Detecting Low-Quality Workers in QoE Crowdtesting: A Worker Behavior-Based Approach
QoE crowdtesting is increasingly popular among researchers to conduct subjective assessments of network services. Experimenters can easily access a huge pool of human subjects through crowdsourcing platforms. Without any supervision, low-quality workers, however, can threaten the reliability of the...
Saved in:
Published in | IEEE transactions on multimedia Vol. 19; no. 3; pp. 530 - 543 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1520-9210 1941-0077 |
DOI | 10.1109/TMM.2016.2619901 |
Cover
Loading…
Abstract | QoE crowdtesting is increasingly popular among researchers to conduct subjective assessments of network services. Experimenters can easily access a huge pool of human subjects through crowdsourcing platforms. Without any supervision, low-quality workers, however, can threaten the reliability of the assessments. One of the approaches in classifying the quality of workers is to analyze their behavior during the experiments, such as mouse cursor trajectory. However, existing works analyze the trajectory coarsely, which cannot fully extract the imbedded information. In this paper, we propose a novel method to detect low-quality workers in QoE crowdtesting by analyzing the worker behavior. Our approach is to construct a predictive model by using supervised learning algorithms. A quality score is computed by applying existing anti-cheating techniques and human inspections to label the workers. We define a set of ten worker behavior metrics, which quantifies different types of worker behavior, including finer-grained cursor trajectory analysis. A multiclass Naïve Bayes classifier is applied to train a model to predict the quality of workers from the metrics. We have conducted video QoE assessments on Amazon Mechanical Turk and CrowdFlower to collect the worker behavior. Our results show that the error rates of the model trained from four metrics are equal or less than 30%. We further find that combining the predictions from the four different 5-point Likert scale rating methods can improve the success rate in detecting low-quality workers to around 80%. Finally, our method is 16.5% and 42.9% better in precision and recall than CrowdMOS. |
---|---|
AbstractList | QoE crowdtesting is increasingly popular among researchers to conduct subjective assessments of network services. Experimenters can easily access a huge pool of human subjects through crowdsourcing platforms. Without any supervision, low-quality workers, however, can threaten the reliability of the assessments. One of the approaches in classifying the quality of workers is to analyze their behavior during the experiments, such as mouse cursor trajectory. However, existing works analyze the trajectory coarsely, which cannot fully extract the imbedded information. In this paper, we propose a novel method to detect low-quality workers in QoE crowdtesting by analyzing the worker behavior. Our approach is to construct a predictive model by using supervised learning algorithms. A quality score is computed by applying existing anti-cheating techniques and human inspections to label the workers. We define a set of ten worker behavior metrics, which quantifies different types of worker behavior, including finer-grained cursor trajectory analysis. A multiclass Naïve Bayes classifier is applied to train a model to predict the quality of workers from the metrics. We have conducted video QoE assessments on Amazon Mechanical Turk and CrowdFlower to collect the worker behavior. Our results show that the error rates of the model trained from four metrics are equal or less than 30%. We further find that combining the predictions from the four different 5-point Likert scale rating methods can improve the success rate in detecting low-quality workers to around 80%. Finally, our method is 16.5% and 42.9% better in precision and recall than CrowdMOS. QoE crowdtesting is increasingly popular among researchers to conduct subjective assessments of network services. Experimenters can easily access a huge pool of human subjects through crowdsourcing platforms. Without any supervision, low-quality workers, however, can threaten the reliability of the assessments. One of the approaches in classifying the quality of workers is to analyze their behavior during the experiments, such as mouse cursor trajectory. However, existing works analyze the trajectory coarsely, which cannot fully extract the imbedded information. In this paper, we propose a novel method to detect low-quality workers in QoE crowdtesting by analyzing the worker behavior. Our approach is to construct a predictive model by using supervised learning algorithms. A quality score is computed by applying existing anti-cheating techniques and human inspections to label the workers. We define a set of ten worker behavior metrics , which quantifies different types of worker behavior, including finer-grained cursor trajectory analysis. A multiclass Nïve Bayes classifier is applied to train a model to predict the quality of workers from the metrics. We have conducted video QoE assessments on Amazon Mechanical Turk and CrowdFlower to collect the worker behavior. Our results show that the error rates of the model trained from four metrics are equal or less than 30%. We further find that combining the predictions from the four different 5-point Likert scale rating methods can improve the success rate in detecting low-quality workers to around 80%. Finally, our method is 16.5% and 42.9% better in precision and recall than CrowdMOS. |
Author | Mok, Ricky K. P. Weichao Li Chang, Rocky K. C. |
Author_xml | – sequence: 1 givenname: Ricky K. P. surname: Mok fullname: Mok, Ricky K. P. email: cs.rickymok@connect.polyu.hk organization: Dept. of Comput., Hong Kong Polytech. Univ., Hong Kong, China – sequence: 2 givenname: Rocky K. C. surname: Chang fullname: Chang, Rocky K. C. email: csrchang@comp.polyu.edu.hk organization: Dept. of Comput., Hong Kong Polytech. Univ., Hong Kong, China – sequence: 3 surname: Weichao Li fullname: Weichao Li email: csweicli@comp.polyu.edu.hk organization: Dept. of Comput., Hong Kong Polytech. Univ., Hong Kong, China |
BookMark | eNp9kM1PAjEQxRuDiYDeTbw08bw43e621BvgZwIxRIzHpnS7UsQttkXif28JxIMHTzPJ_N68l9dBrcY1BqFzAj1CQFzNJpNeDoT1ckaEAHKE2kQUJAPgvJX2ModM5AROUCeEJQApSuBt9HxjotHRNm947LbZdKNWNn7jV-ffjQ_YNnjqbvHIu20VTdhx13hwOOOhWagv63w2VMFUeLBee6f04hQd12oVzNlhdtHL3e1s9JCNn-4fR4NxpmnJY8a0MiUnuqCq1FrRuoAUkKqCzyuVK4BKm3lthBZ9QSpS1bTuc61KzlgtmChoF13u_ybbz01KJ5du45tkKUk_AVCwHBLF9pT2LgRvaqltVNG6JnplV5KA3BUoU4FyV6A8FJiE8Ee49vZD-e__JBd7iTXG_OKcQQElpT88UH0K |
CODEN | ITMUF8 |
CitedBy_id | crossref_primary_10_1109_MWC_001_1900406 crossref_primary_10_1155_2021_8859618 crossref_primary_10_3390_app9040721 crossref_primary_10_3390_s21155007 crossref_primary_10_1007_s10664_018_9618_5 crossref_primary_10_1109_TMM_2020_2973828 crossref_primary_10_1109_MNET_011_1900393 crossref_primary_10_1109_TCCN_2021_3118460 crossref_primary_10_2197_ipsjjip_27_51 crossref_primary_10_1007_s42452_019_0983_5 crossref_primary_10_1109_ACCESS_2018_2794354 crossref_primary_10_1109_TMM_2022_3203211 crossref_primary_10_1002_widm_1288 crossref_primary_10_1109_MCI_2019_2937608 crossref_primary_10_1109_TETC_2018_2805718 crossref_primary_10_1109_TNSM_2024_3491432 |
Cites_doi | 10.1145/634067.634234 10.1145/2155555.2155558 10.1109/MNET.2010.5430141 10.1145/2534142.2534151 10.1145/2348283.2348400 10.1109/TMM.2013.2291663 10.1145/2835776.2835835 10.1109/CCE.2014.6916756 10.1016/j.comnet.2015.07.003 10.1145/2661829.2661909 10.1109/ICIP.2011.6116320 10.1145/2207676.2208705 10.1145/2380116.2380125 10.1145/2047196.2047199 10.1145/1390334.1390462 10.1145/2487575.2487595 10.1007/978-3-540-78139-4_40 10.1145/2187836.2187900 10.1109/QoMEX.2013.6603196 10.1017/S1930297500002205 10.1145/2396761.2398570 10.1109/JSAC.2016.2559078 10.1109/IWQoS.2015.7404734 10.1080/01449290412331327474 10.1109/TMM.2013.2241043 10.3758/BRM.42.1.226 10.1016/j.tics.2009.04.009 10.1109/ICASSP.2011.5946971 10.1145/2911451.2911505 10.1007/s10791-011-9181-9 10.1145/2506364.2506368 10.1109/PCS.2012.6213338 10.1145/1753326.1753688 10.1145/2187836.2187914 10.1145/1978942.1979125 10.1109/PV.2012.6229729 10.1037/0033-295X.95.3.340 10.1080/00140130010020530 10.1109/ICC.2014.6883463 10.1145/2676652.2676656 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TMM.2016.2619901 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0077 |
EndPage | 543 |
ExternalDocumentID | 10_1109_TMM_2016_2619901 7604053 |
Genre | orig-research |
GrantInformation_xml | – fundername: Hong Kong Polytechnic University grantid: G-YBAK funderid: 10.13039/501100004377 – fundername: Joint Universities Computer Centre of Hong Kong grantid: H-ZL17 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 VH1 ZY4 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c357t-6cae571c43a5cca3f409213a47bda2a00dcebfe9c9891d1df3f87ca5766f96943 |
IEDL.DBID | RIE |
ISSN | 1520-9210 |
IngestDate | Mon Jun 30 02:36:06 EDT 2025 Tue Jul 01 00:53:25 EDT 2025 Thu Apr 24 22:53:20 EDT 2025 Tue Aug 26 16:38:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-6cae571c43a5cca3f409213a47bda2a00dcebfe9c9891d1df3f87ca5766f96943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1869404620 |
PQPubID | 75737 |
PageCount | 14 |
ParticipantIDs | proquest_journals_1869404620 crossref_primary_10_1109_TMM_2016_2619901 ieee_primary_7604053 crossref_citationtrail_10_1109_TMM_2016_2619901 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on multimedia |
PublicationTitleAbbrev | TMM |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 paolacci (ref11) 2010; 5 ref14 ref10 ref17 ref16 (ref39) 2014 ref19 ref18 ref51 ref46 ref48 ref47 ref42 ref41 ref43 ref49 ref7 kraft (ref8) 0 ref6 ref5 ref35 ref34 ref37 ref36 ref30 ref33 ref32 buchholz (ref9) 0 ref2 ref1 ref38 (ref50) 2014 difallah (ref40) 0 soberon (ref45) 0 salas (ref3) 0 soleymani (ref31) 0 ref24 (ref44) 1998 ref23 hoßfeld (ref4) 0 ref26 ref25 ref20 ref22 rennie (ref21) 0 ref28 ref27 ref29 |
References_xml | – ident: ref46 doi: 10.1145/634067.634234 – ident: ref48 doi: 10.1145/2155555.2155558 – start-page: 494 year: 0 ident: ref4 article-title: Quantification of YouTube QoE via crowdsourcing publication-title: Proc IEEE Int Symp Multimedia – ident: ref6 doi: 10.1109/MNET.2010.5430141 – ident: ref10 doi: 10.1145/2534142.2534151 – ident: ref30 doi: 10.1145/2348283.2348400 – ident: ref1 doi: 10.1109/TMM.2013.2291663 – ident: ref27 doi: 10.1145/2835776.2835835 – ident: ref18 doi: 10.1109/CCE.2014.6916756 – ident: ref12 doi: 10.1016/j.comnet.2015.07.003 – ident: ref37 doi: 10.1145/2661829.2661909 – ident: ref7 doi: 10.1109/ICIP.2011.6116320 – ident: ref36 doi: 10.1145/2207676.2208705 – ident: ref24 doi: 10.1145/2380116.2380125 – ident: ref17 doi: 10.1145/2047196.2047199 – ident: ref32 doi: 10.1145/1390334.1390462 – ident: ref28 doi: 10.1145/2487575.2487595 – ident: ref25 doi: 10.1007/978-3-540-78139-4_40 – ident: ref14 doi: 10.1145/2187836.2187900 – start-page: 45 year: 0 ident: ref45 article-title: Measuring crowd truth: Disagreement metrics combined with worker behavior filters publication-title: Proc 1st Int Conf Crowdsourcing Semantic Web – ident: ref43 doi: 10.1109/QoMEX.2013.6603196 – volume: 5 start-page: 411 year: 2010 ident: ref11 article-title: Running experiments on amazon mechanical turk publication-title: Measurement, Judgment and Decision Making doi: 10.1017/S1930297500002205 – ident: ref35 doi: 10.1145/2396761.2398570 – year: 2014 ident: ref50 article-title: RateIt plugin for jQuery – start-page: 4 year: 0 ident: ref31 article-title: Crowdsourcing for affective annotation of video: Development of a viewer-reported boredom corpus publication-title: Proc of the ACM SIGIR 2010 on Crowdsourcing for Search Evaluation – ident: ref49 doi: 10.1109/JSAC.2016.2559078 – ident: ref22 doi: 10.1109/IWQoS.2015.7404734 – ident: ref42 doi: 10.1080/01449290412331327474 – ident: ref13 doi: 10.1109/TMM.2013.2241043 – start-page: 3053 year: 0 ident: ref9 article-title: Crowdsourcing preference tests, and how to detect cheating publication-title: Proc ISCA Interspeech – ident: ref20 doi: 10.3758/BRM.42.1.226 – year: 2014 ident: ref39 article-title: Amazon Mechanical Turk API Reference – year: 1998 ident: ref44 article-title: Subjective Audiovisual Quality Assessment Methods for Multimedia Applications – ident: ref19 doi: 10.1016/j.tics.2009.04.009 – ident: ref23 doi: 10.1109/ICASSP.2011.5946971 – ident: ref38 doi: 10.1145/2911451.2911505 – start-page: 26 year: 0 ident: ref40 article-title: Mechanical cheat: Spamming schemes and adversarial techniques on crowdsourcing platforms publication-title: Proc Workshop Crowdsourcing Web Search – ident: ref16 doi: 10.1007/s10791-011-9181-9 – ident: ref15 doi: 10.1145/2506364.2506368 – ident: ref51 doi: 10.1109/PCS.2012.6213338 – start-page: 23 year: 0 ident: ref3 article-title: Assessing Internet video quality using crowdsourcing publication-title: Proc 2nd ACM Int Workshop Crowdsourcing for Multimedia – ident: ref29 doi: 10.1145/1753326.1753688 – ident: ref34 doi: 10.1145/2187836.2187914 – ident: ref33 doi: 10.1145/1978942.1979125 – ident: ref2 doi: 10.1109/PV.2012.6229729 – ident: ref41 doi: 10.1037/0033-295X.95.3.340 – year: 0 ident: ref8 article-title: BeaqleJS: HTML5 and JavaScript based framework for the subjective evaluation of audio quality publication-title: Proc Linux Conf Au – ident: ref47 doi: 10.1080/00140130010020530 – start-page: 616 year: 0 ident: ref21 article-title: Tackling the poor assumptions of Naive Bayes text classifiers publication-title: Proc 20th Int Conf Mach Learn – ident: ref26 doi: 10.1109/ICC.2014.6883463 – ident: ref5 doi: 10.1145/2676652.2676656 |
SSID | ssj0014507 |
Score | 2.28628 |
Snippet | QoE crowdtesting is increasingly popular among researchers to conduct subjective assessments of network services. Experimenters can easily access a huge pool... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 530 |
SubjectTerms | Bayesian analysis cheater detection Crowdsourcing Machine learning Mathematical models Measurement Mice Prediction models Predictive models QoE QoE Crowdtesting Quality Reliability Reliability analysis Streaming media Subjective assessment Trajectories Trajectory Trajectory analysis worker behavior Workers |
Title | Detecting Low-Quality Workers in QoE Crowdtesting: A Worker Behavior-Based Approach |
URI | https://ieeexplore.ieee.org/document/7604053 https://www.proquest.com/docview/1869404620 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6qJz34aBXrixy8CKbdbLKPeKvVUsQKooK3JZuHiLIV3SL66012s0VUxFtgNxD4ksx8mZlvAA4kETw3IsApMTlmoRA4NUrhwLDUGlRtcukKhSeX8fiWnd9Fdy04mtfCaK2r5DPdc8Mqlq-mcuaeyvpJbLdcRBdgwRK3ulZrHjFgUVUabc1RgLnlMU1IMuD9m8nE5XDFPccWuG__0pigqqfKj4u4si6jVZg066qTSh57szLvyY9vko3_XfgarHg3Ew3qfbEOLV20YbVp4YD8iW7D8hc9wg5cn2oXU7BjdDF9w7W-xjtyD-rWS0QPBbqanqGhZe6qdOocxf0xGvjPyCstvuATaxgVGnix8g24HZ3dDMfYd13AkkZJiWMpdJQQyaiILLzUWAYYEipYkisRiiBQUudGc8lTThRRhpo0kcLyltjwmDO6CYvFtNBbgKTioSA6MoRZR0VIezeoUFGRMkVJnqgu9BsgMuklyV1njKesoiYBzyx0mYMu89B14XA-47mW4_jj345DYv6fB6ELuw3WmT-vr5lrzMVcnW6w_fusHVgKnUGvss92YbF8mek9646U-X61Dz8BY2ncUA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyQxEC58HHQPvmVnfeWwF8HMdDrpR7yNL0adFmRH8Nak8xBRekR7WPTXm3Snh0UX8RboDgS-JF9VquorgN-SCF4YEeCUmAKzUAicGqVwYFhqCVWbQrpC4ewqHtywi9vodgYOprUwWus6-Ux33bCO5auxnLinsl4S2y0X0VmYt7zPeFOtNY0ZsKgujraEFGBuPZk2KBnw3ijLXBZX3HX-AvcNYFoSqruqfLqKa345W4asXVmTVvLQnVRFV759EG387tJXYMkbmqjf7IxVmNHlGiy3TRyQP9Nr8OMfRcJ1-HOiXVTBjtFw_Bc3ChuvyD2pWzsR3ZfoenyKjq3vriqnz1HeHaK-_4y81uIzPrLUqFDfy5VvwM3Z6eh4gH3fBSxplFQ4lkJHCZGMisgCTI31AUNCBUsKJUIRBErqwmguecqJIspQkyZSWM8lNjzmjG7CXDku9U9AUvFQEB0ZwqypIqS9HVSoqEiZoqRIVAd6LRC59KLkrjfGY147JwHPLXS5gy730HVgfzrjqRHk-OLfdYfE9D8PQge2W6xzf2Jfcteai7lK3eDX_2ftwcJglA3z4fnV5RYsho7e61y0bZirnid6xxonVbFb78l3HgffoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Low-Quality+Workers+in+QoE+Crowdtesting%3A+A+Worker+Behavior-Based+Approach&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Mok%2C+Ricky+K.+P.&rft.au=Chang%2C+Rocky+K.+C.&rft.au=Weichao+Li&rft.date=2017-03-01&rft.pub=IEEE&rft.issn=1520-9210&rft.volume=19&rft.issue=3&rft.spage=530&rft.epage=543&rft_id=info:doi/10.1109%2FTMM.2016.2619901&rft.externalDocID=7604053 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon |