Synergy effect of polyaspartic acid and D-phenylalanine on corrosion inhibition caused by Desulfovibrio vulgaris
Microbiologically influenced corrosion (MIC) poses a threat to various fields, particularly in piping and cooling water systems. As a green corrosion inhibitor, polyaspartic acid (PASP) faces challenges in achieving the intended corrosion inhibition against MIC due to biofilm. Therefore, mitigating...
Saved in:
Published in | Frontiers in materials Vol. 11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
02.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microbiologically influenced corrosion (MIC) poses a threat to various fields, particularly in piping and cooling water systems. As a green corrosion inhibitor, polyaspartic acid (PASP) faces challenges in achieving the intended corrosion inhibition against MIC due to biofilm. Therefore, mitigating biofilm might be the key to improving the corrosion inhibition of PASP. D-Phenylalanine (D-Phe) was selected as an enhancer to promote the inhibition of PASP on MIC caused by
Desulfovibrio vulgaris
due to its potential role in biofilm formation in this work. The joint application of PASP and D-Phe reduced the corrosion rate by 76.54% and obviously decreased the depth of corrosion pits with the maximum depth at 0.95 µm. Also, fewer cells adhered to the coupon surface due to the combined action of PASP and D-Phe, leading to thin and loose biofilm. Besides, both cathodic and anodic reactions were retarded with PASP and D-Phe, resulting in a low corrosion current at 0.530 × 10
−7
A/cm
2
. The primary synergy mechanism is that D-Phe promoted the formation of PASP protective film via decreasing bacterial adhesion and thus inhibited electrochemical reaction and electron utilization of cells from metal surface. This study introduces a novel strategy to augment the effectiveness of PASP in inhibiting MIC. |
---|---|
AbstractList | Microbiologically influenced corrosion (MIC) poses a threat to various fields, particularly in piping and cooling water systems. As a green corrosion inhibitor, polyaspartic acid (PASP) faces challenges in achieving the intended corrosion inhibition against MIC due to biofilm. Therefore, mitigating biofilm might be the key to improving the corrosion inhibition of PASP. D-Phenylalanine (D-Phe) was selected as an enhancer to promote the inhibition of PASP on MIC caused by
Desulfovibrio vulgaris
due to its potential role in biofilm formation in this work. The joint application of PASP and D-Phe reduced the corrosion rate by 76.54% and obviously decreased the depth of corrosion pits with the maximum depth at 0.95 µm. Also, fewer cells adhered to the coupon surface due to the combined action of PASP and D-Phe, leading to thin and loose biofilm. Besides, both cathodic and anodic reactions were retarded with PASP and D-Phe, resulting in a low corrosion current at 0.530 × 10
−7
A/cm
2
. The primary synergy mechanism is that D-Phe promoted the formation of PASP protective film via decreasing bacterial adhesion and thus inhibited electrochemical reaction and electron utilization of cells from metal surface. This study introduces a novel strategy to augment the effectiveness of PASP in inhibiting MIC. Microbiologically influenced corrosion (MIC) poses a threat to various fields, particularly in piping and cooling water systems. As a green corrosion inhibitor, polyaspartic acid (PASP) faces challenges in achieving the intended corrosion inhibition against MIC due to biofilm. Therefore, mitigating biofilm might be the key to improving the corrosion inhibition of PASP. D-Phenylalanine (D-Phe) was selected as an enhancer to promote the inhibition of PASP on MIC caused by Desulfovibrio vulgaris due to its potential role in biofilm formation in this work. The joint application of PASP and D-Phe reduced the corrosion rate by 76.54% and obviously decreased the depth of corrosion pits with the maximum depth at 0.95 µm. Also, fewer cells adhered to the coupon surface due to the combined action of PASP and D-Phe, leading to thin and loose biofilm. Besides, both cathodic and anodic reactions were retarded with PASP and D-Phe, resulting in a low corrosion current at 0.530 × 10−7 A/cm2. The primary synergy mechanism is that D-Phe promoted the formation of PASP protective film via decreasing bacterial adhesion and thus inhibited electrochemical reaction and electron utilization of cells from metal surface. This study introduces a novel strategy to augment the effectiveness of PASP in inhibiting MIC. |
Author | Ding, Chengcheng Song, Chao Pang, Bo Wang, Shuguang Li, Hongyi |
Author_xml | – sequence: 1 givenname: Bo surname: Pang fullname: Pang, Bo – sequence: 2 givenname: Hongyi surname: Li fullname: Li, Hongyi – sequence: 3 givenname: Chengcheng surname: Ding fullname: Ding, Chengcheng – sequence: 4 givenname: Chao surname: Song fullname: Song, Chao – sequence: 5 givenname: Shuguang surname: Wang fullname: Wang, Shuguang |
BookMark | eNp9UctKJDEUDYMD46N_YFb5gWrzqKpUloOO2iC4UNfhVnKrO1ImRVIt1N-bbh2QWbi6hwvncB5n5CTEgIT85mwtZacvh1eY81owUa-51OWIH-RUCN1WHePtyRf8i6xyfmGMcSmamotTMj0uAdN2oTgMaGcaBzrFcYE8QZq9pWC9oxAcva6mHYZlhBGCD0hjoDamFLMvyIed7_18gBb2GR3tF3qNeT8O8c33yUf6th-3kHy-ID8HGDOuPu85eb75-3R1V90_3G6u_txXVjZqrlonmHJKMYtK6wYEtsUyNEpJjaq3XcN53SMKzpD1rAF0Aju0g-ZCKAfynGw-dF2EFzMl_wppMRG8OT5i2ppjwhFNKyQXstU9llLaDnVtu9qp0iNjsjyLVvehZUvenHAw1s9wiDsn8KPhzByGMMchzGEI8zlEoYr_qP-sfEN6B-0dkHQ |
CitedBy_id | crossref_primary_10_1016_j_jwpe_2024_106395 |
Cites_doi | 10.1016/j.jmst.2017.11.025 10.1111/j.1574-6976.2008.00102.x 10.1016/j.corsci.2009.12.015 10.1002/lio2.34 10.1021/acsomega.3c05625 10.1016/j.corsci.2021.109493 10.1016/j.corsci.2013.04.039 10.1016/j.jmst.2020.05.031 10.1016/j.watres.2020.115470 10.1016/j.corsci.2016.04.042 10.1128/MMBR.00041-08 10.1016/j.watres.2017.11.037 10.1016/j.corsci.2018.05.015 10.1007/s42243-022-00853-w 10.1016/j.copbio.2004.05.001 10.1038/s41598-017-07312-7 10.1016/j.cis.2018.10.005 10.1021/acsinfecdis.2c00469 10.1016/j.corsci.2013.12.010 10.1016/j.watres.2017.06.009 10.1038/s41579-023-00920-3 10.1016/j.corsci.2022.110922 10.1016/j.watres.2021.117397 10.1126/science.1188628 10.1016/j.scitotenv.2017.09.223 10.1016/j.corsci.2017.10.023 10.1016/j.ibiod.2012.10.014 10.1016/j.ibiod.2018.11.007 10.1016/j.corsci.2020.109082 10.1016/j.corsci.2022.110911 10.1016/j.corsci.2020.108993 10.1149/1.2411965 10.1016/S0010-938X(99)00088-8 10.1111/1758-2229.12346 10.1016/j.jmst.2018.10.026 10.1016/j.cej.2016.11.088 10.1016/j.corsci.2013.11.004 10.1021/ie200370v 10.1016/j.envres.2023.115754 10.1108/00035599810198769 10.1016/j.micres.2022.127107 10.1016/j.bioelechem.2016.03.003 10.1016/j.corsci.2014.11.035 10.1016/j.bioelechem.2014.06.010 10.1016/j.molliq.2017.11.160 10.1016/j.desal.2015.03.006 10.1126/science.1178123 10.1128/mbio.00076-23 10.1016/j.jelechem.2023.117945 10.1016/j.corsci.2024.111847 10.1016/j.corsci.2024.111931 10.1016/j.corsci.2013.04.058 10.1002/maco.200905511 10.1128/MMBR.00001-06 10.1016/j.electacta.2010.10.033 10.1016/j.corsci.2007.11.032 10.1007/s00018-010-0571-8 10.1016/j.bioelechem.2023.108633 10.1111/j.1462-2920.2007.01398.x 10.1016/j.bioelechem.2021.107951 10.1016/j.watres.2016.01.037 10.1016/j.ibiod.2017.11.027 10.1016/j.corsci.2013.06.001 10.1021/acsnano.7b06211 10.1016/j.jmst.2018.09.011 10.1016/j.bioelechem.2016.03.008 10.1016/j.memsci.2011.04.030 10.1021/acs.est.0c08712 10.1093/femsre/fuad041 10.3389/fmicb.2018.00683 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fmats.2024.1390242 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2296-8016 |
ExternalDocumentID | oai_doaj_org_article_62312369be25468e94c84d7242003be2 10_3389_fmats_2024_1390242 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADMLS AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c357t-6d207d770ce7995a2e6325a57739e7bc85114bee210e0b05aed2e8ecf91227da3 |
IEDL.DBID | DOA |
ISSN | 2296-8016 |
IngestDate | Wed Aug 27 01:26:55 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 Tue Jul 01 04:30:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-6d207d770ce7995a2e6325a57739e7bc85114bee210e0b05aed2e8ecf91227da3 |
OpenAccessLink | https://doaj.org/article/62312369be25468e94c84d7242003be2 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_62312369be25468e94c84d7242003be2 crossref_citationtrail_10_3389_fmats_2024_1390242 crossref_primary_10_3389_fmats_2024_1390242 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-02 |
PublicationDateYYYYMMDD | 2024-04-02 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-02 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in materials |
PublicationYear | 2024 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Lv (B38) 2022; 143 Woodard (B54) 2023; 14 Zhang (B69); 101 Vasudevan (B49) 1998; 45 Wang (B52) 2023; 951 Bucher (B5) 2015; 7 Saverina (B44) 2023; 9 Rott (B41) 2017; 122 Qian (B40) 2013; 75 Dramsi (B13) 2008; 32 Castaneda (B7) 2008; 50 Beech (B4) 2004; 15 Xu (B57) 2018; 34 Kokalj (B30) 2023; 212 Vahdati (B47) 2022; 263 Wang (B53); 230 Hasson (B20) 2011; 50 (B15) 2007 Starosvetsky (B45) 2000; 42 Gong (B17) 2023; 8 Kolodkin-Gal (B31) 2010; 328 Wang (B50) 2020; 177 Jia (B22); 130 Xu (B56) 2016; 110 Li (B35) 2021; 188 Cava (B8) 2011; 68 Jia (B23) 2019; 137 Yu (B62) 2016; 92 Zhong (B70) 2020; 172 Clark (B11) 2007; 9 Yu (B63) 2018; 130 Unsal (B46) 2016; 110 Hegazy (B21) 2014; 81 Aliashkevich (B2) 2018; 9 AlAbbas (B1) 2013; 78 Ye (B60) 2023; 30 Chilkoor (B10) 2018; 12 Li (B34) 2018; 127 Gu (B18) 2019; 35 Xu (B55) 2023; 21 Aramaki (B3) 1969; 116 Jia (B25); 139 Gao (B16) 2015; 365 Lam (B33) 2009; 325 Cui (B12) 2011; 62 Wang (B51); 229 Pu (B39) 2023; 211 Farag (B14) 2013; 74 Zeino (B65) 2018; 250 Hao (B19) 2016; 110 Valcarce (B48) 2010; 52 Cheng (B9) 2024; 156 Jiang (B26) 2017; 311 Zhu (B71) 2021; 202 Xu (B58) 2011; 376 Zhang (B67) 2011; 56 Liu (B37) 2021; 61 Carniello (B6) 2018; 261 Knisz (B29) 2023; 47 Zhang (B66); 94 Kao (B27) 2017; 2 Kozlica (B32) 2021; 182 Zhang (B68) 2021; 55 Li (B36) 2023; 227 Yuan (B64) 2013; 74 Jia (B24) 2017; 7 Xu (B59) 2019; 35 Young (B61) 2006; 70 San (B43) 2014; 79 Rott (B42) 2018; 615 Karatan (B28) 2009; 73 |
References_xml | – volume: 34 start-page: 1325 year: 2018 ident: B57 article-title: Enhanced resistance of 2205 cu-bearing duplex stainless steel towards microbiologically influenced corrosion by marine aerobic pseudomonas aeruginosa biofilms publication-title: J. Mater Sci. Technol. doi: 10.1016/j.jmst.2017.11.025 – volume: 32 start-page: 307 year: 2008 ident: B13 article-title: Covalent attachment of proteins to peptidoglycan publication-title: Fems Microbiol. Rev. doi: 10.1111/j.1574-6976.2008.00102.x – volume: 52 start-page: 1413 year: 2010 ident: B48 article-title: Phosphate ions used as green inhibitor against copper corrosion in tap water publication-title: Corros. Sci. doi: 10.1016/j.corsci.2009.12.015 – volume: 2 start-page: 4 year: 2017 ident: B27 article-title: D-amino acids do not inhibit pseudomonas aeruginosa biofilm formation publication-title: Laryngoscope Investig. Otolaryngol. doi: 10.1002/lio2.34 – volume: 8 start-page: 39709 year: 2023 ident: B17 article-title: Glutamic acid enhances the corrosion inhibition of polyaspartic acid on q235 carbon steel publication-title: Acs Omega doi: 10.1021/acsomega.3c05625 – volume: 188 start-page: 109493 year: 2021 ident: B35 article-title: Electron donor dependent inhibition mechanisms of d-phenylalanine on corrosion of q235 carbon steel caused by desulfovibrio sp. Huiquan2017 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2021.109493 – volume: 74 start-page: 168 year: 2013 ident: B14 article-title: Synergistic inhibition effect of potassium iodide and novel schiff bases on x65 steel corrosion in 0.5 m h2so4 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2013.04.039 – volume: 61 start-page: 234 year: 2021 ident: B37 article-title: Influence of cementite spheroidization on relieving the micro-galvanic effect of ferrite-pearlite steel in acidic chloride environment publication-title: J. Mater Sci. Technol. doi: 10.1016/j.jmst.2020.05.031 – volume: 172 start-page: 115470 year: 2020 ident: B70 article-title: Decreasing microbially influenced metal corrosion using free nitrous acid in a simulated water injection system publication-title: Water Res. doi: 10.1016/j.watres.2020.115470 – volume: 110 start-page: 296 year: 2016 ident: B19 article-title: Sustained effect of remaining cementite on the corrosion behavior of ferrite-pearlite steel under the simulated bottom plate environment of cargo oil tank publication-title: Corros. Sci. doi: 10.1016/j.corsci.2016.04.042 – volume: 73 start-page: 310 year: 2009 ident: B28 article-title: Signals, regulatory networks, and materials that build and break bacterial biofilms publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00041-08 – volume: 130 start-page: 105 year: 2018 ident: B63 article-title: D-tyrosine loaded nanocomposite membranes for environmental-friendly, long-term biofouling control publication-title: Water Res. doi: 10.1016/j.watres.2017.11.037 – volume: 139 start-page: 301 ident: B25 article-title: An enhanced oil recovery polymer promoted microbial growth and accelerated microbiologically influenced corrosion against carbon steel publication-title: Corros. Sci. doi: 10.1016/j.corsci.2018.05.015 – volume: 30 start-page: 1879 year: 2023 ident: B60 article-title: Mitigating corrosion of deposit-covered carbon steel in solution containing sulfate-reducing bacteria by purging nitrogen publication-title: J. Iron Steel Res. Int. doi: 10.1007/s42243-022-00853-w – volume: 15 start-page: 181 year: 2004 ident: B4 article-title: Biocorrosion: towards understanding interactions between biofilms and metals publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2004.05.001 – volume: 7 start-page: 6946 year: 2017 ident: B24 article-title: Mitigation of a nitrate reducing pseudomonas aeruginosa biofilm and anaerobic biocorrosion using ciprofloxacin enhanced by d-tyrosine publication-title: Sci. Rep. doi: 10.1038/s41598-017-07312-7 – volume: 261 start-page: 1 year: 2018 ident: B6 article-title: Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2018.10.005 – volume: 9 start-page: 394 year: 2023 ident: B44 article-title: From antibacterial to antibiofilm targeting: an emerging paradigm shift in the development of quaternary ammonium compounds (qacs) publication-title: Acs Infect. Dis. doi: 10.1021/acsinfecdis.2c00469 – volume: 81 start-page: 54 year: 2014 ident: B21 article-title: Three novel di-quaternary ammonium salts as corrosion inhibitors for api x65 steel pipeline in acidic solution. Part i: experimental results publication-title: Corros. Sci. doi: 10.1016/j.corsci.2013.12.010 – volume: 122 start-page: 345 year: 2017 ident: B41 article-title: Removal of phosphonates from industrial wastewater with uv/feii, fenton and uv/fenton treatment publication-title: Water Res. doi: 10.1016/j.watres.2017.06.009 – volume: 21 start-page: 705 year: 2023 ident: B55 article-title: Microbially mediated metal corrosion publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-023-00920-3 – volume: 212 start-page: 110922 year: 2023 ident: B30 article-title: Considering the concept of synergism in corrosion inhibition publication-title: Corros. Sci. doi: 10.1016/j.corsci.2022.110922 – volume: 202 start-page: 117397 year: 2021 ident: B71 article-title: Degradation of phosphonates in co(ii)/peroxymonosulfate process: performance and mechanism publication-title: Water Res. doi: 10.1016/j.watres.2021.117397 – volume: 328 start-page: 627 year: 2010 ident: B31 article-title: D-amino acids trigger biofilm disassembly publication-title: Science doi: 10.1126/science.1188628 – volume: 615 start-page: 1176 year: 2018 ident: B42 article-title: Organophosphonates: a review on environmental relevance, biodegradability and removal in wastewater treatment plants publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.223 – volume: 130 start-page: 1 ident: B22 article-title: Effects of biogenic h2s on the microbiologically influenced corrosion of c1018 carbon steel by sulfate reducing desulfovibrio vulgaris biofilm publication-title: Corros. Sci. doi: 10.1016/j.corsci.2017.10.023 – volume: 78 start-page: 34 year: 2013 ident: B1 article-title: Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (api-5l x80) publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2012.10.014 – volume: 137 start-page: 42 year: 2019 ident: B23 article-title: Microbiologically influenced corrosion and current mitigation strategies: a state of the art review publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2018.11.007 – volume: 182 start-page: 109082 year: 2021 ident: B32 article-title: Synergistic effect of 2-mercaptobenzimidazole and octylphosphonic acid as corrosion inhibitors for copper and aluminium – an electrochemical, xps, ftir and dft study publication-title: Corros. Sci. doi: 10.1016/j.corsci.2020.109082 – volume: 211 start-page: 110911 year: 2023 ident: B39 article-title: Biogenic h2s and extracellular electron transfer resulted in two-coexisting mechanisms in 90/10 cu-ni alloy corrosion by a sulfate-reducing bacteria publication-title: Corros. Sci. doi: 10.1016/j.corsci.2022.110911 – volume: 177 start-page: 108993 year: 2020 ident: B50 article-title: Distinguishing two different microbiologically influenced corrosion (mic) mechanisms using an electron mediator and hydrogen evolution detection publication-title: Corros. Sci. doi: 10.1016/j.corsci.2020.108993 – volume: 116 start-page: 568 year: 1969 ident: B3 article-title: Inhibition mechanism of medium-sized polymethyleneimine publication-title: J. Electrochem Soc. doi: 10.1149/1.2411965 – volume: 42 start-page: 345 year: 2000 ident: B45 article-title: Effect of iron exposure in srb media on pitting initiation publication-title: Corros. Sci. doi: 10.1016/S0010-938X(99)00088-8 – volume: 7 start-page: 990 year: 2015 ident: B5 article-title: Disturbance of the bacterial cell wall specifically interferes with biofilm formation publication-title: Environ. Microbiol. Rep. doi: 10.1111/1758-2229.12346 – volume: 35 start-page: 631 year: 2019 ident: B18 article-title: Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria publication-title: J. Mater Sci. Technol. doi: 10.1016/j.jmst.2018.10.026 – volume: 311 start-page: 135 year: 2017 ident: B26 article-title: Polyethersulfone membranes modified with d-tyrosine for biofouling mitigation: synergistic effect of surface hydrophility and anti-microbial properties publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.11.088 – volume: 79 start-page: 177 year: 2014 ident: B43 article-title: Microbially influenced corrosion and inhibition of nickel-zinc and nickel-copper coatings by pseudomonas aeruginosa publication-title: Corros. Sci. doi: 10.1016/j.corsci.2013.11.004 – volume: 50 start-page: 7601 year: 2011 ident: B20 article-title: State of the art of friendly “green” scale control inhibitors: a review article publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie200370v – volume: 227 start-page: 115754 year: 2023 ident: B36 article-title: Enhanced inhibition of hedp on srb-mediated corrosion with d-phenylalanine publication-title: Environ. Res. doi: 10.1016/j.envres.2023.115754 – volume: 45 start-page: 120 year: 1998 ident: B49 article-title: Inhibition of corrosion of mild steel in acidic solutions by quaternary salts of pyridinium bases publication-title: Anti-Corros Methods Mater doi: 10.1108/00035599810198769 – volume: 263 start-page: 127107 year: 2022 ident: B47 article-title: New insights into the inhibitory roles and mechanisms of d-amino acids in bacterial biofilms in medicine, industry, and agriculture publication-title: Microbiol. Res. doi: 10.1016/j.micres.2022.127107 – volume: 110 start-page: 52 year: 2016 ident: B56 article-title: Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2016.03.003 – volume: 94 start-page: 6 ident: B66 article-title: Synergistic corrosion inhibition of environment-friendly inhibitors on the corrosion of carbon steel in soft water publication-title: Corros. Sci. doi: 10.1016/j.corsci.2014.11.035 – volume: 101 start-page: 14 ident: B69 article-title: Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the desulfovibrio vulgaris biofilm publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2014.06.010 – volume: 250 start-page: 50 year: 2018 ident: B65 article-title: Mechanistic study of polyaspartic acid (pasp) as eco-friendly corrosion inhibitor on mild steel in 3% nacl aerated solution publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.11.160 – volume: 365 start-page: 220 year: 2015 ident: B16 article-title: Synthesis of polyaspartic acid derivative and evaluation of its corrosion and scale inhibition performance in seawater utilization publication-title: Desalination doi: 10.1016/j.desal.2015.03.006 – volume: 325 start-page: 1552 year: 2009 ident: B33 article-title: D-amino acids govern stationary phase cell wall remodeling in bacteria publication-title: Science doi: 10.1126/science.1178123 – volume: 14 start-page: e0007623 year: 2023 ident: B54 article-title: H2 is a major intermediate in desulfovibrio vulgaris corrosion of iron publication-title: Mbio doi: 10.1128/mbio.00076-23 – volume: 951 start-page: 117945 year: 2023 ident: B52 article-title: Sulfate-reducing bacteria-based bioelectrochemical system for heavy metal wastewater treatment: mechanisms, operating factors, and future challenges publication-title: J. Electroanal. Chem. (Lausanne) doi: 10.1016/j.jelechem.2023.117945 – volume: 229 start-page: 111847 ident: B51 article-title: Eco-friendly bifunctional antibacterial and anticorrosive broad-spectrum rosin thiourea iminazole quaternary ammonium salt against microbiologically influenced corrosion publication-title: Corros. Sci. doi: 10.1016/j.corsci.2024.111847 – start-page: 1 volume-title: Basics of electrochemical impedance spectroscopy, complex impedance in corrosion year: 2007 ident: B15 – volume: 230 start-page: 111931 ident: B53 article-title: Effects of carbon source starvation and riboflavin addition on selective corrosion of welded joint by desulfovibrio vulgaris publication-title: Corros. Sci. doi: 10.1016/j.corsci.2024.111931 – volume: 74 start-page: 353 year: 2013 ident: B64 article-title: Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria publication-title: Corros. Sci. doi: 10.1016/j.corsci.2013.04.058 – volume: 62 start-page: 362 year: 2011 ident: B12 article-title: Polyaspartic acid as a green corrosion inhibitor for carbon steel publication-title: Mater. Corros. doi: 10.1002/maco.200905511 – volume: 70 start-page: 660 year: 2006 ident: B61 article-title: The selective value of bacterial shape publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00001-06 – volume: 56 start-page: 1636 year: 2011 ident: B67 article-title: Electrochemical and afm studies of mussel adhesive protein (mefp-1) as corrosion inhibitor for carbon steel publication-title: Electrochim Acta doi: 10.1016/j.electacta.2010.10.033 – volume: 50 start-page: 1169 year: 2008 ident: B7 article-title: Srb-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions publication-title: Corros. Sci. doi: 10.1016/j.corsci.2007.11.032 – volume: 68 start-page: 817 year: 2011 ident: B8 article-title: Emerging knowledge of regulatory roles of d-amino acids in bacteria publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-010-0571-8 – volume: 156 start-page: 108633 year: 2024 ident: B9 article-title: The influence of srb on corrosion behavior of cu-based medium-entropy alloy coating sprayed by hvof publication-title: Bioelectrochemistry Amst. Neth. doi: 10.1016/j.bioelechem.2023.108633 – volume: 9 start-page: 2844 year: 2007 ident: B11 article-title: Biofilm formation in desulfovibrio vulgaris hildenborough is dependent upon protein filaments publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2007.01398.x – volume: 143 start-page: 107951 year: 2022 ident: B38 article-title: Investigation of mixed species biofilm on corrosion of x65 steel in seawater environment publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2021.107951 – volume: 92 start-page: 173 year: 2016 ident: B62 article-title: Inhibition of biofilm formation by d-tyrosine: effect of bacterial type and d-tyrosine concentration publication-title: Water Res. doi: 10.1016/j.watres.2016.01.037 – volume: 127 start-page: 178 year: 2018 ident: B34 article-title: D-phenylalanine inhibits the corrosion of q235 carbon steel caused by desulfovibrio sp publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2017.11.027 – volume: 75 start-page: 184 year: 2013 ident: B40 article-title: Synergistic effect of polyaspartic acid and iodide ion on corrosion inhibition of mild steel in h2so4 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2013.06.001 – volume: 12 start-page: 2242 year: 2018 ident: B10 article-title: Hexagonal boron nitride: the thinnest insulating barrier to microbial corrosion publication-title: Acs Nano doi: 10.1021/acsnano.7b06211 – volume: 35 start-page: 109 year: 2019 ident: B59 article-title: Effects of d-phenylalanine as a biocide enhancer of thps against the microbiologically influenced corrosion of c1018 carbon steel publication-title: J. Mater Sci. Technol. doi: 10.1016/j.jmst.2018.09.011 – volume: 110 start-page: 91 year: 2016 ident: B46 article-title: Effects of ag and cu ions on the microbial corrosion of 316l stainless steel in the presence of desulfovibrio sp publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2016.03.008 – volume: 376 start-page: 266 year: 2011 ident: B58 article-title: D-amino acid mitigated membrane biofouling and promoted biofilm detachment publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.04.030 – volume: 55 start-page: 4964 year: 2021 ident: B68 article-title: Flagella and their properties affect the transport and deposition behaviors of escherichia coli in quartz sand publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c08712 – volume: 47 start-page: fuad041 year: 2023 ident: B29 article-title: Microbiologically influenced corrosion-more than just microorganisms publication-title: Fems Microbiol. Rev. doi: 10.1093/femsre/fuad041 – volume: 9 start-page: 683 year: 2018 ident: B2 article-title: New insights into the mechanisms and biological roles of d-amino acids in complex eco-systems publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00683 |
SSID | ssj0001325412 |
Score | 2.2596364 |
Snippet | Microbiologically influenced corrosion (MIC) poses a threat to various fields, particularly in piping and cooling water systems. As a green corrosion... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | biofilm corrosion inhibition D-amino acids polyaspartic acid sulfate-reducing bacteria |
Title | Synergy effect of polyaspartic acid and D-phenylalanine on corrosion inhibition caused by Desulfovibrio vulgaris |
URI | https://doaj.org/article/62312369be25468e94c84d7242003be2 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kXvQgPrG-2IM3iSabxybHai1FrJda6C3sY4KFkhSbFvrvnUliiRe9eF12ssu3w858YeZbxm4zYcHHwOzEICwSlACcxAXluAlYg5RIxT71O4_eouEkeJmG09ZTX1QTVssD18A9YHgmgZBEAym3x5AEJg6sxMiC_oiDdPtizGuRqervio-zPVF3yeCSCR6TKkmeWwT3mPRQZPoRiVqC_VVkGRyygyYl5L16K0dsB_Jjtt8SCjxhi_Gm6tHjdfkFLzK-KOYbhdcBWXFlZpar3PK-QzVbmzkVLKI5L3KO9BLXR_j5LP-Y6apEixu1WoLlesOReK7mWbGm0v-Cr1fU2jFbnrLJ4Pn9aeg0byU4xg9l6URWuNJK6RogiTclIEIIVCiln4DUhhKrQAMgwwNXu6ECKyAGkyWeENIq_4x18iKHc8aVr4XWksiZCUicJk4ADeMohMCTWdRl3jduqWmExOk9i3mKhIKwTiusU8I6bbDusrutzaKW0fh19iMdx3YmSWBXA-gYaeMY6V-OcfEfH7lke7SxqlRHXLFO-bmCa8xCSn3Ddnv90ev4pnK8L2bq2sM |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergy+effect+of+polyaspartic+acid+and+D-phenylalanine+on+corrosion+inhibition+caused+by+Desulfovibrio+vulgaris&rft.jtitle=Frontiers+in+materials&rft.au=Pang%2C+Bo&rft.au=Li%2C+Hongyi&rft.au=Ding%2C+Chengcheng&rft.au=Song%2C+Chao&rft.date=2024-04-02&rft.issn=2296-8016&rft.eissn=2296-8016&rft.volume=11&rft_id=info:doi/10.3389%2Ffmats.2024.1390242&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmats_2024_1390242 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-8016&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-8016&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-8016&client=summon |