Detecting Low-Quality Workers in QoE Crowdtesting: A Worker Behavior-Based Approach

QoE crowdtesting is increasingly popular among researchers to conduct subjective assessments of network services. Experimenters can easily access a huge pool of human subjects through crowdsourcing platforms. Without any supervision, low-quality workers, however, can threaten the reliability of the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on multimedia Vol. 19; no. 3; pp. 530 - 543
Main Authors Mok, Ricky K. P., Chang, Rocky K. C., Weichao Li
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1520-9210
1941-0077
DOI10.1109/TMM.2016.2619901

Cover

Loading…
Abstract QoE crowdtesting is increasingly popular among researchers to conduct subjective assessments of network services. Experimenters can easily access a huge pool of human subjects through crowdsourcing platforms. Without any supervision, low-quality workers, however, can threaten the reliability of the assessments. One of the approaches in classifying the quality of workers is to analyze their behavior during the experiments, such as mouse cursor trajectory. However, existing works analyze the trajectory coarsely, which cannot fully extract the imbedded information. In this paper, we propose a novel method to detect low-quality workers in QoE crowdtesting by analyzing the worker behavior. Our approach is to construct a predictive model by using supervised learning algorithms. A quality score is computed by applying existing anti-cheating techniques and human inspections to label the workers. We define a set of ten worker behavior metrics, which quantifies different types of worker behavior, including finer-grained cursor trajectory analysis. A multiclass Naïve Bayes classifier is applied to train a model to predict the quality of workers from the metrics. We have conducted video QoE assessments on Amazon Mechanical Turk and CrowdFlower to collect the worker behavior. Our results show that the error rates of the model trained from four metrics are equal or less than 30%. We further find that combining the predictions from the four different 5-point Likert scale rating methods can improve the success rate in detecting low-quality workers to around 80%. Finally, our method is 16.5% and 42.9% better in precision and recall than CrowdMOS.
AbstractList QoE crowdtesting is increasingly popular among researchers to conduct subjective assessments of network services. Experimenters can easily access a huge pool of human subjects through crowdsourcing platforms. Without any supervision, low-quality workers, however, can threaten the reliability of the assessments. One of the approaches in classifying the quality of workers is to analyze their behavior during the experiments, such as mouse cursor trajectory. However, existing works analyze the trajectory coarsely, which cannot fully extract the imbedded information. In this paper, we propose a novel method to detect low-quality workers in QoE crowdtesting by analyzing the worker behavior. Our approach is to construct a predictive model by using supervised learning algorithms. A quality score is computed by applying existing anti-cheating techniques and human inspections to label the workers. We define a set of ten worker behavior metrics, which quantifies different types of worker behavior, including finer-grained cursor trajectory analysis. A multiclass Naïve Bayes classifier is applied to train a model to predict the quality of workers from the metrics. We have conducted video QoE assessments on Amazon Mechanical Turk and CrowdFlower to collect the worker behavior. Our results show that the error rates of the model trained from four metrics are equal or less than 30%. We further find that combining the predictions from the four different 5-point Likert scale rating methods can improve the success rate in detecting low-quality workers to around 80%. Finally, our method is 16.5% and 42.9% better in precision and recall than CrowdMOS.
QoE crowdtesting is increasingly popular among researchers to conduct subjective assessments of network services. Experimenters can easily access a huge pool of human subjects through crowdsourcing platforms. Without any supervision, low-quality workers, however, can threaten the reliability of the assessments. One of the approaches in classifying the quality of workers is to analyze their behavior during the experiments, such as mouse cursor trajectory. However, existing works analyze the trajectory coarsely, which cannot fully extract the imbedded information. In this paper, we propose a novel method to detect low-quality workers in QoE crowdtesting by analyzing the worker behavior. Our approach is to construct a predictive model by using supervised learning algorithms. A quality score is computed by applying existing anti-cheating techniques and human inspections to label the workers. We define a set of ten worker behavior metrics , which quantifies different types of worker behavior, including finer-grained cursor trajectory analysis. A multiclass Nïve Bayes classifier is applied to train a model to predict the quality of workers from the metrics. We have conducted video QoE assessments on Amazon Mechanical Turk and CrowdFlower to collect the worker behavior. Our results show that the error rates of the model trained from four metrics are equal or less than 30%. We further find that combining the predictions from the four different 5-point Likert scale rating methods can improve the success rate in detecting low-quality workers to around 80%. Finally, our method is 16.5% and 42.9% better in precision and recall than CrowdMOS.
Author Mok, Ricky K. P.
Weichao Li
Chang, Rocky K. C.
Author_xml – sequence: 1
  givenname: Ricky K. P.
  surname: Mok
  fullname: Mok, Ricky K. P.
  email: cs.rickymok@connect.polyu.hk
  organization: Dept. of Comput., Hong Kong Polytech. Univ., Hong Kong, China
– sequence: 2
  givenname: Rocky K. C.
  surname: Chang
  fullname: Chang, Rocky K. C.
  email: csrchang@comp.polyu.edu.hk
  organization: Dept. of Comput., Hong Kong Polytech. Univ., Hong Kong, China
– sequence: 3
  surname: Weichao Li
  fullname: Weichao Li
  email: csweicli@comp.polyu.edu.hk
  organization: Dept. of Comput., Hong Kong Polytech. Univ., Hong Kong, China
BookMark eNp9kM1PAjEQxRuDiYDeTbw08bw43e621BvgZwIxRIzHpnS7UsQttkXif28JxIMHTzPJ_N68l9dBrcY1BqFzAj1CQFzNJpNeDoT1ckaEAHKE2kQUJAPgvJX2ModM5AROUCeEJQApSuBt9HxjotHRNm947LbZdKNWNn7jV-ffjQ_YNnjqbvHIu20VTdhx13hwOOOhWagv63w2VMFUeLBee6f04hQd12oVzNlhdtHL3e1s9JCNn-4fR4NxpmnJY8a0MiUnuqCq1FrRuoAUkKqCzyuVK4BKm3lthBZ9QSpS1bTuc61KzlgtmChoF13u_ybbz01KJ5du45tkKUk_AVCwHBLF9pT2LgRvaqltVNG6JnplV5KA3BUoU4FyV6A8FJiE8Ee49vZD-e__JBd7iTXG_OKcQQElpT88UH0K
CODEN ITMUF8
CitedBy_id crossref_primary_10_1109_MWC_001_1900406
crossref_primary_10_1155_2021_8859618
crossref_primary_10_3390_app9040721
crossref_primary_10_3390_s21155007
crossref_primary_10_1007_s10664_018_9618_5
crossref_primary_10_1109_TMM_2020_2973828
crossref_primary_10_1109_MNET_011_1900393
crossref_primary_10_1109_TCCN_2021_3118460
crossref_primary_10_2197_ipsjjip_27_51
crossref_primary_10_1007_s42452_019_0983_5
crossref_primary_10_1109_ACCESS_2018_2794354
crossref_primary_10_1109_TMM_2022_3203211
crossref_primary_10_1002_widm_1288
crossref_primary_10_1109_MCI_2019_2937608
crossref_primary_10_1109_TETC_2018_2805718
crossref_primary_10_1109_TNSM_2024_3491432
Cites_doi 10.1145/634067.634234
10.1145/2155555.2155558
10.1109/MNET.2010.5430141
10.1145/2534142.2534151
10.1145/2348283.2348400
10.1109/TMM.2013.2291663
10.1145/2835776.2835835
10.1109/CCE.2014.6916756
10.1016/j.comnet.2015.07.003
10.1145/2661829.2661909
10.1109/ICIP.2011.6116320
10.1145/2207676.2208705
10.1145/2380116.2380125
10.1145/2047196.2047199
10.1145/1390334.1390462
10.1145/2487575.2487595
10.1007/978-3-540-78139-4_40
10.1145/2187836.2187900
10.1109/QoMEX.2013.6603196
10.1017/S1930297500002205
10.1145/2396761.2398570
10.1109/JSAC.2016.2559078
10.1109/IWQoS.2015.7404734
10.1080/01449290412331327474
10.1109/TMM.2013.2241043
10.3758/BRM.42.1.226
10.1016/j.tics.2009.04.009
10.1109/ICASSP.2011.5946971
10.1145/2911451.2911505
10.1007/s10791-011-9181-9
10.1145/2506364.2506368
10.1109/PCS.2012.6213338
10.1145/1753326.1753688
10.1145/2187836.2187914
10.1145/1978942.1979125
10.1109/PV.2012.6229729
10.1037/0033-295X.95.3.340
10.1080/00140130010020530
10.1109/ICC.2014.6883463
10.1145/2676652.2676656
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TMM.2016.2619901
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 543
ExternalDocumentID 10_1109_TMM_2016_2619901
7604053
Genre orig-research
GrantInformation_xml – fundername: Hong Kong Polytechnic University
  grantid: G-YBAK
  funderid: 10.13039/501100004377
– fundername: Joint Universities Computer Centre of Hong Kong
  grantid: H-ZL17
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-6cae571c43a5cca3f409213a47bda2a00dcebfe9c9891d1df3f87ca5766f96943
IEDL.DBID RIE
ISSN 1520-9210
IngestDate Mon Jun 30 02:36:06 EDT 2025
Tue Jul 01 00:53:25 EDT 2025
Thu Apr 24 22:53:20 EDT 2025
Tue Aug 26 16:38:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-6cae571c43a5cca3f409213a47bda2a00dcebfe9c9891d1df3f87ca5766f96943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1869404620
PQPubID 75737
PageCount 14
ParticipantIDs proquest_journals_1869404620
crossref_primary_10_1109_TMM_2016_2619901
ieee_primary_7604053
crossref_citationtrail_10_1109_TMM_2016_2619901
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
paolacci (ref11) 2010; 5
ref14
ref10
ref17
ref16
(ref39) 2014
ref19
ref18
ref51
ref46
ref48
ref47
ref42
ref41
ref43
ref49
ref7
kraft (ref8) 0
ref6
ref5
ref35
ref34
ref37
ref36
ref30
ref33
ref32
buchholz (ref9) 0
ref2
ref1
ref38
(ref50) 2014
difallah (ref40) 0
soberon (ref45) 0
salas (ref3) 0
soleymani (ref31) 0
ref24
(ref44) 1998
ref23
hoßfeld (ref4) 0
ref26
ref25
ref20
ref22
rennie (ref21) 0
ref28
ref27
ref29
References_xml – ident: ref46
  doi: 10.1145/634067.634234
– ident: ref48
  doi: 10.1145/2155555.2155558
– start-page: 494
  year: 0
  ident: ref4
  article-title: Quantification of YouTube QoE via crowdsourcing
  publication-title: Proc IEEE Int Symp Multimedia
– ident: ref6
  doi: 10.1109/MNET.2010.5430141
– ident: ref10
  doi: 10.1145/2534142.2534151
– ident: ref30
  doi: 10.1145/2348283.2348400
– ident: ref1
  doi: 10.1109/TMM.2013.2291663
– ident: ref27
  doi: 10.1145/2835776.2835835
– ident: ref18
  doi: 10.1109/CCE.2014.6916756
– ident: ref12
  doi: 10.1016/j.comnet.2015.07.003
– ident: ref37
  doi: 10.1145/2661829.2661909
– ident: ref7
  doi: 10.1109/ICIP.2011.6116320
– ident: ref36
  doi: 10.1145/2207676.2208705
– ident: ref24
  doi: 10.1145/2380116.2380125
– ident: ref17
  doi: 10.1145/2047196.2047199
– ident: ref32
  doi: 10.1145/1390334.1390462
– ident: ref28
  doi: 10.1145/2487575.2487595
– ident: ref25
  doi: 10.1007/978-3-540-78139-4_40
– ident: ref14
  doi: 10.1145/2187836.2187900
– start-page: 45
  year: 0
  ident: ref45
  article-title: Measuring crowd truth: Disagreement metrics combined with worker behavior filters
  publication-title: Proc 1st Int Conf Crowdsourcing Semantic Web
– ident: ref43
  doi: 10.1109/QoMEX.2013.6603196
– volume: 5
  start-page: 411
  year: 2010
  ident: ref11
  article-title: Running experiments on amazon mechanical turk
  publication-title: Measurement, Judgment and Decision Making
  doi: 10.1017/S1930297500002205
– ident: ref35
  doi: 10.1145/2396761.2398570
– year: 2014
  ident: ref50
  article-title: RateIt plugin for jQuery
– start-page: 4
  year: 0
  ident: ref31
  article-title: Crowdsourcing for affective annotation of video: Development of a viewer-reported boredom corpus
  publication-title: Proc of the ACM SIGIR 2010 on Crowdsourcing for Search Evaluation
– ident: ref49
  doi: 10.1109/JSAC.2016.2559078
– ident: ref22
  doi: 10.1109/IWQoS.2015.7404734
– ident: ref42
  doi: 10.1080/01449290412331327474
– ident: ref13
  doi: 10.1109/TMM.2013.2241043
– start-page: 3053
  year: 0
  ident: ref9
  article-title: Crowdsourcing preference tests, and how to detect cheating
  publication-title: Proc ISCA Interspeech
– ident: ref20
  doi: 10.3758/BRM.42.1.226
– year: 2014
  ident: ref39
  article-title: Amazon Mechanical Turk API Reference
– year: 1998
  ident: ref44
  article-title: Subjective Audiovisual Quality Assessment Methods for Multimedia Applications
– ident: ref19
  doi: 10.1016/j.tics.2009.04.009
– ident: ref23
  doi: 10.1109/ICASSP.2011.5946971
– ident: ref38
  doi: 10.1145/2911451.2911505
– start-page: 26
  year: 0
  ident: ref40
  article-title: Mechanical cheat: Spamming schemes and adversarial techniques on crowdsourcing platforms
  publication-title: Proc Workshop Crowdsourcing Web Search
– ident: ref16
  doi: 10.1007/s10791-011-9181-9
– ident: ref15
  doi: 10.1145/2506364.2506368
– ident: ref51
  doi: 10.1109/PCS.2012.6213338
– start-page: 23
  year: 0
  ident: ref3
  article-title: Assessing Internet video quality using crowdsourcing
  publication-title: Proc 2nd ACM Int Workshop Crowdsourcing for Multimedia
– ident: ref29
  doi: 10.1145/1753326.1753688
– ident: ref34
  doi: 10.1145/2187836.2187914
– ident: ref33
  doi: 10.1145/1978942.1979125
– ident: ref2
  doi: 10.1109/PV.2012.6229729
– ident: ref41
  doi: 10.1037/0033-295X.95.3.340
– year: 0
  ident: ref8
  article-title: BeaqleJS: HTML5 and JavaScript based framework for the subjective evaluation of audio quality
  publication-title: Proc Linux Conf Au
– ident: ref47
  doi: 10.1080/00140130010020530
– start-page: 616
  year: 0
  ident: ref21
  article-title: Tackling the poor assumptions of Naive Bayes text classifiers
  publication-title: Proc 20th Int Conf Mach Learn
– ident: ref26
  doi: 10.1109/ICC.2014.6883463
– ident: ref5
  doi: 10.1145/2676652.2676656
SSID ssj0014507
Score 2.28628
Snippet QoE crowdtesting is increasingly popular among researchers to conduct subjective assessments of network services. Experimenters can easily access a huge pool...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 530
SubjectTerms Bayesian analysis
cheater detection
Crowdsourcing
Machine learning
Mathematical models
Measurement
Mice
Prediction models
Predictive models
QoE
QoE Crowdtesting
Quality
Reliability
Reliability analysis
Streaming media
Subjective assessment
Trajectories
Trajectory
Trajectory analysis
worker behavior
Workers
Title Detecting Low-Quality Workers in QoE Crowdtesting: A Worker Behavior-Based Approach
URI https://ieeexplore.ieee.org/document/7604053
https://www.proquest.com/docview/1869404620
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6qJz34aBXrixy8CKbdbLKPeKvVUsQKooK3JZuHiLIV3SL66012s0VUxFtgNxD4ksx8mZlvAA4kETw3IsApMTlmoRA4NUrhwLDUGlRtcukKhSeX8fiWnd9Fdy04mtfCaK2r5DPdc8Mqlq-mcuaeyvpJbLdcRBdgwRK3ulZrHjFgUVUabc1RgLnlMU1IMuD9m8nE5XDFPccWuG__0pigqqfKj4u4si6jVZg066qTSh57szLvyY9vko3_XfgarHg3Ew3qfbEOLV20YbVp4YD8iW7D8hc9wg5cn2oXU7BjdDF9w7W-xjtyD-rWS0QPBbqanqGhZe6qdOocxf0xGvjPyCstvuATaxgVGnix8g24HZ3dDMfYd13AkkZJiWMpdJQQyaiILLzUWAYYEipYkisRiiBQUudGc8lTThRRhpo0kcLyltjwmDO6CYvFtNBbgKTioSA6MoRZR0VIezeoUFGRMkVJnqgu9BsgMuklyV1njKesoiYBzyx0mYMu89B14XA-47mW4_jj345DYv6fB6ELuw3WmT-vr5lrzMVcnW6w_fusHVgKnUGvss92YbF8mek9646U-X61Dz8BY2ncUA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyQxEC58HHQPvmVnfeWwF8HMdDrpR7yNL0adFmRH8Nak8xBRekR7WPTXm3Snh0UX8RboDgS-JF9VquorgN-SCF4YEeCUmAKzUAicGqVwYFhqCVWbQrpC4ewqHtywi9vodgYOprUwWus6-Ux33bCO5auxnLinsl4S2y0X0VmYt7zPeFOtNY0ZsKgujraEFGBuPZk2KBnw3ijLXBZX3HX-AvcNYFoSqruqfLqKa345W4asXVmTVvLQnVRFV759EG387tJXYMkbmqjf7IxVmNHlGiy3TRyQP9Nr8OMfRcJ1-HOiXVTBjtFw_Bc3ChuvyD2pWzsR3ZfoenyKjq3vriqnz1HeHaK-_4y81uIzPrLUqFDfy5VvwM3Z6eh4gH3fBSxplFQ4lkJHCZGMisgCTI31AUNCBUsKJUIRBErqwmguecqJIspQkyZSWM8lNjzmjG7CXDku9U9AUvFQEB0ZwqypIqS9HVSoqEiZoqRIVAd6LRC59KLkrjfGY147JwHPLXS5gy730HVgfzrjqRHk-OLfdYfE9D8PQge2W6xzf2Jfcteai7lK3eDX_2ftwcJglA3z4fnV5RYsho7e61y0bZirnid6xxonVbFb78l3HgffoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Low-Quality+Workers+in+QoE+Crowdtesting%3A+A+Worker+Behavior-Based+Approach&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Mok%2C+Ricky+K.+P.&rft.au=Chang%2C+Rocky+K.+C.&rft.au=Weichao+Li&rft.date=2017-03-01&rft.pub=IEEE&rft.issn=1520-9210&rft.volume=19&rft.issue=3&rft.spage=530&rft.epage=543&rft_id=info:doi/10.1109%2FTMM.2016.2619901&rft.externalDocID=7604053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon