e_1_3_3_24_2) 2015; 5 Li XG (e_1_3_3_14_2) 2017; 8 Zhang XQ (e_1_3_3_88_2) 2017; 27 Jia WS (e_1_3_3_97_2) 2016; 8 e_1_3_3_9_2 Bi CX (e_1_3_3_68_2) 2022; 9 Babu G (e_1_3_3_109_2) 2015; 5 Hu Y (e_1_3_3_94_2) 2020; 68 Ding F (e_1_3_3_96_2) 2013; 135 Jin ZQ (e_1_3_3_127_2) 2013; 3 Su CC (e_1_3_3_46_2) 2018; 57 e_1_3_3_124_2 Wood KN (e_1_3_3_19_2) 2016; 2 Dokko K (e_1_3_3_147_2) 2013; 160 e_1_3_3_76_2 Jagannathan M (e_1_3_3_158_2) 2013; 160 Bai P (e_1_3_3_50_2) 2016; 9 Zhou TH (e_1_3_3_110_2) 2017; 10 e_1_3_3_38_2 Wu F (e_1_3_3_129_2) 2018; 15 Chang J (e_1_3_3_61_2) 2018; 9 Li WY (e_1_3_3_84_2) 2015; 6 Li S (e_1_3_3_128_2) 2021; 11 Peled E (e_1_3_3_17_2) 1997; 144 Yan K (e_1_3_3_64_2) 2016; 1 e_1_3_3_11_2 e_1_3_3_72_2 Wang AX (e_1_3_3_57_2) 2018; 30 e_1_3_3_154_2 Bonnick P (e_1_3_3_131_2) 2019; 7 Peled E (e_1_3_3_171_2) 2017; 164 e_1_3_3_60_2 Zhang L (e_1_3_3_83_2) 2018; 11 Rao BML (e_1_3_3_160_2) 1977; 124 Wang JL (e_1_3_3_8_2) 2002; 4 Liu YY (e_1_3_3_70_2) 2022; 12 Bruce PG (e_1_3_3_4_2) 2011; 11 Dey AN (e_1_3_3_151_2) 1971; 118 Han JW (e_1_3_3_53_2) 2018; 9 Ji X (e_1_3_3_6_2) 2009; 8 Park JW (e_1_3_3_143_2) 2013; 117 Helen M (e_1_3_3_118_2) 2015; 5 Lee YM (e_1_3_3_35_2) 2003; 119 Chung SH (e_1_3_3_122_2) 2014; 24 e_1_3_3_49_2 Lacey MJ (e_1_3_3_82_2) 2016; 6 Sun K (e_1_3_3_13_2) 2018; 1 e_1_3_3_142_2 e_1_3_3_169_2 Azimi N (e_1_3_3_91_2) 2015; 7 Ueno K (e_1_3_3_145_2) 2013; 117 Ma YW (e_1_3_3_10_2) 2015; 5 e_1_3_3_22_2 Drvarič Talian S (e_1_3_3_136_2) 2017; 29 Xu H (e_1_3_3_99_2) 2020; 32 e_1_3_3_71_2 e_1_3_3_79_2 Zhang SS (e_1_3_3_86_2) 2012; 159 Herbert EG (e_1_3_3_81_2) 2011; 520 Jin ZQ (e_1_3_3_125_2) 2012; 218 Moy D (e_1_3_3_37_2) 2015; 162 Luo D (e_1_3_3_93_2) 2021; 12 Cuisinier M (e_1_3_3_141_2) 2014; 7 Liu M (e_1_3_3_126_2) 2017; 13 Fan L (e_1_3_3_75_2) 2017; 5 Nandasiri MI (e_1_3_3_98_2) 2017; 29 Chen X (e_1_3_3_105_2) 2017; 2 e_1_3_3_18_2 Gao XJ (e_1_3_3_56_2) 2020; 10 Park CM (e_1_3_3_152_2) 2010; 39 Shin ES (e_1_3_3_138_2) 2013; 49 Ji B (e_1_3_3_159_2) 2017; 29 e_1_3_3_90_2 e_1_3_3_157_2 Talian SD (e_1_3_3_28_2) 2020; 167 Duan BC (e_1_3_3_41_2) 2013; 2 Han B (e_1_3_3_175_2) 2021; 33 Ye H (e_1_3_3_113_2) 2019; 13 e_1_3_3_111_2 e_1_3_3_134_2 e_1_3_3_176_2 e_1_3_3_52_2 Yuan Y (e_1_3_3_77_2) 2019; 37 Tokranov A (e_1_3_3_92_2) 2013; 161 Li YY (e_1_3_3_95_2) 2022; 92 Wang JL (e_1_3_3_32_2) 2002; 14 Xu R (e_1_3_3_69_2) 2019; 1 Wang JL (e_1_3_3_120_2) 2015; 27 Cuisinier M (e_1_3_3_5_2) 2013; 4 Lee CW (e_1_3_3_177_2) 2017; 3 e_1_3_3_107_2 Zhan YX (e_1_3_3_51_2) 2021; 9 He JR (e_1_3_3_66_2) 2020; 10 Zheng J (e_1_3_3_137_2) 2019; 9 Agostini M (e_1_3_3_101_2) 2020; 16 e_1_3_3_168_2 Kang N (e_1_3_3_67_2) 2019; 10 Kong LL (e_1_3_3_161_2) 2019; 29 e_1_3_3_103_2 Mandai T (e_1_3_3_146_2) 2014; 16 Yu XW (e_1_3_3_133_2) 2016; 6 e_1_3_3_21_2 e_1_3_3_74_2 Qie L (e_1_3_3_27_2) 2016; 6 Lin SX (e_1_3_3_62_2) 2018; 14 Zhang LL (e_1_3_3_108_2) 2019; 31 Wei JY (e_1_3_3_15_2) 2020; 32 Pang Q (e_1_3_3_140_2) 2018; 3 Feng K (e_1_3_3_150_2) 2018; 14 Zhao M (e_1_3_3_3_2) 2019; 59 Chen PY (e_1_3_3_165_2) 2021; 60 Nanda S (e_1_3_3_26_2) 2020; 13 Jin S (e_1_3_3_58_2) 2016; 28 Barchasz C (e_1_3_3_112_2) 2012; 84 e_1_3_3_36_2 e_1_3_3_59_2 Chen WJ (e_1_3_3_119_2) 2020; 59 Zhang M (e_1_3_3_55_2) 2020; 8 e_1_3_3_114_2 Qian JF (e_1_3_3_139_2) 2015; 6 e_1_3_3_170_2 Xia SX (e_1_3_3_164_2) 2020; 24 Zhao J (e_1_3_3_80_2) 2017; 139 Wang WW (e_1_3_3_16_2) 2019; 18 Shi P (e_1_3_3_48_2) 2020; 5 Liang X (e_1_3_3_106_2) 2016; 6 Zhan YX (e_1_3_3_63_2) 2022; 12 Lu ZY (e_1_3_3_163_2) 2020; 30 Liu H (e_1_3_3_25_2) 2019; 9 Mikhaylik YV (e_1_3_3_34_2) 2004; 151 Zheng S (e_1_3_3_115_2) 2013; 7 Rauh RD (e_1_3_3_30_2) 1979; 126 Park JW (e_1_3_3_144_2) 2013; 117 Wu F (e_1_3_3_132_2) 2020; 33 Zhang WJ (e_1_3_3_153_2) 2011; 196 Yan C (e_1_3_3_29_2) 2019; 1 Dörfler S (e_1_3_3_166_2) 2020; 4 Duan BC (e_1_3_3_116_2) 2013; 1 Liu N (e_1_3_3_40_2) 2011; 5 e_1_3_3_121_2 Zhang XQ (e_1_3_3_148_2) 2021; 60 Marom R (e_1_3_3_155_2) 2011; 21 Lv DP (e_1_3_3_167_2) 2015; 5 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_102_2 Fang C (e_1_3_3_23_2) 2019; 572 |
References_xml | – ident: e_1_3_3_59_2 doi: 10.1038/nnano.2016.32 – ident: e_1_3_3_121_2 doi: 10.1016/j.ensm.2015.09.008 – volume: 161 start-page: A58 issue: 1 year: 2013 ident: e_1_3_3_92_2 article-title: The origin of stress in the solid electrolyte interphase on carbon electrodes for Li ion batteries publication-title: J Electrochem Soc doi: 10.1149/2.009401jes – volume: 26 start-page: 3403 issue: 11 year: 2014 ident: e_1_3_3_123_2 article-title: V2O5 polysulfide anion barrier for long-lived Li–S batteries publication-title: Chem Mater doi: 10.1021/cm500575q – volume: 8 start-page: 500 issue: 6 year: 2009 ident: e_1_3_3_6_2 article-title: A highly ordered nanostructured carbon–sulphur cathode for lithium−sulphur batteries publication-title: Nat Mater doi: 10.1038/nmat2460 – volume: 164 start-page: A1703 issue: 7 year: 2017 ident: e_1_3_3_171_2 article-title: Review-SEI: Past, present and future publication-title: J Electrochem Soc doi: 10.1149/2.1441707jes – volume: 8 start-page: 850 issue: 1 year: 2017 ident: e_1_3_3_14_2 article-title: Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium–sulfur batteries publication-title: Nat Commun doi: 10.1038/s41467-017-00974-x – volume: 16 start-page: 519 issue: 1 year: 2016 ident: e_1_3_3_7_2 article-title: Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts publication-title: Nano Lett doi: 10.1021/acs.nanolett.5b04166 – volume: 9 start-page: 281 issue: 3 year: 1983 ident: e_1_3_3_31_2 article-title: Electrochemistry of a nonaqueous lithium/sulfur cell publication-title: J Power Sources doi: 10.1016/0378-7753(83)87029-3 – ident: e_1_3_3_49_2 doi: 10.1002/aenm.201802833 – volume: 1 start-page: 317 issue: 2 year: 2019 ident: e_1_3_3_69_2 article-title: Artificial interphases for highly stable lithium metal anode publication-title: Matter doi: 10.1016/j.matt.2019.05.016 – ident: e_1_3_3_71_2 doi: 10.1002/anie.202000375 – ident: e_1_3_3_2_2 doi: 10.1039/C8EE01419A – volume: 133 start-page: 13121 issue: 33 year: 2011 ident: e_1_3_3_42_2 article-title: Oxidative-stability enhancement and charge transport mechanism in glyme–lithium salt equimolar complexes publication-title: J Am Chem Soc doi: 10.1021/ja203983r – volume: 8 start-page: 1 year: 2022 ident: e_1_3_3_47_2 article-title: An encapsulating lithium-polysulfide electrolyte for practical lithium–sulfur batteries publication-title: Chem – volume: 6 start-page: 1502459 issue: 7 year: 2016 ident: e_1_3_3_27_2 article-title: A high energy lithium–sulfur battery with ultrahigh-loading lithium polysulfide cathode and its failure mechanism publication-title: Adv Energy Mater doi: 10.1002/aenm.201502459 – volume: 117 start-page: 4431 issue: 9 year: 2013 ident: e_1_3_3_143_2 article-title: Solvent effect of room temperature ionic liquids on electrochemical reactions in lithium–sulfur batteries publication-title: J Phys Chem C doi: 10.1021/jp400153m – volume: 144 start-page: L208 issue: 8 year: 1997 ident: e_1_3_3_17_2 article-title: Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes publication-title: J Electrochem Soc doi: 10.1149/1.1837858 – volume: 16 issue: 2 year: 2020 ident: e_1_3_3_101_2 article-title: Designing highly conductive functional groups improving guest-host interactions in Li/S batteries publication-title: Small doi: 10.1002/smll.201905585 – volume: 49 start-page: 2004 issue: 20 year: 2013 ident: e_1_3_3_138_2 article-title: Polysulfide dissolution control: The common ion effect publication-title: Chem Commun doi: 10.1039/C2CC36986A – volume: 162 start-page: A1 issue: 1 year: 2015 ident: e_1_3_3_37_2 article-title: Direct measurement of polysulfide shuttle current: A window into understanding the performance of lithium–sulfur cells publication-title: J Electrochem Soc doi: 10.1149/2.0181501jes – volume: 218 start-page: 163 year: 2012 ident: e_1_3_3_125_2 article-title: Application of lithiated Nafion ionomer film as functional separator for lithium–sulfur cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.06.100 – ident: e_1_3_3_154_2 doi: 10.1126/sciadv.abq3445 – volume: 27 start-page: 8 issue: 10 year: 2017 ident: e_1_3_3_88_2 article-title: Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries publication-title: Adv Funct Mater doi: 10.1002/adfm.201605989 – volume: 68 start-page: 300 year: 2022 ident: e_1_3_3_85_2 article-title: High-valence sulfur-containing species in solid electrolyte interphase stabilizes lithium metal anodes in lithium–sulfur batteries publication-title: J Energy Chem doi: 10.1016/j.jechem.2021.12.024 – ident: e_1_3_3_117_2 doi: 10.1021/ja308170k – volume: 9 start-page: 1902254 issue: 44 year: 2019 ident: e_1_3_3_25_2 article-title: Plating/stripping behavior of actual lithium metal anode publication-title: Adv Energy Mater doi: 10.1002/aenm.201902254 – volume: 21 start-page: 9938 issue: 27 year: 2011 ident: e_1_3_3_155_2 article-title: A review of advanced and practical lithium battery materials publication-title: J Mater Chem doi: 10.1039/c0jm04225k – ident: e_1_3_3_111_2 doi: 10.1002/anie.202003136 – ident: e_1_3_3_74_2 doi: 10.1039/C4CC05535G – volume: 119 start-page: 964 year: 2003 ident: e_1_3_3_35_2 article-title: Electrochemical performance of lithium/sulfur batteries with protected Li anodes publication-title: J Power Sources doi: 10.1016/S0378-7753(03)00300-8 – ident: e_1_3_3_18_2 doi: 10.1016/j.joule.2022.07.003 – volume: 1 start-page: 13261 issue: 42 year: 2013 ident: e_1_3_3_116_2 article-title: Carbyne polysulfide as a novel cathode material for lithium/sulfur batteries publication-title: J Mater Chem A doi: 10.1039/c3ta12634j – volume: 264 start-page: 30 year: 2014 ident: e_1_3_3_44_2 article-title: Cell energy density and electrolyte/sulfur ratio in Li–S cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.04.018 – volume: 92 year: 2022 ident: e_1_3_3_95_2 article-title: Eliminating anion depletion region and promoting Li+ solvation via anionphilic metal organic framework for dendrite-free lithium deposition publication-title: Nano Energy – volume: 572 start-page: 511 issue: 7770 year: 2019 ident: e_1_3_3_23_2 article-title: Quantifying inactive lithium in lithium metal batteries publication-title: Nature doi: 10.1038/s41586-019-1481-z – volume: 2 start-page: A47 issue: 6 year: 2013 ident: e_1_3_3_41_2 article-title: Li–B alloy as anode material for lithium/sulfur battery publication-title: ECS Electrochem Lett doi: 10.1149/2.005306eel – volume: 196 start-page: 13 issue: 1 year: 2011 ident: e_1_3_3_153_2 article-title: A review of the electrochemical performance of alloy anodes for lithium-ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2010.07.020 – volume: 2 start-page: 790 issue: 11 year: 2016 ident: e_1_3_3_19_2 article-title: Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy publication-title: ACS Cent Sci doi: 10.1021/acscentsci.6b00260 – volume: 9 start-page: 3221 issue: 10 year: 2016 ident: e_1_3_3_50_2 article-title: Transition of lithium growth mechanisms in liquid electrolytes publication-title: Energy Environ Sci doi: 10.1039/C6EE01674J – volume: 1 start-page: 1300115 issue: 3 year: 2014 ident: e_1_3_3_172_2 article-title: Distinct solid-electrolyte-interphases on Sn (100) and (001) electrodes studied by soft X-ray spectroscopy publication-title: Adv Mater Interfaces doi: 10.1002/admi.201300115 – volume: 5 start-page: 3483 issue: 7 year: 2017 ident: e_1_3_3_75_2 article-title: Regulating Li deposition at artificial solid electrolyte interphases publication-title: J Mater Chem A doi: 10.1039/C6TA10204B – volume: 5 start-page: 3015 year: 2014 ident: e_1_3_3_162_2 article-title: Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures publication-title: Nat Commun doi: 10.1038/ncomms4015 – volume: 1 start-page: 1600052 issue: 6 year: 2016 ident: e_1_3_3_45_2 article-title: A scaled-up lithium (ion)–sulfur battery: Newly faced problems and solutions publication-title: Adv Mater Technol doi: 10.1002/admt.201600052 – volume: 159 start-page: A920 issue: 7 year: 2012 ident: e_1_3_3_86_2 article-title: Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte publication-title: J Electrochem Soc doi: 10.1149/2.002207jes – volume: 5 start-page: 1 issue: 1 year: 2015 ident: e_1_3_3_109_2 article-title: Electrocatalysis of lithium polysulfides: Current collectors as electrodes in Li/S battery configuration publication-title: Sci Rep doi: 10.1038/srep08763 – ident: e_1_3_3_102_2 doi: 10.1002/adfm.201303296 – volume: 57 start-page: 12033 issue: 37 year: 2018 ident: e_1_3_3_46_2 article-title: The relationship between the relative solvating power of electrolytes and shuttling effect of lithium polysulfides in lithium–sulfur batteries publication-title: Angew Chem Int Ed doi: 10.1002/anie.201807367 – volume: 27 start-page: 569 issue: 3 year: 2015 ident: e_1_3_3_120_2 article-title: Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries publication-title: Adv Mater doi: 10.1002/adma.201402569 – ident: e_1_3_3_79_2 doi: 10.1016/j.chempr.2017.01.003 – volume: 61 issue: 29 year: 2022 ident: e_1_3_3_89_2 article-title: Fluorinating the solid electrolyte interphase by rational molecular design for practical lithium-metal batteries publication-title: Angew Chem Int Ed doi: 10.1002/anie.202204776 – ident: e_1_3_3_168_2 doi: 10.1021/acscentsci.0c00449 – volume: 27 year: 2021 ident: e_1_3_3_54_2 article-title: Effect of the defect densities of reduced graphene oxide network on the stability of lithium metal anodes publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2021.102276 – volume: 39 start-page: 3115 issue: 8 year: 2010 ident: e_1_3_3_152_2 article-title: Li-alloy based anode materials for Li secondary batteries publication-title: Chem Soc Rev doi: 10.1039/b919877f – volume: 3 start-page: 8889 issue: 23 year: 2013 ident: e_1_3_3_127_2 article-title: Electrochemical performance of lithium/sulfur batteries using perfluorinated ionomer electrolyte with lithium sulfonyl dicyanomethide functional groups as functional separator publication-title: RSC Adv doi: 10.1039/c3ra41517a – volume: 61 issue: 20 year: 2022 ident: e_1_3_3_87_2 article-title: Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries publication-title: Angew Chem Int Ed doi: 10.1002/anie.202201406 – ident: e_1_3_3_157_2 doi: 10.1038/nnano.2017.129 – volume: 2 start-page: 764 issue: 4 year: 2018 ident: e_1_3_3_65_2 article-title: Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries publication-title: Joule doi: 10.1016/j.joule.2018.02.001 – volume: 5 start-page: 14949 issue: 1 year: 2015 ident: e_1_3_3_10_2 article-title: Lithium sulfur primary battery with super high energy density: Based on the cauliflower-like structured C/S cathode publication-title: Sci Rep doi: 10.1038/srep14949 – ident: e_1_3_3_11_2 doi: 10.1016/j.ensm.2016.09.003 – ident: e_1_3_3_52_2 doi: 10.1002/adma.201801213 – volume: 118 start-page: 1547 issue: 10 year: 1971 ident: e_1_3_3_151_2 article-title: Electrochemical alloying of lithium in organic electrolytes publication-title: J Electrochem Soc doi: 10.1149/1.2407783 – ident: e_1_3_3_76_2 doi: 10.1016/j.ensm.2018.06.022 – volume: 84 start-page: 3973 issue: 9 year: 2012 ident: e_1_3_3_112_2 article-title: Lithium/sulfur cell discharge mechanism: An original approach for intermediate species identification publication-title: Anal Chem doi: 10.1021/ac2032244 – volume: 32 start-page: 2003012 issue: 37 year: 2020 ident: e_1_3_3_15_2 article-title: Shielding polysulfide intermediates by an organosulfur-containing solid electrolyte interphase on the lithium anode in lithium–sulfur batteries publication-title: Adv Mater doi: 10.1002/adma.202003012 – volume: 520 start-page: 413 issue: 1 year: 2011 ident: e_1_3_3_81_2 article-title: Mechanical characterization of LiPON films using nanoindentation publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.07.068 – volume: 10 start-page: 1694 issue: 7 year: 2017 ident: e_1_3_3_110_2 article-title: Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries publication-title: Energy Environ Sci doi: 10.1039/C7EE01430A – volume: 60 start-page: 15503 issue: 28 year: 2021 ident: e_1_3_3_148_2 article-title: Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium–sulfur batteries publication-title: Angew Chem Int Ed doi: 10.1002/anie.202103470 – volume: 59 start-page: 12636 issue: 31 year: 2019 ident: e_1_3_3_3_2 article-title: Lithium–sulfur batteries under lean electrolyte conditions: Challenges and opportunities publication-title: Angew Chem Int Ed doi: 10.1002/anie.201909339 – volume: 11 start-page: 24 year: 2018 ident: e_1_3_3_83_2 article-title: The synergetic interaction between LiNO3 and lithium polysulfides for suppressing shuttle effect of lithium–sulfur batteries publication-title: Energy Stor Mater – ident: e_1_3_3_90_2 doi: 10.1002/aenm.201903937 – ident: e_1_3_3_124_2 doi: 10.1021/nn507178a – volume: 29 start-page: 1808756 issue: 13 year: 2019 ident: e_1_3_3_161_2 article-title: Lithium–magnesium alloy as a stable anode for lithium–sulfur battery publication-title: Adv Funct Mater doi: 10.1002/adfm.201808756 – volume: 139 start-page: 11550 issue: 33 year: 2017 ident: e_1_3_3_80_2 article-title: Surface fluorination of reactive battery anode materials for enhanced stability publication-title: J Am Chem Soc doi: 10.1021/jacs.7b05251 – volume: 10 start-page: 2002654 issue: 41 year: 2020 ident: e_1_3_3_66_2 article-title: 3D CoSe@C aerogel as a host for dendrite-free lithium-metal anode and efficient sulfur cathode in Li–S full cells publication-title: Adv Energy Mater doi: 10.1002/aenm.202002654 – volume: 135 start-page: 4450 issue: 11 year: 2013 ident: e_1_3_3_96_2 article-title: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism publication-title: J Am Chem Soc doi: 10.1021/ja312241y – volume: 160 start-page: A1922 issue: 10 year: 2013 ident: e_1_3_3_158_2 article-title: Electrochemical charge/discharge behavior and phase transitions during cell cycling of Li(Mg) alloy anodes for high capacity Li ion batteries publication-title: J Electrochem Soc doi: 10.1149/2.006311jes – volume: 10 start-page: 2903753 issue: 7 year: 2020 ident: e_1_3_3_56_2 article-title: 3D vertically aligned Li metal anodes with ultrahigh cycling currents and capacities of 10 mA cm−2/20 mAh cm−2 realized by selective nucleation within microchannel walls publication-title: Adv Energy Mater – ident: e_1_3_3_12_2 doi: 10.1038/ncomms2513 – volume: 2 start-page: 795 issue: 4 year: 2017 ident: e_1_3_3_105_2 article-title: An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S– Or Li–binding on first-row transition-metal sulfides? publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.7b00164 – volume: 4 start-page: 3227 issue: 19 year: 2013 ident: e_1_3_3_5_2 article-title: Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy publication-title: J Phys Chem Lett doi: 10.1021/jz401763d – ident: e_1_3_3_36_2 – volume: 29 start-page: 10037 issue: 23 year: 2017 ident: e_1_3_3_136_2 article-title: Fluorinated ether based electrolyte for high-energy lithium–sulfur batteries: Li+ solvation role behind reduced polysulfide solubility publication-title: Chem Mater doi: 10.1021/acs.chemmater.7b03654 – ident: e_1_3_3_9_2 doi: 10.1002/adfm.201707536 – volume: 167 issue: 8 year: 2020 ident: e_1_3_3_28_2 article-title: Electrochemical kinetics study of interaction between Li metal and polysulfides publication-title: J Electrochem Soc – volume: 124 start-page: 1490 issue: 10 year: 1977 ident: e_1_3_3_160_2 article-title: Lithium–aluminum electrode publication-title: J Electrochem Soc doi: 10.1149/1.2133098 – volume: 11 start-page: 19 issue: 1 year: 2011 ident: e_1_3_3_4_2 article-title: Li−O2 and Li−S batteries with high energy storage publication-title: Nat Mater doi: 10.1038/nmat3191 – volume: 29 start-page: 1604219 issue: 7 year: 2017 ident: e_1_3_3_159_2 article-title: A novel and generalized lithium-ion-battery configuration utilizing al foil as both anode and current collector for enhanced energy density publication-title: Adv Mater doi: 10.1002/adma.201604219 – volume: 9 start-page: 2103910 issue: 2 year: 2022 ident: e_1_3_3_68_2 article-title: Anode material options toward 500 Wh kg−1 lithium–sulfur batteries publication-title: Adv Sci doi: 10.1002/advs.202103910 – ident: e_1_3_3_114_2 doi: 10.1002/anie.201913540 – volume: 117 start-page: 20531 issue: 40 year: 2013 ident: e_1_3_3_144_2 article-title: Ionic liquid electrolytes for lithium–sulfur batteries publication-title: J Phys Chem C doi: 10.1021/jp408037e – volume: 5 start-page: 6487 issue: 8 year: 2011 ident: e_1_3_3_40_2 article-title: Prelithiated silicon nanowires as an anode for lithium ion batteries publication-title: ACS Nano doi: 10.1021/nn2017167 – volume: 9 start-page: 2000700 issue: 2 year: 2021 ident: e_1_3_3_51_2 article-title: The insights of lithium metal plating/stripping in porous hosts: Progress and perspectives publication-title: Energy Technol doi: 10.1002/ente.202000700 – volume: 3 start-page: 783 issue: 9 year: 2018 ident: e_1_3_3_140_2 article-title: Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries publication-title: Nat Energy doi: 10.1038/s41560-018-0214-0 – volume: 9 start-page: 4480 issue: 1 year: 2018 ident: e_1_3_3_61_2 article-title: Flexible and stable high-energy lithium–sulfur full batteries with only 100% oversized lithium publication-title: Nat Commun doi: 10.1038/s41467-018-06879-7 – volume: 68 year: 2020 ident: e_1_3_3_94_2 article-title: Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium–sulfur battery publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104373 – ident: e_1_3_3_107_2 doi: 10.1038/ncomms6682 – volume: 136 start-page: 1621 issue: 6 year: 1989 ident: e_1_3_3_33_2 article-title: Lithium–sulfur battery—Evaluation of dioxolane-based electrolytes publication-title: J Electrochem Soc doi: 10.1149/1.2096981 – volume: 13 start-page: 337 issue: 4 year: 2018 ident: e_1_3_3_73_2 article-title: 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries publication-title: Nat Nanotechnol doi: 10.1038/s41565-018-0061-y – volume: 5 start-page: 12146 year: 2015 ident: e_1_3_3_118_2 article-title: Single step transformation of Sulphur to Li2S2/Li2S in Li–S batteries publication-title: Sci Rep doi: 10.1038/srep12146 – volume: 14 start-page: 1702737 issue: 8 year: 2018 ident: e_1_3_3_150_2 article-title: Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications publication-title: Small doi: 10.1002/smll.201702737 – volume: 10 start-page: 4597 issue: 1 year: 2019 ident: e_1_3_3_67_2 article-title: Cathode porosity is a missing key parameter to optimize lithium−sulfur battery energy density publication-title: Nat Commun doi: 10.1038/s41467-019-12542-6 – volume: 13 start-page: 14208 issue: 12 year: 2019 ident: e_1_3_3_113_2 article-title: Stepwise electrocatalysis as a strategy against polysulfide shuttling in Li–S batteries publication-title: ACS Nano doi: 10.1021/acsnano.9b07121 – volume: 151 start-page: A1969 issue: 11 year: 2004 ident: e_1_3_3_34_2 article-title: Polysulfide shuttle study in the Li/S battery system publication-title: J Electrochem Soc doi: 10.1149/1.1806394 – volume: 6 start-page: 1601392 issue: 24 year: 2016 ident: e_1_3_3_133_2 article-title: Polysulfide-shuttle control in lithium-sulfur batteries with a chemically/electrochemically compatible NaSICON-type solid electrolyte publication-title: Adv Energy Mater doi: 10.1002/aenm.201601392 – ident: e_1_3_3_176_2 doi: 10.1016/j.ensm.2021.08.012 – ident: e_1_3_3_174_2 doi: 10.1126/science.aam6014 – volume: 7 start-page: 9169 issue: 17 year: 2015 ident: e_1_3_3_91_2 article-title: Understanding the effect of a fluorinated ether on the performance of lithium–sulfur batteries publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b01412 – volume: 12 start-page: 3283 issue: 24 year: 2016 ident: e_1_3_3_104_2 article-title: Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium–sulfur batteries publication-title: Small doi: 10.1002/smll.201600809 – volume: 453 year: 2023 ident: e_1_3_3_78_2 article-title: Moisture-assistant chlorinated separator with dual-protective interface for ultralong-life and high-rate lithium metal batteries publication-title: Chem Eng J doi: 10.1016/j.cej.2022.139348 – volume: 117 start-page: 20509 issue: 40 year: 2013 ident: e_1_3_3_145_2 article-title: Anionic effects on solvate ionic liquid electrolytes in rechargeable lithium–sulfur batteries publication-title: J Phys Chem C doi: 10.1021/jp407158y – volume: 33 start-page: 2100404 issue: 22 year: 2021 ident: e_1_3_3_175_2 article-title: Poor stability of Li2CO3 in the solid electrolyte interphase of a lithium-metal anode revealed by cryo-electron microscopy publication-title: Adv Mater doi: 10.1002/adma.202100404 – ident: e_1_3_3_169_2 doi: 10.1002/adma.202201555 – volume: 6 start-page: 7436 issue: 1 year: 2015 ident: e_1_3_3_84_2 article-title: The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth publication-title: Nat Commun doi: 10.1038/ncomms8436 – ident: e_1_3_3_134_2 doi: 10.1016/j.mattod.2020.10.021 – volume: 5 start-page: 1402290 issue: 16 year: 2015 ident: e_1_3_3_167_2 article-title: High energy density lithium–sulfur batteries: Challenges of thick sulfur cathodes publication-title: Adv Energy Mater doi: 10.1002/aenm.201402290 – ident: e_1_3_3_60_2 doi: 10.1021/acs.nanolett.7b01020 – volume: 13 start-page: 1602539 issue: 12 year: 2017 ident: e_1_3_3_126_2 article-title: Suppressing self-discharge and shuttle effect of lithium–sulfur batteries with V2O5-decorated carbon nanofiber interlayer publication-title: Small doi: 10.1002/smll.201602539 – volume: 1 start-page: 1 issue: 3 year: 2016 ident: e_1_3_3_64_2 article-title: Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth publication-title: Nat Energy – volume: 31 start-page: 1903955 issue: 40 year: 2019 ident: e_1_3_3_108_2 article-title: Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium–sulfur batteries publication-title: Adv Mater doi: 10.1002/adma.201903955 – volume: 7 start-page: 2697 issue: 8 year: 2014 ident: e_1_3_3_141_2 article-title: Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries publication-title: Energy Environ Sci doi: 10.1039/C4EE00372A – volume: 8 start-page: 15399 issue: 24 year: 2016 ident: e_1_3_3_97_2 article-title: Extremely accessible potassium nitrate (KNO3) as the highly efficient electrolyte additive in lithium battery publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b03897 – volume: 58 start-page: 10591 issue: 31 year: 2019 ident: e_1_3_3_135_2 article-title: A selection rule for hydrofluoroether electrolyte cosolvent: Establishing a linear free-energy relationship in lithium–sulfur batteries publication-title: Angew Chem Int Ed doi: 10.1002/anie.201904240 – volume: 2 start-page: 1605 issue: 6 year: 2020 ident: e_1_3_3_100_2 article-title: Electrode design with integration of high tortuosity and sulfur-philicity for high-performance lithium–sulfur battery publication-title: Matter doi: 10.1016/j.matt.2020.04.011 – ident: e_1_3_3_142_2 doi: 10.1021/acs.chemrev.6b00504 – volume: 160 start-page: A1304 issue: 8 year: 2013 ident: e_1_3_3_147_2 article-title: Solvate ionic liquid electrolyte for Li–S batteries publication-title: J Electrochem Soc doi: 10.1149/2.111308jes – volume: 33 start-page: 26 year: 2020 ident: e_1_3_3_132_2 article-title: Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects publication-title: Energy Stor Mater – volume: 12 start-page: 2103589 issue: 9 year: 2022 ident: e_1_3_3_70_2 article-title: Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes publication-title: Adv Energy Mater doi: 10.1002/aenm.202103589 – ident: e_1_3_3_72_2 doi: 10.1002/aenm.201903645 – volume: 9 start-page: 402 issue: 1 year: 2018 ident: e_1_3_3_53_2 article-title: Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage publication-title: Nat Commun doi: 10.1038/s41467-017-02808-2 – volume: 32 issue: 7 year: 2020 ident: e_1_3_3_99_2 article-title: Integrating conductivity, immobility, and catalytic ability into high-N carbon/graphene sheets as an effective sulfur host publication-title: Adv Mater doi: 10.1002/adma.201906357 – ident: e_1_3_3_38_2 doi: 10.1016/j.electacta.2012.03.081 – volume: 5 start-page: 1400993 issue: 3 year: 2015 ident: e_1_3_3_24_2 article-title: Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes publication-title: Adv Energy Mater doi: 10.1002/aenm.201400993 – volume: 15 start-page: 148 year: 2018 ident: e_1_3_3_129_2 article-title: Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes publication-title: Energy Stor Mater – volume: 7 start-page: 24173 issue: 42 year: 2019 ident: e_1_3_3_131_2 article-title: A high performance all solid state lithium sulfur battery with lithium thiophosphate solid electrolyte publication-title: J Mater Chem A doi: 10.1039/C9TA06971B – volume: 6 start-page: 1 issue: 1 year: 2015 ident: e_1_3_3_139_2 article-title: High rate and stable cycling of lithium metal anode publication-title: Nat Commun – volume: 14 start-page: 963 issue: 13 year: 2002 ident: e_1_3_3_32_2 article-title: A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries publication-title: Adv Mater doi: 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P – volume: 24 start-page: 329 year: 2020 ident: e_1_3_3_164_2 article-title: Stabilized lithium metal anode by an efficient coating for high-performance Li–S batteries publication-title: Energy Stor Mater – ident: e_1_3_3_22_2 doi: 10.1021/acs.chemrev.7b00115 – volume: 6 start-page: 1501636 issue: 6 year: 2016 ident: e_1_3_3_106_2 article-title: Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: The goldilocks principle publication-title: Adv Energy Mater doi: 10.1002/aenm.201501636 – volume: 12 start-page: 2103291 issue: 2 year: 2022 ident: e_1_3_3_63_2 article-title: Failure mechanism of lithiophilic sites in composite lithium metal anode under practical conditions publication-title: Adv Energy Mater doi: 10.1002/aenm.202103291 – ident: e_1_3_3_21_2 doi: 10.1038/s41557-018-0203-8 – ident: e_1_3_3_103_2 doi: 10.1021/nn304037d – volume: 16 start-page: 8761 issue: 19 year: 2014 ident: e_1_3_3_146_2 article-title: Criteria for solvate ionic liquids publication-title: Phys Chem Chem Phys doi: 10.1039/c4cp00461b – volume: 4 start-page: 539 issue: 3 year: 2020 ident: e_1_3_3_166_2 article-title: Challenges and key parameters of lithium–sulfur batteries on pouch cell level publication-title: Joule doi: 10.1016/j.joule.2020.02.006 – volume: 248 start-page: 1058 year: 2014 ident: e_1_3_3_43_2 article-title: Studies on preventing Li dendrite formation in Li–S batteries by using pre-lithiated Si microwire anodes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.09.144 – volume: 16 issue: 5 year: 2020 ident: e_1_3_3_156_2 article-title: Si and Ge-based anode materials for Li-, Na-, and K-ion batteries: A perspective from structure to electrochemical mechanism publication-title: Small doi: 10.1002/smll.201905260 – volume: 1 start-page: 2608 issue: 6 year: 2018 ident: e_1_3_3_13_2 article-title: Electrolyte with low polysulfide solubility for Li–S batteries publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.8b00317 – volume: 5 start-page: 1900806 issue: 1 year: 2020 ident: e_1_3_3_48_2 article-title: A review of composite lithium metal anode for practical applications publication-title: Adv Mater Technol doi: 10.1002/admt.201900806 – volume: 4 start-page: 499 issue: 6 year: 2002 ident: e_1_3_3_8_2 article-title: Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte publication-title: Electrochem Commun doi: 10.1016/S1388-2481(02)00358-2 – volume: 13 start-page: 2501 issue: 8 year: 2020 ident: e_1_3_3_26_2 article-title: Lithium degradation in lithium–sulfur batteries: Insights into inventory depletion and interphasial evolution with cycling publication-title: Energy Environ Sci doi: 10.1039/D0EE01074J – ident: e_1_3_3_170_2 doi: 10.1002/adma.202004128 – volume: 7 start-page: 10995 issue: 12 year: 2013 ident: e_1_3_3_115_2 article-title: In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries publication-title: ACS Nano doi: 10.1021/nn404601h – volume: 28 start-page: 9094 issue: 41 year: 2016 ident: e_1_3_3_58_2 article-title: Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li–S batteries publication-title: Adv Mater doi: 10.1002/adma.201602704 – volume: 8 start-page: 18987 issue: 36 year: 2020 ident: e_1_3_3_55_2 article-title: Integrating conductivity and active sites: Fe/Fe3C@GNC as an trapping-catalyst interlayer and dendrite-free lithium host for the lithium–sulfur cell with outstanding rate performance publication-title: J Mater Chem A doi: 10.1039/D0TA06862D – volume: 6 start-page: 3632 issue: 5 year: 2016 ident: e_1_3_3_82_2 article-title: The Li–S battery: An investigation of redox shuttle and self-discharge behaviour with LiNO3-containing electrolytes publication-title: RSC Adv doi: 10.1039/C5RA23635E – volume: 1 start-page: 693 issue: 7 year: 2019 ident: e_1_3_3_29_2 article-title: Lithium-anode protection in lithium–sulfur batteries publication-title: Trends Chem doi: 10.1016/j.trechm.2019.06.007 – volume: 37 start-page: 197 year: 2019 ident: e_1_3_3_77_2 article-title: Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode publication-title: J Energy Chem doi: 10.1016/j.jechem.2019.03.014 – volume: 34 start-page: 2205284 issue: 45 year: 2022 ident: e_1_3_3_149_2 article-title: Weakening the solvating power of solvents to encapsulate lithium polysulfides enables long-cycling lithium–sulfur batteries publication-title: Adv Mater doi: 10.1002/adma.202205284 – volume: 30 start-page: 1907343 issue: 7 year: 2020 ident: e_1_3_3_163_2 article-title: Constructing a high-strength solid electrolyte layer by in vivo alloying with aluminum for an ultrahigh-rate lithium metal anode publication-title: Adv Funct Mater doi: 10.1002/adfm.201907343 – volume: 11 start-page: 2003293 issue: 11 year: 2021 ident: e_1_3_3_173_2 article-title: Delineating the lithium–electrolyte interfacial chemistry and the dynamics of lithium deposition in lithium–sulfur batteries publication-title: Adv Energy Mater doi: 10.1002/aenm.202003293 – ident: e_1_3_3_20_2 doi: 10.1038/s41560-021-00787-9 – volume: 12 start-page: 186 issue: 1 year: 2021 ident: e_1_3_3_93_2 article-title: Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries publication-title: Nat Commun doi: 10.1038/s41467-020-20339-1 – volume: 9 start-page: 1803774 issue: 16 year: 2019 ident: e_1_3_3_137_2 article-title: High-fluorinated electrolytes for Li–S batteries publication-title: Adv Energy Mater doi: 10.1002/aenm.201803774 – volume: 30 start-page: 1703891 issue: 1 year: 2018 ident: e_1_3_3_57_2 article-title: Bending-tolerant anodes for lithium-metal batteries publication-title: Adv Mater doi: 10.1002/adma.201703891 – volume: 11 start-page: 2000779 issue: 2 year: 2021 ident: e_1_3_3_128_2 article-title: Inhibition of polysulfide shuttles in Li–S batteries: Modified separators and solid-state electrolytes publication-title: Adv Energy Mater doi: 10.1002/aenm.202000779 – volume: 14 start-page: 1800616 issue: 21 year: 2018 ident: e_1_3_3_62_2 article-title: A host-configured lithium–sulfur cell built on 3D nickel photonic crystal with superior electrochemical performances publication-title: Small doi: 10.1002/smll.201800616 – volume: 29 start-page: 4728 issue: 11 year: 2017 ident: e_1_3_3_98_2 article-title: In situ chemical imaging of solid-electrolyte interphase layer evolution in Li–S batteries publication-title: Chem Mater doi: 10.1021/acs.chemmater.7b00374 – volume: 60 start-page: 18031 issue: 33 year: 2021 ident: e_1_3_3_165_2 article-title: Selective permeable lithium-ion channels on lithium metal for practical lithium–sulfur pouch cells publication-title: Angew Chem Int Ed doi: 10.1002/anie.202101958 – volume: 18 start-page: 414 year: 2019 ident: e_1_3_3_16_2 article-title: Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium–sulfur batteries publication-title: Energy Stor Mater – volume: 24 start-page: 5299 issue: 33 year: 2014 ident: e_1_3_3_122_2 article-title: Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium–sulfur batteries publication-title: Adv Funct Mater doi: 10.1002/adfm.201400845 – volume: 59 start-page: 10732 issue: 27 year: 2020 ident: e_1_3_3_119_2 article-title: Electrolyte regulation towards stable lithium-metal anodes in lithium–sulfur batteries with sulfurized polyacrylonitrile cathodes publication-title: Angew Chem Int Ed doi: 10.1002/anie.201912701 – volume: 32 start-page: 2107764 issue: 5 year: 2022 ident: e_1_3_3_130_2 article-title: An ion-dipole-reinforced polyether electrolyte with ion-solvation cages enabling high–voltage-tolerant and ion-conductive solid-state lithium metal batteries publication-title: Adv Funct Mater doi: 10.1002/adfm.202107764 – volume: 3 start-page: 605 issue: 6 year: 2017 ident: e_1_3_3_177_2 article-title: Directing the lithium–sulfur reaction pathway via sparingly solvating electrolytes for high energy density batteries publication-title: ACS Cent Sci doi: 10.1021/acscentsci.7b00123 – volume: 126 start-page: 523 issue: 4 year: 1979 ident: e_1_3_3_30_2 article-title: A lithium/dissolved sulfur battery with an organic electrolyte publication-title: J Electrochem Soc doi: 10.1149/1.2129079 – volume: 10 start-page: 35175 issue: 41 year: 2018 ident: e_1_3_3_39_2 article-title: Assessment on the self-discharge behavior of lithium–sulfur batteries with LiNO3-possessing electrolytes publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b11890 |
SSID | ssj0002875733 |
Score | 2.560808 |
Snippet | Lithium–sulfur (Li–S) batteries are considered as one of the most promising next-generation energy storage devices because of their ultrahigh theoretical... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
Title | Protecting lithium metal anodes in lithium–sulfur batteries: A review |
URI | https://doaj.org/article/760ec94de72146fdb5eb565c29c03fe5 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCGorqxEztsBVEqJBADlbpFfoqiNkVtw8x_4B_ySzg7aRUWWNgSy46iu5PvO5_vO4QuwEQSMBSfGmQkYi4xkdKsG8lUKJllnArtM7oPj-lgyO5HyajR6svfCavogSvBdXhKrM6Ysdy3oHZGJVYBCNFxpgl1NrCXgs9rBFOv4ciIe6K_qkrGb9S0Y0MtHcBAad59_oH88EQNwv7gWfo7aLuGhLhX_cou2rDFHtpqEAXuo7unik4BXjDg5pdxOcVTC7gZy2Jm7AKPi9X418fnopy4co5VoM6ESPgK93BVonKAhv3b55tBVLdAiDRN-DLiREuaCsK1odpI5gjTlAutY9iWDBWxE8IZLlgSqzh28Eh1DFLqxpan3Ch6iFrFrLBHCFMDztuSRFIpWaaVIM4aBehCZNzplLZRdyWOXNf84L5NxSSHOCGIMG-K0F-GI210uV7zVrFj_Dr72kt5PdMzW4cB0Hde6zv_S9_H__GRE7Tp28ZXRymnqLWcl_YMwMVSnQc7-gbIkdJX |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protecting+lithium+metal+anodes+in+lithium%E2%80%93sulfur+batteries%3A+A+review&rft.jtitle=Energy+material+advances&rft.au=Bi%2C+Chen-Xi&rft.au=Hou%2C+Li-Peng&rft.au=Li%2C+Zheng&rft.au=Zhao%2C+Meng&rft.date=2023&rft.issn=2692-7640&rft.eissn=2692-7640&rft.volume=4&rft_id=info:doi/10.34133%2Fenergymatadv.0010&rft.externalDBID=n%2Fa&rft.externalDocID=10_34133_energymatadv_0010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-7640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-7640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-7640&client=summon |