A review of process intensified CO2 capture in RPB for sustainability and contribution to industrial net zero
Carbon dioxide (CO 2 ), a significant greenhouse gas released from power plants and industries, substantially impacts climate change; minimizing it and achieving carbon net zero is essential globally. In the direction of reducing CO 2 emissions into the atmosphere, post-combustion carbon capture fro...
Saved in:
Published in | Frontiers in energy research Vol. 11 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
13.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carbon dioxide (CO
2
), a significant greenhouse gas released from power plants and industries, substantially impacts climate change; minimizing it and achieving carbon net zero is essential globally. In the direction of reducing CO
2
emissions into the atmosphere, post-combustion carbon capture from large point CO
2
emitters by chemical absorption involving the absorption of this gas in a capturing fluid is a commonly used and efficacious mechanism. Researchers have worked on the process using conventional columns. However, process intensification technology is required because of the high capital cost, the absorption column height, and the traditional columns’ low energy efficiency. Rotating packed bed (RPB) process intensification equipment has been identified as a suitable technology for enhanced carbon capture using an absorbing fluid. This article reviews and discusses recent model developments in the post-combustion CO
2
capture process intensification using rotating packed beds. In the literature, various researchers have developed steady-state mathematical models regarding mass balance and energy balance equations in gas and liquid phases using ordinary or partial differential equations. Due to the circular shape, the equations are considered in a radial direction and have been solved using a numerical approach and simulated using different software platforms, viz. MATLAB, FORTRAN, and gPROMS. A comparison of various correlations has been presented. The models predict the mole fraction of absorbed CO
2
and correspond well with the experimental results. Along with these models, an experimental data review on rotating packed bed is also included in this work. |
---|---|
AbstractList | Carbon dioxide (CO
2
), a significant greenhouse gas released from power plants and industries, substantially impacts climate change; minimizing it and achieving carbon net zero is essential globally. In the direction of reducing CO
2
emissions into the atmosphere, post-combustion carbon capture from large point CO
2
emitters by chemical absorption involving the absorption of this gas in a capturing fluid is a commonly used and efficacious mechanism. Researchers have worked on the process using conventional columns. However, process intensification technology is required because of the high capital cost, the absorption column height, and the traditional columns’ low energy efficiency. Rotating packed bed (RPB) process intensification equipment has been identified as a suitable technology for enhanced carbon capture using an absorbing fluid. This article reviews and discusses recent model developments in the post-combustion CO
2
capture process intensification using rotating packed beds. In the literature, various researchers have developed steady-state mathematical models regarding mass balance and energy balance equations in gas and liquid phases using ordinary or partial differential equations. Due to the circular shape, the equations are considered in a radial direction and have been solved using a numerical approach and simulated using different software platforms, viz. MATLAB, FORTRAN, and gPROMS. A comparison of various correlations has been presented. The models predict the mole fraction of absorbed CO
2
and correspond well with the experimental results. Along with these models, an experimental data review on rotating packed bed is also included in this work. Carbon dioxide (CO2), a significant greenhouse gas released from power plants and industries, substantially impacts climate change; minimizing it and achieving carbon net zero is essential globally. In the direction of reducing CO2 emissions into the atmosphere, post-combustion carbon capture from large point CO2 emitters by chemical absorption involving the absorption of this gas in a capturing fluid is a commonly used and efficacious mechanism. Researchers have worked on the process using conventional columns. However, process intensification technology is required because of the high capital cost, the absorption column height, and the traditional columns’ low energy efficiency. Rotating packed bed (RPB) process intensification equipment has been identified as a suitable technology for enhanced carbon capture using an absorbing fluid. This article reviews and discusses recent model developments in the post-combustion CO2 capture process intensification using rotating packed beds. In the literature, various researchers have developed steady-state mathematical models regarding mass balance and energy balance equations in gas and liquid phases using ordinary or partial differential equations. Due to the circular shape, the equations are considered in a radial direction and have been solved using a numerical approach and simulated using different software platforms, viz. MATLAB, FORTRAN, and gPROMS. A comparison of various correlations has been presented. The models predict the mole fraction of absorbed CO2 and correspond well with the experimental results. Along with these models, an experimental data review on rotating packed bed is also included in this work. |
Author | Mishra, Poonam Shukla, Chetna Dash, Sukanta Kumar |
Author_xml | – sequence: 1 givenname: Chetna surname: Shukla fullname: Shukla, Chetna – sequence: 2 givenname: Poonam surname: Mishra fullname: Mishra, Poonam – sequence: 3 givenname: Sukanta Kumar surname: Dash fullname: Dash, Sukanta Kumar |
BookMark | eNp9kctKBDEQRYMo-PwBV_mBGdNJOp1e6uALBEUU3IXqpCKRNhmSjKJf7zwUxIWrKi73Xqo4-2Q7poiEHDdsKoTuTzzG_DzljItp04i20XqL7HHeq0nb66ftX_suOSrlhTHWCN7Khu2R11Oa8S3gO02eznOyWAoNsWIswQd0dHbLqYV5XWRc6vT-7oz6lGlZlAohwhDGUD8oREdtijWHYVFDirSmpdstTTnASCNW-ok5HZIdD2PBo-95QB4vzh9mV5Ob28vr2enNxIq2qxOlhx4Hq6zTUmppLWqBoMSAaJV2GtoeODgmbcus6JmXXmLnBs_koAB6cUCuN70uwYuZ5_AK-cMkCGYtpPxsINdgRzSis0wx6YQapATmgHed6jk0qDU6serSmy6bUykZvbGhwurJmiGMpmFmRcGsKZgVBfNNYRnlf6I_p_wT-gKVOpCF |
CitedBy_id | crossref_primary_10_1021_acs_energyfuels_4c01208 crossref_primary_10_1021_acs_langmuir_4c01174 crossref_primary_10_53982_ajerd_2024_0702_26_j crossref_primary_10_1002_slct_202303972 crossref_primary_10_1021_acs_iecr_3c01947 crossref_primary_10_1016_j_seppur_2024_130558 crossref_primary_10_1021_acs_jced_3c00651 crossref_primary_10_1016_j_apenergy_2025_125698 crossref_primary_10_1016_j_cep_2024_110080 crossref_primary_10_1021_acs_iecr_3c03173 crossref_primary_10_3390_separations11010020 crossref_primary_10_1021_acsomega_4c01128 crossref_primary_10_1021_acs_jced_4c00002 crossref_primary_10_1016_j_fuel_2025_134484 crossref_primary_10_1002_elan_202300216 crossref_primary_10_1016_j_jgsce_2025_205560 |
Cites_doi | 10.1016/j.ijggc.2013.12.005 10.1021/ie950662a 10.1016/j.cherd.2016.08.013 10.1016/j.jenvman.2019.109870 10.1021/ie048962s 10.1016/j.apenergy.2017.08.130 10.1016/j.ijheatmasstransfer.2016.02.033 10.1016/j.seppur.2006.08.006 10.1016/j.ces.2019.01.029 10.1016/j.jclepro.2018.09.089 10.1016/j.ijggc.2012.06.017 10.1205/026387699526520 10.1002/aic.690410212 10.1021/ie100899r 10.1021/acs.iecr.1c04587 10.1021/acs.iecr.8b00269 10.1016/j.apenergy.2014.08.108 10.1016/j.jtice.2016.08.046 10.1080/00986448308956351 10.1016/j.ces.2017.06.040 10.1016/j.matpr.2022.01.148 10.3303/CET1976136 10.1021/ie302531j 10.1021/ie060399l 10.1016/j.ijggc.2014.04.011 10.1016/j.cep.2020.107908 10.1016/j.cej.2008.08.004 10.1016/j.cep.2008.03.002 10.1016/j.rser.2016.06.059 10.1021/ie051104r 10.1016/j.seppur.2021.118714 10.1016/j.cjche.2019.01.011 10.1021/ie030630k 10.1002/jctb.5206 10.1016/j.applthermaleng.2008.01.004 10.1016/j.egypro.2009.01.123 10.1016/j.cep.2015.02.007 10.1016/j.ces.2015.07.044 10.1016/j.jclepro.2017.02.108 10.1063/5.0107723 10.1016/j.rser.2015.04.124 10.1016/j.ijggc.2019.05.003 10.1002/er.5404 10.1016/j.ces.2021.117118 10.1021/ie101251z 10.1021/ie9001316 10.1021/ie300466f 10.1016/j.ijggc.2016.11.009 10.1021/ie50343a008 10.1016/j.fluid.2018.01.030 10.1016/S0009-2509(99)00520-5 10.1016/j.seppur.2017.05.049 10.1016/j.seppur.2015.02.008 10.1016/j.jct.2012.02.012 10.1252/jcej.1.62 10.1016/j.apenergy.2023.120747 10.1016/j.cherd.2010.11.005 10.1016/j.apenergy.2019.113941 10.1016/j.ijggc.2013.03.022 10.1016/j.cep.2016.08.015 10.1021/ie030545c 10.1016/j.applthermaleng.2014.02.064 10.1021/ie900894a 10.1016/j.compchemeng.2020.107102 10.1016/j.jngse.2021.103829 10.1002/cjce.22434 10.1080/00986448508911667 10.1016/j.ijggc.2013.02.022 10.1021/ie9009777 10.1021/ie0000818 10.1021/acs.iecr.9b06437 10.1016/j.cej.2007.02.001 10.1016/j.cep.2021.108450 10.1016/j.seppur.2022.121248 10.1016/j.cherd.2018.04.024 10.1016/j.egypro.2013.05.120 10.1016/j.cej.2009.04.013 10.1016/j.apenergy.2015.08.083 10.1016/j.ces.2016.10.023 10.1021/ie1025979 10.1021/ie048815u 10.1016/j.applthermaleng.2018.05.029 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fenrg.2023.1135188 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2296-598X |
ExternalDocumentID | oai_doaj_org_article_37c0604d36b44a0da277692a1e88ed39 10_3389_fenrg_2023_1135188 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c357t-68b9ebc6cd84484cce83ea63beec68d8a59a2ad04c50c390f4f4e7dbf04b6aa93 |
IEDL.DBID | DOA |
ISSN | 2296-598X |
IngestDate | Wed Aug 27 01:27:04 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Tue Jul 01 01:50:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-68b9ebc6cd84484cce83ea63beec68d8a59a2ad04c50c390f4f4e7dbf04b6aa93 |
OpenAccessLink | https://doaj.org/article/37c0604d36b44a0da277692a1e88ed39 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_37c0604d36b44a0da277692a1e88ed39 crossref_citationtrail_10_3389_fenrg_2023_1135188 crossref_primary_10_3389_fenrg_2023_1135188 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-13 |
PublicationDateYYYYMMDD | 2023-04-13 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-13 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in energy research |
PublicationYear | 2023 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Afkhamipour (B1) 2013; 15 Tung (B75) 1985; 39 Chen (B11) 2004; 43 Lu (B49) 2019; 199 Sun (B73) 2009; 48 Chen (B14) 2006; 45 Su (B72) 2018; 57 Ayash (B3) 2022; 2660 Koronaki (B39) 2015; 50 Billet (B5) 1999; 77 Cortes Garcia (B18) 2017; 92 Hendry (B28) 2020; 151 Esmaeili (B24) 2022; 248 Jin (B33) 2019; 76 Jassim (B30) 2002 Podbielniak (B62) 1935 Chu (B17) 2015; 90 Zhan (B85) 2020; 59 Wang (B78) 2011; 89 Jiao (B32) 2010; 49 Lin (B45) 2016; 97 Im (B29) 2020; 143 Liu (B46) 2016; 94 Lockett (B48) 1995; 73 Mallinson (B54) 1981 Cheng (B15) 2013; 16 Rajan (B64) 2011; 50 Chamchan (B8) 2017; 73 Jassim (B31) 2007; 46 Zhao (B89) 2016; 65 Joel (B34) 2015; 74 Mohammadi Nouroddinvand (B56) 2021; 165 Borhani (B6) 2018; 204 Chandra (B9) 2005; 44 Joel (B35) 2014; 21 Lin (B44) 2007; 54 Pan (B60) 2017; 149 Cheng (B16) 2009; 1 Zhao (B88) 2014; 136 Harun (B27) 2012; 10 Wu (B80) 2020; 257 Li (B42) 2016; 114 Reay (B67) 2008; 28 Dash (B19) 2022; 62 Rao (B66) 2022; 61 Wang (B79) 2021; 269 Akanksha (B2) 2007; 133 Rao (B65) 2004; 43 Xie (B81) 2017; 172 Luo (B51); 51 Pandya (B61) 1983; 19 Wang (B77) 2015; 158 Chen (B13) 2005; 44 Keyvani (B38) 1989 Sandilya (B68) 2001; 40 Qian (B63) 2009; 48 Dey (B21) 2018; 463 Shahid (B69) 2021; 88 Gao (B25) 2016; 109 Neumann (B57) 2018; 134 Onda (B58) 1968; 36 Sherwood (B70) 1938; 30 Yi (B84) 2009; 145 Kelleher (B37) 1996; 35 Dhaneesh (B23) 2022; 295 Li (B41) 2013; 37 Dey (B22) 2020; 44 Basic (B4); 41 Wallis (B76) 1969 Luo (B50); 51 Burns (B7) 2000; 55 Dash (B20) 2012; 51 Kang (B36) 2014; 25 Chen (B10) 2020; 255 (B71) 2022 Zhang (B86) 2011; 50 Yang (B83) 2015; 138 Zhang (B87) 2017; 205 Kvamsdal (B40) 2009; 48 Guo (B26) 2019; 27 Otitoju (B59) 2023; 335 Yang (B82) 2010; 156 Luo (B52) 2017; 170 Chen (B12) 2011; 50 Marx-Schubach (B55) 2019; 87 Tsai (B74) 2015; 144 Ma (B53) 2016; 55 Liu (B47) 2018; 140 Li (B43) 2017; 186 |
References_xml | – volume: 21 start-page: 91 year: 2014 ident: B35 article-title: Process analysis of intensified absorber for post-combustion CO2 capture through modelling and simulation publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2013.12.005 – volume: 35 start-page: 4646 year: 1996 ident: B37 article-title: Distillation studies in a high-gravity contactor publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie950662a – volume: 114 start-page: 89 year: 2016 ident: B42 article-title: Modelling of adsorption in rotating packed bed using artificial neural networks (ANN) publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2016.08.013 – volume: 73 start-page: 379 year: 1995 ident: B48 article-title: Flooding of rotating structured packing and its application to conventional packed-columns publication-title: Chem. Eng. Res. Des. – start-page: 48 volume-title: Chem. Eng. Prog. year: 1989 ident: B38 article-title: Operating characteristics of rotating beds – volume: 255 start-page: 109870 year: 2020 ident: B10 article-title: An engineering-environmental-economic-energy assessment for integrated air pollutants reduction, CO2 capture and utilization exemplified by the high-gravity process publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.109870 – volume: 44 start-page: 7868 year: 2005 ident: B13 article-title: Mass transfer in a rotating packed bed with various radii of the bed publication-title: Industrial Eng. Chem. Res. doi: 10.1021/ie048962s – volume-title: Mass transfer process year: 1981 ident: B54 – volume: 205 start-page: 1002 year: 2017 ident: B87 article-title: Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC) publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.08.130 – volume: 97 start-page: 712 year: 2016 ident: B45 article-title: Mass transfer performance of rotating packed beds with blade packings in absorption of CO2 into MEA solution publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.02.033 – volume: 54 start-page: 51 year: 2007 ident: B44 article-title: Characteristics of a rotating packed bed equipped with blade packings publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2006.08.006 – volume: 199 start-page: 302 year: 2019 ident: B49 article-title: Modelling of CO2 absorption in a rotating packed bed using an Eulerian porous media approach publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.01.029 – volume: 204 start-page: 1124 year: 2018 ident: B6 article-title: Process modelling and analysis of intensified CO2 capture using monoethanolamine (MEA) in rotating packed bed absorber publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.09.089 – volume: 10 start-page: 295 year: 2012 ident: B27 article-title: Dynamic simulation of MEA absorption process for CO2 capture from power plants publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2012.06.017 – volume: 77 start-page: 498 year: 1999 ident: B5 article-title: Prediction of mass transfer columns with dumped and arranged packings: Updated summary of the calculation method of Billet and Schultes publication-title: Chem. Eng. Res. Des. doi: 10.1205/026387699526520 – volume: 41 start-page: 301 ident: B4 article-title: Liquid holdup in rotating packed beds: Examination of the film flow assumption publication-title: AIChE J. doi: 10.1002/aic.690410212 – volume: 50 start-page: 986 year: 2011 ident: B64 article-title: Limiting gas liquid flows and mass transfer in a novel rotating packed bed (HiGee) publication-title: Industrial Eng. Chem. Res. doi: 10.1021/ie100899r – volume: 61 start-page: 997 year: 2022 ident: B66 article-title: Commentary: Evolution of high gravity (HiGee) technology publication-title: Industrial Eng. Chem. Res. doi: 10.1021/acs.iecr.1c04587 – volume: 57 start-page: 4743 year: 2018 ident: B72 article-title: Gas-side mass transfer in a rotating packed bed with structured nickel foam packing publication-title: Industrial Eng. Chem. Res. doi: 10.1021/acs.iecr.8b00269 – volume: 136 start-page: 132 year: 2014 ident: B88 article-title: Mass transfer performance of CO2 capture in rotating packed bed: Dimensionless modeling and intelligent prediction publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.08.108 – volume: 73 start-page: 20 year: 2017 ident: B8 article-title: Comparison of rotating packed bed and packed bed absorber in pilot plant and model simulation for CO2 capture publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2016.08.046 – volume: 19 start-page: 343 year: 1983 ident: B61 article-title: Adiabatic gas absorption and stripping with chemical reaction in packed towers publication-title: Chem. Eng. Commun. doi: 10.1080/00986448308956351 – volume: 172 start-page: 216 year: 2017 ident: B81 article-title: Characteristics of liquid flow in a rotating packed bed for CO2 capture: A CFD analysis publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2017.06.040 – volume: 62 start-page: 7072 year: 2022 ident: B19 article-title: Development of efficient absorbent for CO2 capture process based on (AMP + 1MPZ) publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2022.01.148 – volume: 76 start-page: 811 year: 2019 ident: B33 article-title: Rate-based modelling and validation of an absorber and stripper in an amine-based post-combustion CO2 capture process publication-title: Chem. Eng. Trans. doi: 10.3303/CET1976136 – volume: 51 start-page: 16320 ident: B51 article-title: Gas-liquid effective interfacial area in a rotating packed bed publication-title: Industrial Eng. Chem. Res. doi: 10.1021/ie302531j – volume: 45 start-page: 6846 year: 2006 ident: B14 article-title: Packing characteristics for mass transfer in a rotating packed bed publication-title: Industrial Eng. Chem. Res. doi: 10.1021/ie060399l – volume: 25 start-page: 141 year: 2014 ident: B36 article-title: Modeling studies on absorption of CO2 by monoethanolamine in rotating packed bed publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2014.04.011 – volume: 151 start-page: 107908 year: 2020 ident: B28 article-title: Pressure drop and flooding in rotating packed beds publication-title: Chem. Eng. Process. - Process Intensif. doi: 10.1016/j.cep.2020.107908 – volume: 145 start-page: 377 year: 2009 ident: B84 article-title: Modeling and experimental studies on absorption of CO2 by Benfield solution in rotating packed bed publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2008.08.004 – volume: 48 start-page: 135 year: 2009 ident: B40 article-title: Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2008.03.002 – volume: 65 start-page: 44 year: 2016 ident: B89 article-title: Process, performance and modeling of CO2 capture by chemical absorption using high gravity: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.06.059 – volume: 46 start-page: 2823 year: 2007 ident: B31 article-title: Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed publication-title: Industrial Eng. Chem. Res. doi: 10.1021/ie051104r – volume: 269 start-page: 118714 year: 2021 ident: B79 article-title: Carbon dioxide capture by non-aqueous blend in rotating packed bed reactor: Absorption and desorption investigation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.118714 – volume: 27 start-page: 1361 year: 2019 ident: B26 article-title: Applications of high-gravity technologies in gas purifications: A review publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2019.01.011 – volume-title: Centrifugal counter current contact apparatus year: 1935 ident: B62 – volume: 43 start-page: 1150 year: 2004 ident: B65 article-title: Process intensification in rotating packed beds (HIGEE): An appraisal publication-title: Industrial Eng. Chem. Res. doi: 10.1021/ie030630k – volume: 92 start-page: 1136 year: 2017 ident: B18 article-title: A review on process intensification in HiGee distillation publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.5206 – volume: 28 start-page: 2011 year: 2008 ident: B67 article-title: The role of process intensification in cutting greenhouse gas emissions publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2008.01.004 – volume: 1 start-page: 925 year: 2009 ident: B16 article-title: Carbon dioxide capture by blended alkanolamines in rotating packed bed publication-title: Energy Procedia doi: 10.1016/j.egypro.2009.01.123 – volume: 90 start-page: 34 year: 2015 ident: B17 article-title: Studies of CO2 absorption and effective interfacial area in a two-stage rotating packed bed with nickel foam packing publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2015.02.007 – volume: 138 start-page: 244 year: 2015 ident: B83 article-title: A noninvasive X-ray technique for determination of liquid holdup in a rotating packed bed publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2015.07.044 – volume: 149 start-page: 540 year: 2017 ident: B60 article-title: Development of high-gravity technology for removing particulate and gaseous pollutant emissions: Principles and applications publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.02.108 – volume: 2660 year: 2022 ident: B3 article-title: Conventional and non-conventional gas-liquid contacting methods: A critical review and a quantitative evaluation publication-title: AIP Conf. Proc. doi: 10.1063/5.0107723 – volume: 50 start-page: 547 year: 2015 ident: B39 article-title: Modeling of CO2 capture via chemical absorption processes - an extensive literature review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.04.124 – volume: 87 start-page: 44 year: 2019 ident: B55 article-title: Modeling and simulation of the start-up process of coal fired power plants with post-combustion CO2 capture publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2019.05.003 – volume: 44 start-page: 12395 year: 2020 ident: B22 article-title: Analysis of equilibrium CO2 solubility in aqueous APDA and its potential blends with AMP/MDEA for postcombustion CO2 capture publication-title: Int. J. Energy Res. doi: 10.1002/er.5404 – volume: 248 start-page: 117118 year: 2022 ident: B24 article-title: Modeling of carbon dioxide absorption by solution of piperazine and methyldiethanolamine in a rotating packed bed publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.117118 – volume: 50 start-page: 1778 year: 2011 ident: B12 article-title: Correlations of mass transfer coefficients in a rotating packed bed publication-title: Industrial Eng. Chem. Res. doi: 10.1021/ie101251z – volume: 48 start-page: 11175 year: 2009 ident: B73 article-title: Simultaneous absorption of CO2 and NH3 into water in a rotating packed bed publication-title: Industrial Eng. Chem. Res. doi: 10.1021/ie9001316 – volume: 51 start-page: 9164 ident: B50 article-title: Mass transfer studies in a rotating packed bed with novel rotors: Chemisorption of CO 2 publication-title: Industrial Eng. Chem. Res. doi: 10.1021/ie300466f – volume: 55 start-page: 55 year: 2016 ident: B53 article-title: Evaluation of effectiveness of highly concentrated alkanolamine solutions for capturing CO2 in a rotating packed bed publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2016.11.009 – volume: 30 start-page: 765 year: 1938 ident: B70 article-title: Flooding velocities in packed columns publication-title: Ind. Eng. Chem. doi: 10.1021/ie50343a008 – volume: 463 start-page: 91 year: 2018 ident: B21 article-title: Equilibrium CO2 solubility and thermophysical properties of aqueous blends of 1-(2-aminoethyl) piperazine and N-methyldiethanolamine publication-title: Fluid Phase Equilibria doi: 10.1016/j.fluid.2018.01.030 – volume: 55 start-page: 2401 year: 2000 ident: B7 article-title: Process intensification: Operating characteristics of rotating packed beds - determination of liquid hold-up for a high-voidage structured packing publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(99)00520-5 – volume: 186 start-page: 156 year: 2017 ident: B43 article-title: Mass-transfer characteristics in a rotating zigzag bed as a Higee device publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.05.049 – volume: 144 start-page: 139 year: 2015 ident: B74 article-title: Effective interfacial area and liquid-side mass transfer coefficients in a rotating bed equipped with baffles publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2015.02.008 – volume: 51 start-page: 120 year: 2012 ident: B20 article-title: Experimental and theoretical investigation of solubility of carbon dioxide in concentrated aqueous solution of 2-amino-2-methyl-1-propanol and piperazine publication-title: J. Chem. Thermodyn. doi: 10.1016/j.jct.2012.02.012 – volume: 36 start-page: 62 year: 1968 ident: B58 article-title: Gas absorption with chemical reaction in packed columns publication-title: Sammak Trans. Inst. Chem. Engrs doi: 10.1252/jcej.1.62 – volume: 335 start-page: 120747 year: 2023 ident: B59 article-title: Modelling, scale-up and techno-economic assessment of rotating packed bed absorber for CO2 capture from a 250 MWe combined cycle gas turbine power plant publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.120747 – volume: 89 start-page: 1609 year: 2011 ident: B78 article-title: Post-combustion CO2 capture with chemical absorption: A state-of-the-art review publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2010.11.005 – volume: 257 start-page: 113941 year: 2020 ident: B80 article-title: Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113941 – volume: 16 start-page: 206 year: 2013 ident: B15 article-title: Thermal regeneration of alkanolamine solutions in a rotating packed bed publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2013.03.022 – volume: 109 start-page: 68 year: 2016 ident: B25 article-title: Numerical simulation for mass transfer characteristics of CO2 capture in a rotating packed bed publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2016.08.015 – volume: 43 start-page: 228 year: 2004 ident: B11 article-title: Modeling ozone contacting process in a rotating packed bed publication-title: Industrial Eng. Chem. Res. doi: 10.1021/ie030545c – volume: 74 start-page: 47 year: 2015 ident: B34 article-title: Modelling and simulation of intensified absorber for post-combustion CO2 capture using different mass transfer correlations publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.02.064 – volume: 48 start-page: 9261 year: 2009 ident: B63 article-title: Modeling study on absorption of CO2 by aqueous solutions of n-methyldiethanolamine in rotating packed bed publication-title: Industrial Eng. Chem. Res. doi: 10.1021/ie900894a – volume: 143 start-page: 107102 year: 2020 ident: B29 article-title: Modeling, simulation and optimization of the rotating packed bed (RPB) absorber and stripper for MEA-based carbon capture publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.107102 – volume: 88 start-page: 103829 year: 2021 ident: B69 article-title: Packed column modelling and experimental evaluation for CO2 absorption using MDEA solution at high pressure and high CO2 concentrations publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2021.103829 – start-page: 3056 volume-title: Climate Change 2022: Impacts, adaptation, and vulnerability. Contribution of working group II to the sixth assessment report of the IPCC year: 2022 ident: B71 – volume: 94 start-page: 771 year: 2016 ident: B46 article-title: Gas-phase mass transfer characteristics in a counter airflow shear rotating packed bed publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.22434 – volume: 39 start-page: 147 year: 1985 ident: B75 article-title: Modeling liquid mass transfer in higee separation process publication-title: Chem. Eng. Commun. doi: 10.1080/00986448508911667 – volume: 15 start-page: 186 year: 2013 ident: B1 article-title: Comparison of rate-based and equilibrium-stage models of a packed column for post-combustion CO2 capture using 2-amino-2-methyl-1-propanol (AMP) solution publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2013.02.022 – volume: 49 start-page: 3732 year: 2010 ident: B32 article-title: Gas pressure drop and mass transfer characteristics in a cross-flow rotating packed bed with porous plate packing publication-title: Industrial Eng. Chem. Res. doi: 10.1021/ie9009777 – volume: 40 start-page: 384 year: 2001 ident: B68 article-title: Gas-phase mass transfer in a centrifugal contactor publication-title: Industrial Eng. Chem. Res. doi: 10.1021/ie0000818 – volume: 59 start-page: 8295 year: 2020 ident: B85 article-title: Simultaneous absorption of H2S and CO2 into the MDEA + PZ aqueous solution in a rotating packed bed publication-title: Industrial Eng. Chem. Res. doi: 10.1021/acs.iecr.9b06437 – volume: 133 start-page: 229 year: 2007 ident: B2 article-title: Carbon dioxide absorption into monoethanolamine in a continuous film contactor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2007.02.001 – volume: 165 start-page: 108450 year: 2021 ident: B56 article-title: Experimental study of CO2 absorption with MEA solution in a novel Arc-RPB publication-title: Chem. Eng. Process. - Process Intensif. doi: 10.1016/j.cep.2021.108450 – volume: 295 start-page: 121248 year: 2022 ident: B23 article-title: A comprehensive review on the hydrodynamics, mass transfer and chemical absorption of CO2 and modelling aspects of rotating packed bed publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121248 – volume: 134 start-page: 443 year: 2018 ident: B57 article-title: A guide on the industrial application of rotating packed beds publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2018.04.024 – volume-title: One-dimensional two-phase flow (vol. 243) year: 1969 ident: B76 – volume: 37 start-page: 340 year: 2013 ident: B41 article-title: Characterization of piperazine/2-aminomethylpropanol for carbon dioxide capture publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.05.120 – volume: 156 start-page: 582 year: 2010 ident: B82 article-title: Computational fluid dynamic simulation of fluid flow in a rotating packed bed publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.04.013 – volume: 158 start-page: 275 year: 2015 ident: B77 article-title: Process intensification for post-combustion CO2 capture with chemical absorption: A critical review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.08.083 – volume: 170 start-page: 347 year: 2017 ident: B52 article-title: Investigation of effective interfacial area in a rotating packed bed with structured stainless steel wire mesh packing publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.10.023 – volume: 50 start-page: 6957 year: 2011 ident: B86 article-title: Absorption of carbon dioxide with ionic liquid in a rotating packed bed contactor: Mass transfer study publication-title: Industrial Eng. Chem. Res. doi: 10.1021/ie1025979 – volume: 44 start-page: 4051 year: 2005 ident: B9 article-title: Characteristics of flow in a rotating packed bed (HIGEE) with split packing publication-title: Industrial Eng. Chem. Res. doi: 10.1021/ie048815u – volume-title: Process intensification: Absorption and desorption of carbon dioxide from monoethanolamine solutions using higee technology year: 2002 ident: B30 – volume: 140 start-page: 95 year: 2018 ident: B47 article-title: Artificial neural network modeling of biosorption process using agricultural wastes in a rotating packed bed publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.05.029 |
SSID | ssj0001325410 |
Score | 2.3193684 |
SecondaryResourceType | review_article |
Snippet | Carbon dioxide (CO
2
), a significant greenhouse gas released from power plants and industries, substantially impacts climate change; minimizing it and... Carbon dioxide (CO2), a significant greenhouse gas released from power plants and industries, substantially impacts climate change; minimizing it and achieving... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | carbon capture chemical absorption process intensification process modeling rotating packed bed |
Title | A review of process intensified CO2 capture in RPB for sustainability and contribution to industrial net zero |
URI | https://doaj.org/article/37c0604d36b44a0da277692a1e88ed39 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCGQpPYceyxragqBkCISt0iPxESpFUJA_x6znaKwgILq3WxrPNJ9118930IXShrHABvlwAa1glVxiVS0iwReZkbTRmEUWiQvWXTGb2ZF_OO1JfvCYv0wNFxA1Jqz-9iCFOUytTIvCyZyGVmObeGhNE9yHmdYir8XSFQ-GRpnJKBKkwMHFzH05UXC_cyJp6G7Ecm6hD2h8wy2UHbLSTEw3iUXbRh6z201SEK3EevQxxnTPDC4WXs7cfPsfvcAYjE47sca7n0zwGwjh_uRxjQKH5bj0f5DtgPLGuDQ296K3KFmwVYr7U7cG0b_GlXiwM0m1w_jqdJK5SQaFKUTcK4ElZppg2HaotqbTmxkhFlrWbccFkImUuTUl2kmojUUUdtaZRLqWJSCnKIevWitkcIC0ecZ6hRJjeAVSQXVGclcwzurqCy6KNs7bRKtyziXszipYJqwju6Co6uvKOr1tF9dPn9zTJyaPxqPfJ38W3p-a_DAkRF1UZF9VdUHP_HJido0x_Mvx1l5BT1mtW7PQMI0qjzEG1fREjZ2w |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+process+intensified+CO2+capture+in+RPB+for+sustainability+and+contribution+to+industrial+net+zero&rft.jtitle=Frontiers+in+energy+research&rft.au=Shukla%2C+Chetna&rft.au=Mishra%2C+Poonam&rft.au=Dash%2C+Sukanta+Kumar&rft.date=2023-04-13&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=11&rft_id=info:doi/10.3389%2Ffenrg.2023.1135188&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2023_1135188 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon |