A review of process intensified CO2 capture in RPB for sustainability and contribution to industrial net zero

Carbon dioxide (CO 2 ), a significant greenhouse gas released from power plants and industries, substantially impacts climate change; minimizing it and achieving carbon net zero is essential globally. In the direction of reducing CO 2 emissions into the atmosphere, post-combustion carbon capture fro...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in energy research Vol. 11
Main Authors Shukla, Chetna, Mishra, Poonam, Dash, Sukanta Kumar
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 13.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbon dioxide (CO 2 ), a significant greenhouse gas released from power plants and industries, substantially impacts climate change; minimizing it and achieving carbon net zero is essential globally. In the direction of reducing CO 2 emissions into the atmosphere, post-combustion carbon capture from large point CO 2 emitters by chemical absorption involving the absorption of this gas in a capturing fluid is a commonly used and efficacious mechanism. Researchers have worked on the process using conventional columns. However, process intensification technology is required because of the high capital cost, the absorption column height, and the traditional columns’ low energy efficiency. Rotating packed bed (RPB) process intensification equipment has been identified as a suitable technology for enhanced carbon capture using an absorbing fluid. This article reviews and discusses recent model developments in the post-combustion CO 2 capture process intensification using rotating packed beds. In the literature, various researchers have developed steady-state mathematical models regarding mass balance and energy balance equations in gas and liquid phases using ordinary or partial differential equations. Due to the circular shape, the equations are considered in a radial direction and have been solved using a numerical approach and simulated using different software platforms, viz. MATLAB, FORTRAN, and gPROMS. A comparison of various correlations has been presented. The models predict the mole fraction of absorbed CO 2 and correspond well with the experimental results. Along with these models, an experimental data review on rotating packed bed is also included in this work.
AbstractList Carbon dioxide (CO 2 ), a significant greenhouse gas released from power plants and industries, substantially impacts climate change; minimizing it and achieving carbon net zero is essential globally. In the direction of reducing CO 2 emissions into the atmosphere, post-combustion carbon capture from large point CO 2 emitters by chemical absorption involving the absorption of this gas in a capturing fluid is a commonly used and efficacious mechanism. Researchers have worked on the process using conventional columns. However, process intensification technology is required because of the high capital cost, the absorption column height, and the traditional columns’ low energy efficiency. Rotating packed bed (RPB) process intensification equipment has been identified as a suitable technology for enhanced carbon capture using an absorbing fluid. This article reviews and discusses recent model developments in the post-combustion CO 2 capture process intensification using rotating packed beds. In the literature, various researchers have developed steady-state mathematical models regarding mass balance and energy balance equations in gas and liquid phases using ordinary or partial differential equations. Due to the circular shape, the equations are considered in a radial direction and have been solved using a numerical approach and simulated using different software platforms, viz. MATLAB, FORTRAN, and gPROMS. A comparison of various correlations has been presented. The models predict the mole fraction of absorbed CO 2 and correspond well with the experimental results. Along with these models, an experimental data review on rotating packed bed is also included in this work.
Carbon dioxide (CO2), a significant greenhouse gas released from power plants and industries, substantially impacts climate change; minimizing it and achieving carbon net zero is essential globally. In the direction of reducing CO2 emissions into the atmosphere, post-combustion carbon capture from large point CO2 emitters by chemical absorption involving the absorption of this gas in a capturing fluid is a commonly used and efficacious mechanism. Researchers have worked on the process using conventional columns. However, process intensification technology is required because of the high capital cost, the absorption column height, and the traditional columns’ low energy efficiency. Rotating packed bed (RPB) process intensification equipment has been identified as a suitable technology for enhanced carbon capture using an absorbing fluid. This article reviews and discusses recent model developments in the post-combustion CO2 capture process intensification using rotating packed beds. In the literature, various researchers have developed steady-state mathematical models regarding mass balance and energy balance equations in gas and liquid phases using ordinary or partial differential equations. Due to the circular shape, the equations are considered in a radial direction and have been solved using a numerical approach and simulated using different software platforms, viz. MATLAB, FORTRAN, and gPROMS. A comparison of various correlations has been presented. The models predict the mole fraction of absorbed CO2 and correspond well with the experimental results. Along with these models, an experimental data review on rotating packed bed is also included in this work.
Author Mishra, Poonam
Shukla, Chetna
Dash, Sukanta Kumar
Author_xml – sequence: 1
  givenname: Chetna
  surname: Shukla
  fullname: Shukla, Chetna
– sequence: 2
  givenname: Poonam
  surname: Mishra
  fullname: Mishra, Poonam
– sequence: 3
  givenname: Sukanta Kumar
  surname: Dash
  fullname: Dash, Sukanta Kumar
BookMark eNp9kctKBDEQRYMo-PwBV_mBGdNJOp1e6uALBEUU3IXqpCKRNhmSjKJf7zwUxIWrKi73Xqo4-2Q7poiEHDdsKoTuTzzG_DzljItp04i20XqL7HHeq0nb66ftX_suOSrlhTHWCN7Khu2R11Oa8S3gO02eznOyWAoNsWIswQd0dHbLqYV5XWRc6vT-7oz6lGlZlAohwhDGUD8oREdtijWHYVFDirSmpdstTTnASCNW-ok5HZIdD2PBo-95QB4vzh9mV5Ob28vr2enNxIq2qxOlhx4Hq6zTUmppLWqBoMSAaJV2GtoeODgmbcus6JmXXmLnBs_koAB6cUCuN70uwYuZ5_AK-cMkCGYtpPxsINdgRzSis0wx6YQapATmgHed6jk0qDU6serSmy6bUykZvbGhwurJmiGMpmFmRcGsKZgVBfNNYRnlf6I_p_wT-gKVOpCF
CitedBy_id crossref_primary_10_1021_acs_energyfuels_4c01208
crossref_primary_10_1021_acs_langmuir_4c01174
crossref_primary_10_53982_ajerd_2024_0702_26_j
crossref_primary_10_1002_slct_202303972
crossref_primary_10_1021_acs_iecr_3c01947
crossref_primary_10_1016_j_seppur_2024_130558
crossref_primary_10_1021_acs_jced_3c00651
crossref_primary_10_1016_j_apenergy_2025_125698
crossref_primary_10_1016_j_cep_2024_110080
crossref_primary_10_1021_acs_iecr_3c03173
crossref_primary_10_3390_separations11010020
crossref_primary_10_1021_acsomega_4c01128
crossref_primary_10_1021_acs_jced_4c00002
crossref_primary_10_1016_j_fuel_2025_134484
crossref_primary_10_1002_elan_202300216
crossref_primary_10_1016_j_jgsce_2025_205560
Cites_doi 10.1016/j.ijggc.2013.12.005
10.1021/ie950662a
10.1016/j.cherd.2016.08.013
10.1016/j.jenvman.2019.109870
10.1021/ie048962s
10.1016/j.apenergy.2017.08.130
10.1016/j.ijheatmasstransfer.2016.02.033
10.1016/j.seppur.2006.08.006
10.1016/j.ces.2019.01.029
10.1016/j.jclepro.2018.09.089
10.1016/j.ijggc.2012.06.017
10.1205/026387699526520
10.1002/aic.690410212
10.1021/ie100899r
10.1021/acs.iecr.1c04587
10.1021/acs.iecr.8b00269
10.1016/j.apenergy.2014.08.108
10.1016/j.jtice.2016.08.046
10.1080/00986448308956351
10.1016/j.ces.2017.06.040
10.1016/j.matpr.2022.01.148
10.3303/CET1976136
10.1021/ie302531j
10.1021/ie060399l
10.1016/j.ijggc.2014.04.011
10.1016/j.cep.2020.107908
10.1016/j.cej.2008.08.004
10.1016/j.cep.2008.03.002
10.1016/j.rser.2016.06.059
10.1021/ie051104r
10.1016/j.seppur.2021.118714
10.1016/j.cjche.2019.01.011
10.1021/ie030630k
10.1002/jctb.5206
10.1016/j.applthermaleng.2008.01.004
10.1016/j.egypro.2009.01.123
10.1016/j.cep.2015.02.007
10.1016/j.ces.2015.07.044
10.1016/j.jclepro.2017.02.108
10.1063/5.0107723
10.1016/j.rser.2015.04.124
10.1016/j.ijggc.2019.05.003
10.1002/er.5404
10.1016/j.ces.2021.117118
10.1021/ie101251z
10.1021/ie9001316
10.1021/ie300466f
10.1016/j.ijggc.2016.11.009
10.1021/ie50343a008
10.1016/j.fluid.2018.01.030
10.1016/S0009-2509(99)00520-5
10.1016/j.seppur.2017.05.049
10.1016/j.seppur.2015.02.008
10.1016/j.jct.2012.02.012
10.1252/jcej.1.62
10.1016/j.apenergy.2023.120747
10.1016/j.cherd.2010.11.005
10.1016/j.apenergy.2019.113941
10.1016/j.ijggc.2013.03.022
10.1016/j.cep.2016.08.015
10.1021/ie030545c
10.1016/j.applthermaleng.2014.02.064
10.1021/ie900894a
10.1016/j.compchemeng.2020.107102
10.1016/j.jngse.2021.103829
10.1002/cjce.22434
10.1080/00986448508911667
10.1016/j.ijggc.2013.02.022
10.1021/ie9009777
10.1021/ie0000818
10.1021/acs.iecr.9b06437
10.1016/j.cej.2007.02.001
10.1016/j.cep.2021.108450
10.1016/j.seppur.2022.121248
10.1016/j.cherd.2018.04.024
10.1016/j.egypro.2013.05.120
10.1016/j.cej.2009.04.013
10.1016/j.apenergy.2015.08.083
10.1016/j.ces.2016.10.023
10.1021/ie1025979
10.1021/ie048815u
10.1016/j.applthermaleng.2018.05.029
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fenrg.2023.1135188
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-598X
ExternalDocumentID oai_doaj_org_article_37c0604d36b44a0da277692a1e88ed39
10_3389_fenrg_2023_1135188
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c357t-68b9ebc6cd84484cce83ea63beec68d8a59a2ad04c50c390f4f4e7dbf04b6aa93
IEDL.DBID DOA
ISSN 2296-598X
IngestDate Wed Aug 27 01:27:04 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Tue Jul 01 01:50:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-68b9ebc6cd84484cce83ea63beec68d8a59a2ad04c50c390f4f4e7dbf04b6aa93
OpenAccessLink https://doaj.org/article/37c0604d36b44a0da277692a1e88ed39
ParticipantIDs doaj_primary_oai_doaj_org_article_37c0604d36b44a0da277692a1e88ed39
crossref_citationtrail_10_3389_fenrg_2023_1135188
crossref_primary_10_3389_fenrg_2023_1135188
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-13
PublicationDateYYYYMMDD 2023-04-13
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-13
  day: 13
PublicationDecade 2020
PublicationTitle Frontiers in energy research
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Afkhamipour (B1) 2013; 15
Tung (B75) 1985; 39
Chen (B11) 2004; 43
Lu (B49) 2019; 199
Sun (B73) 2009; 48
Chen (B14) 2006; 45
Su (B72) 2018; 57
Ayash (B3) 2022; 2660
Koronaki (B39) 2015; 50
Billet (B5) 1999; 77
Cortes Garcia (B18) 2017; 92
Hendry (B28) 2020; 151
Esmaeili (B24) 2022; 248
Jin (B33) 2019; 76
Jassim (B30) 2002
Podbielniak (B62) 1935
Chu (B17) 2015; 90
Zhan (B85) 2020; 59
Wang (B78) 2011; 89
Jiao (B32) 2010; 49
Lin (B45) 2016; 97
Im (B29) 2020; 143
Liu (B46) 2016; 94
Lockett (B48) 1995; 73
Mallinson (B54) 1981
Cheng (B15) 2013; 16
Rajan (B64) 2011; 50
Chamchan (B8) 2017; 73
Jassim (B31) 2007; 46
Zhao (B89) 2016; 65
Joel (B34) 2015; 74
Mohammadi Nouroddinvand (B56) 2021; 165
Borhani (B6) 2018; 204
Chandra (B9) 2005; 44
Joel (B35) 2014; 21
Lin (B44) 2007; 54
Pan (B60) 2017; 149
Cheng (B16) 2009; 1
Zhao (B88) 2014; 136
Harun (B27) 2012; 10
Wu (B80) 2020; 257
Li (B42) 2016; 114
Reay (B67) 2008; 28
Dash (B19) 2022; 62
Rao (B66) 2022; 61
Wang (B79) 2021; 269
Akanksha (B2) 2007; 133
Rao (B65) 2004; 43
Xie (B81) 2017; 172
Luo (B51); 51
Pandya (B61) 1983; 19
Wang (B77) 2015; 158
Chen (B13) 2005; 44
Keyvani (B38) 1989
Sandilya (B68) 2001; 40
Qian (B63) 2009; 48
Dey (B21) 2018; 463
Shahid (B69) 2021; 88
Gao (B25) 2016; 109
Neumann (B57) 2018; 134
Onda (B58) 1968; 36
Sherwood (B70) 1938; 30
Yi (B84) 2009; 145
Kelleher (B37) 1996; 35
Dhaneesh (B23) 2022; 295
Li (B41) 2013; 37
Dey (B22) 2020; 44
Basic (B4); 41
Wallis (B76) 1969
Luo (B50); 51
Burns (B7) 2000; 55
Dash (B20) 2012; 51
Kang (B36) 2014; 25
Chen (B10) 2020; 255
(B71) 2022
Zhang (B86) 2011; 50
Yang (B83) 2015; 138
Zhang (B87) 2017; 205
Kvamsdal (B40) 2009; 48
Guo (B26) 2019; 27
Otitoju (B59) 2023; 335
Yang (B82) 2010; 156
Luo (B52) 2017; 170
Chen (B12) 2011; 50
Marx-Schubach (B55) 2019; 87
Tsai (B74) 2015; 144
Ma (B53) 2016; 55
Liu (B47) 2018; 140
Li (B43) 2017; 186
References_xml – volume: 21
  start-page: 91
  year: 2014
  ident: B35
  article-title: Process analysis of intensified absorber for post-combustion CO2 capture through modelling and simulation
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2013.12.005
– volume: 35
  start-page: 4646
  year: 1996
  ident: B37
  article-title: Distillation studies in a high-gravity contactor
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie950662a
– volume: 114
  start-page: 89
  year: 2016
  ident: B42
  article-title: Modelling of adsorption in rotating packed bed using artificial neural networks (ANN)
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2016.08.013
– volume: 73
  start-page: 379
  year: 1995
  ident: B48
  article-title: Flooding of rotating structured packing and its application to conventional packed-columns
  publication-title: Chem. Eng. Res. Des.
– start-page: 48
  volume-title: Chem. Eng. Prog.
  year: 1989
  ident: B38
  article-title: Operating characteristics of rotating beds
– volume: 255
  start-page: 109870
  year: 2020
  ident: B10
  article-title: An engineering-environmental-economic-energy assessment for integrated air pollutants reduction, CO2 capture and utilization exemplified by the high-gravity process
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.109870
– volume: 44
  start-page: 7868
  year: 2005
  ident: B13
  article-title: Mass transfer in a rotating packed bed with various radii of the bed
  publication-title: Industrial Eng. Chem. Res.
  doi: 10.1021/ie048962s
– volume-title: Mass transfer process
  year: 1981
  ident: B54
– volume: 205
  start-page: 1002
  year: 2017
  ident: B87
  article-title: Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC)
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.08.130
– volume: 97
  start-page: 712
  year: 2016
  ident: B45
  article-title: Mass transfer performance of rotating packed beds with blade packings in absorption of CO2 into MEA solution
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.02.033
– volume: 54
  start-page: 51
  year: 2007
  ident: B44
  article-title: Characteristics of a rotating packed bed equipped with blade packings
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2006.08.006
– volume: 199
  start-page: 302
  year: 2019
  ident: B49
  article-title: Modelling of CO2 absorption in a rotating packed bed using an Eulerian porous media approach
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2019.01.029
– volume: 204
  start-page: 1124
  year: 2018
  ident: B6
  article-title: Process modelling and analysis of intensified CO2 capture using monoethanolamine (MEA) in rotating packed bed absorber
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.09.089
– volume: 10
  start-page: 295
  year: 2012
  ident: B27
  article-title: Dynamic simulation of MEA absorption process for CO2 capture from power plants
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2012.06.017
– volume: 77
  start-page: 498
  year: 1999
  ident: B5
  article-title: Prediction of mass transfer columns with dumped and arranged packings: Updated summary of the calculation method of Billet and Schultes
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/026387699526520
– volume: 41
  start-page: 301
  ident: B4
  article-title: Liquid holdup in rotating packed beds: Examination of the film flow assumption
  publication-title: AIChE J.
  doi: 10.1002/aic.690410212
– volume: 50
  start-page: 986
  year: 2011
  ident: B64
  article-title: Limiting gas liquid flows and mass transfer in a novel rotating packed bed (HiGee)
  publication-title: Industrial Eng. Chem. Res.
  doi: 10.1021/ie100899r
– volume: 61
  start-page: 997
  year: 2022
  ident: B66
  article-title: Commentary: Evolution of high gravity (HiGee) technology
  publication-title: Industrial Eng. Chem. Res.
  doi: 10.1021/acs.iecr.1c04587
– volume: 57
  start-page: 4743
  year: 2018
  ident: B72
  article-title: Gas-side mass transfer in a rotating packed bed with structured nickel foam packing
  publication-title: Industrial Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b00269
– volume: 136
  start-page: 132
  year: 2014
  ident: B88
  article-title: Mass transfer performance of CO2 capture in rotating packed bed: Dimensionless modeling and intelligent prediction
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.08.108
– volume: 73
  start-page: 20
  year: 2017
  ident: B8
  article-title: Comparison of rotating packed bed and packed bed absorber in pilot plant and model simulation for CO2 capture
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2016.08.046
– volume: 19
  start-page: 343
  year: 1983
  ident: B61
  article-title: Adiabatic gas absorption and stripping with chemical reaction in packed towers
  publication-title: Chem. Eng. Commun.
  doi: 10.1080/00986448308956351
– volume: 172
  start-page: 216
  year: 2017
  ident: B81
  article-title: Characteristics of liquid flow in a rotating packed bed for CO2 capture: A CFD analysis
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2017.06.040
– volume: 62
  start-page: 7072
  year: 2022
  ident: B19
  article-title: Development of efficient absorbent for CO2 capture process based on (AMP + 1MPZ)
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2022.01.148
– volume: 76
  start-page: 811
  year: 2019
  ident: B33
  article-title: Rate-based modelling and validation of an absorber and stripper in an amine-based post-combustion CO2 capture process
  publication-title: Chem. Eng. Trans.
  doi: 10.3303/CET1976136
– volume: 51
  start-page: 16320
  ident: B51
  article-title: Gas-liquid effective interfacial area in a rotating packed bed
  publication-title: Industrial Eng. Chem. Res.
  doi: 10.1021/ie302531j
– volume: 45
  start-page: 6846
  year: 2006
  ident: B14
  article-title: Packing characteristics for mass transfer in a rotating packed bed
  publication-title: Industrial Eng. Chem. Res.
  doi: 10.1021/ie060399l
– volume: 25
  start-page: 141
  year: 2014
  ident: B36
  article-title: Modeling studies on absorption of CO2 by monoethanolamine in rotating packed bed
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2014.04.011
– volume: 151
  start-page: 107908
  year: 2020
  ident: B28
  article-title: Pressure drop and flooding in rotating packed beds
  publication-title: Chem. Eng. Process. - Process Intensif.
  doi: 10.1016/j.cep.2020.107908
– volume: 145
  start-page: 377
  year: 2009
  ident: B84
  article-title: Modeling and experimental studies on absorption of CO2 by Benfield solution in rotating packed bed
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2008.08.004
– volume: 48
  start-page: 135
  year: 2009
  ident: B40
  article-title: Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2008.03.002
– volume: 65
  start-page: 44
  year: 2016
  ident: B89
  article-title: Process, performance and modeling of CO2 capture by chemical absorption using high gravity: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.06.059
– volume: 46
  start-page: 2823
  year: 2007
  ident: B31
  article-title: Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed
  publication-title: Industrial Eng. Chem. Res.
  doi: 10.1021/ie051104r
– volume: 269
  start-page: 118714
  year: 2021
  ident: B79
  article-title: Carbon dioxide capture by non-aqueous blend in rotating packed bed reactor: Absorption and desorption investigation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.118714
– volume: 27
  start-page: 1361
  year: 2019
  ident: B26
  article-title: Applications of high-gravity technologies in gas purifications: A review
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2019.01.011
– volume-title: Centrifugal counter current contact apparatus
  year: 1935
  ident: B62
– volume: 43
  start-page: 1150
  year: 2004
  ident: B65
  article-title: Process intensification in rotating packed beds (HIGEE): An appraisal
  publication-title: Industrial Eng. Chem. Res.
  doi: 10.1021/ie030630k
– volume: 92
  start-page: 1136
  year: 2017
  ident: B18
  article-title: A review on process intensification in HiGee distillation
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.5206
– volume: 28
  start-page: 2011
  year: 2008
  ident: B67
  article-title: The role of process intensification in cutting greenhouse gas emissions
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2008.01.004
– volume: 1
  start-page: 925
  year: 2009
  ident: B16
  article-title: Carbon dioxide capture by blended alkanolamines in rotating packed bed
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2009.01.123
– volume: 90
  start-page: 34
  year: 2015
  ident: B17
  article-title: Studies of CO2 absorption and effective interfacial area in a two-stage rotating packed bed with nickel foam packing
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2015.02.007
– volume: 138
  start-page: 244
  year: 2015
  ident: B83
  article-title: A noninvasive X-ray technique for determination of liquid holdup in a rotating packed bed
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2015.07.044
– volume: 149
  start-page: 540
  year: 2017
  ident: B60
  article-title: Development of high-gravity technology for removing particulate and gaseous pollutant emissions: Principles and applications
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.02.108
– volume: 2660
  year: 2022
  ident: B3
  article-title: Conventional and non-conventional gas-liquid contacting methods: A critical review and a quantitative evaluation
  publication-title: AIP Conf. Proc.
  doi: 10.1063/5.0107723
– volume: 50
  start-page: 547
  year: 2015
  ident: B39
  article-title: Modeling of CO2 capture via chemical absorption processes - an extensive literature review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.04.124
– volume: 87
  start-page: 44
  year: 2019
  ident: B55
  article-title: Modeling and simulation of the start-up process of coal fired power plants with post-combustion CO2 capture
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2019.05.003
– volume: 44
  start-page: 12395
  year: 2020
  ident: B22
  article-title: Analysis of equilibrium CO2 solubility in aqueous APDA and its potential blends with AMP/MDEA for postcombustion CO2 capture
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5404
– volume: 248
  start-page: 117118
  year: 2022
  ident: B24
  article-title: Modeling of carbon dioxide absorption by solution of piperazine and methyldiethanolamine in a rotating packed bed
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.117118
– volume: 50
  start-page: 1778
  year: 2011
  ident: B12
  article-title: Correlations of mass transfer coefficients in a rotating packed bed
  publication-title: Industrial Eng. Chem. Res.
  doi: 10.1021/ie101251z
– volume: 48
  start-page: 11175
  year: 2009
  ident: B73
  article-title: Simultaneous absorption of CO2 and NH3 into water in a rotating packed bed
  publication-title: Industrial Eng. Chem. Res.
  doi: 10.1021/ie9001316
– volume: 51
  start-page: 9164
  ident: B50
  article-title: Mass transfer studies in a rotating packed bed with novel rotors: Chemisorption of CO 2
  publication-title: Industrial Eng. Chem. Res.
  doi: 10.1021/ie300466f
– volume: 55
  start-page: 55
  year: 2016
  ident: B53
  article-title: Evaluation of effectiveness of highly concentrated alkanolamine solutions for capturing CO2 in a rotating packed bed
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2016.11.009
– volume: 30
  start-page: 765
  year: 1938
  ident: B70
  article-title: Flooding velocities in packed columns
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50343a008
– volume: 463
  start-page: 91
  year: 2018
  ident: B21
  article-title: Equilibrium CO2 solubility and thermophysical properties of aqueous blends of 1-(2-aminoethyl) piperazine and N-methyldiethanolamine
  publication-title: Fluid Phase Equilibria
  doi: 10.1016/j.fluid.2018.01.030
– volume: 55
  start-page: 2401
  year: 2000
  ident: B7
  article-title: Process intensification: Operating characteristics of rotating packed beds - determination of liquid hold-up for a high-voidage structured packing
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(99)00520-5
– volume: 186
  start-page: 156
  year: 2017
  ident: B43
  article-title: Mass-transfer characteristics in a rotating zigzag bed as a Higee device
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.05.049
– volume: 144
  start-page: 139
  year: 2015
  ident: B74
  article-title: Effective interfacial area and liquid-side mass transfer coefficients in a rotating bed equipped with baffles
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2015.02.008
– volume: 51
  start-page: 120
  year: 2012
  ident: B20
  article-title: Experimental and theoretical investigation of solubility of carbon dioxide in concentrated aqueous solution of 2-amino-2-methyl-1-propanol and piperazine
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/j.jct.2012.02.012
– volume: 36
  start-page: 62
  year: 1968
  ident: B58
  article-title: Gas absorption with chemical reaction in packed columns
  publication-title: Sammak Trans. Inst. Chem. Engrs
  doi: 10.1252/jcej.1.62
– volume: 335
  start-page: 120747
  year: 2023
  ident: B59
  article-title: Modelling, scale-up and techno-economic assessment of rotating packed bed absorber for CO2 capture from a 250 MWe combined cycle gas turbine power plant
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.120747
– volume: 89
  start-page: 1609
  year: 2011
  ident: B78
  article-title: Post-combustion CO2 capture with chemical absorption: A state-of-the-art review
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2010.11.005
– volume: 257
  start-page: 113941
  year: 2020
  ident: B80
  article-title: Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113941
– volume: 16
  start-page: 206
  year: 2013
  ident: B15
  article-title: Thermal regeneration of alkanolamine solutions in a rotating packed bed
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2013.03.022
– volume: 109
  start-page: 68
  year: 2016
  ident: B25
  article-title: Numerical simulation for mass transfer characteristics of CO2 capture in a rotating packed bed
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2016.08.015
– volume: 43
  start-page: 228
  year: 2004
  ident: B11
  article-title: Modeling ozone contacting process in a rotating packed bed
  publication-title: Industrial Eng. Chem. Res.
  doi: 10.1021/ie030545c
– volume: 74
  start-page: 47
  year: 2015
  ident: B34
  article-title: Modelling and simulation of intensified absorber for post-combustion CO2 capture using different mass transfer correlations
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.02.064
– volume: 48
  start-page: 9261
  year: 2009
  ident: B63
  article-title: Modeling study on absorption of CO2 by aqueous solutions of n-methyldiethanolamine in rotating packed bed
  publication-title: Industrial Eng. Chem. Res.
  doi: 10.1021/ie900894a
– volume: 143
  start-page: 107102
  year: 2020
  ident: B29
  article-title: Modeling, simulation and optimization of the rotating packed bed (RPB) absorber and stripper for MEA-based carbon capture
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.107102
– volume: 88
  start-page: 103829
  year: 2021
  ident: B69
  article-title: Packed column modelling and experimental evaluation for CO2 absorption using MDEA solution at high pressure and high CO2 concentrations
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2021.103829
– start-page: 3056
  volume-title: Climate Change 2022: Impacts, adaptation, and vulnerability. Contribution of working group II to the sixth assessment report of the IPCC
  year: 2022
  ident: B71
– volume: 94
  start-page: 771
  year: 2016
  ident: B46
  article-title: Gas-phase mass transfer characteristics in a counter airflow shear rotating packed bed
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.22434
– volume: 39
  start-page: 147
  year: 1985
  ident: B75
  article-title: Modeling liquid mass transfer in higee separation process
  publication-title: Chem. Eng. Commun.
  doi: 10.1080/00986448508911667
– volume: 15
  start-page: 186
  year: 2013
  ident: B1
  article-title: Comparison of rate-based and equilibrium-stage models of a packed column for post-combustion CO2 capture using 2-amino-2-methyl-1-propanol (AMP) solution
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2013.02.022
– volume: 49
  start-page: 3732
  year: 2010
  ident: B32
  article-title: Gas pressure drop and mass transfer characteristics in a cross-flow rotating packed bed with porous plate packing
  publication-title: Industrial Eng. Chem. Res.
  doi: 10.1021/ie9009777
– volume: 40
  start-page: 384
  year: 2001
  ident: B68
  article-title: Gas-phase mass transfer in a centrifugal contactor
  publication-title: Industrial Eng. Chem. Res.
  doi: 10.1021/ie0000818
– volume: 59
  start-page: 8295
  year: 2020
  ident: B85
  article-title: Simultaneous absorption of H2S and CO2 into the MDEA + PZ aqueous solution in a rotating packed bed
  publication-title: Industrial Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b06437
– volume: 133
  start-page: 229
  year: 2007
  ident: B2
  article-title: Carbon dioxide absorption into monoethanolamine in a continuous film contactor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2007.02.001
– volume: 165
  start-page: 108450
  year: 2021
  ident: B56
  article-title: Experimental study of CO2 absorption with MEA solution in a novel Arc-RPB
  publication-title: Chem. Eng. Process. - Process Intensif.
  doi: 10.1016/j.cep.2021.108450
– volume: 295
  start-page: 121248
  year: 2022
  ident: B23
  article-title: A comprehensive review on the hydrodynamics, mass transfer and chemical absorption of CO2 and modelling aspects of rotating packed bed
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.121248
– volume: 134
  start-page: 443
  year: 2018
  ident: B57
  article-title: A guide on the industrial application of rotating packed beds
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2018.04.024
– volume-title: One-dimensional two-phase flow (vol. 243)
  year: 1969
  ident: B76
– volume: 37
  start-page: 340
  year: 2013
  ident: B41
  article-title: Characterization of piperazine/2-aminomethylpropanol for carbon dioxide capture
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.05.120
– volume: 156
  start-page: 582
  year: 2010
  ident: B82
  article-title: Computational fluid dynamic simulation of fluid flow in a rotating packed bed
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2009.04.013
– volume: 158
  start-page: 275
  year: 2015
  ident: B77
  article-title: Process intensification for post-combustion CO2 capture with chemical absorption: A critical review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.08.083
– volume: 170
  start-page: 347
  year: 2017
  ident: B52
  article-title: Investigation of effective interfacial area in a rotating packed bed with structured stainless steel wire mesh packing
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2016.10.023
– volume: 50
  start-page: 6957
  year: 2011
  ident: B86
  article-title: Absorption of carbon dioxide with ionic liquid in a rotating packed bed contactor: Mass transfer study
  publication-title: Industrial Eng. Chem. Res.
  doi: 10.1021/ie1025979
– volume: 44
  start-page: 4051
  year: 2005
  ident: B9
  article-title: Characteristics of flow in a rotating packed bed (HIGEE) with split packing
  publication-title: Industrial Eng. Chem. Res.
  doi: 10.1021/ie048815u
– volume-title: Process intensification: Absorption and desorption of carbon dioxide from monoethanolamine solutions using higee technology
  year: 2002
  ident: B30
– volume: 140
  start-page: 95
  year: 2018
  ident: B47
  article-title: Artificial neural network modeling of biosorption process using agricultural wastes in a rotating packed bed
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.05.029
SSID ssj0001325410
Score 2.3193684
SecondaryResourceType review_article
Snippet Carbon dioxide (CO 2 ), a significant greenhouse gas released from power plants and industries, substantially impacts climate change; minimizing it and...
Carbon dioxide (CO2), a significant greenhouse gas released from power plants and industries, substantially impacts climate change; minimizing it and achieving...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms carbon capture
chemical absorption
process intensification
process modeling
rotating packed bed
Title A review of process intensified CO2 capture in RPB for sustainability and contribution to industrial net zero
URI https://doaj.org/article/37c0604d36b44a0da277692a1e88ed39
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCGQpPYceyxragqBkCISt0iPxESpFUJA_x6znaKwgILq3WxrPNJ9118930IXShrHABvlwAa1glVxiVS0iwReZkbTRmEUWiQvWXTGb2ZF_OO1JfvCYv0wNFxA1Jqz-9iCFOUytTIvCyZyGVmObeGhNE9yHmdYir8XSFQ-GRpnJKBKkwMHFzH05UXC_cyJp6G7Ecm6hD2h8wy2UHbLSTEw3iUXbRh6z201SEK3EevQxxnTPDC4WXs7cfPsfvcAYjE47sca7n0zwGwjh_uRxjQKH5bj0f5DtgPLGuDQ296K3KFmwVYr7U7cG0b_GlXiwM0m1w_jqdJK5SQaFKUTcK4ElZppg2HaotqbTmxkhFlrWbccFkImUuTUl2kmojUUUdtaZRLqWJSCnKIevWitkcIC0ecZ6hRJjeAVSQXVGclcwzurqCy6KNs7bRKtyziXszipYJqwju6Co6uvKOr1tF9dPn9zTJyaPxqPfJ38W3p-a_DAkRF1UZF9VdUHP_HJido0x_Mvx1l5BT1mtW7PQMI0qjzEG1fREjZ2w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+process+intensified+CO2+capture+in+RPB+for+sustainability+and+contribution+to+industrial+net+zero&rft.jtitle=Frontiers+in+energy+research&rft.au=Shukla%2C+Chetna&rft.au=Mishra%2C+Poonam&rft.au=Dash%2C+Sukanta+Kumar&rft.date=2023-04-13&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=11&rft_id=info:doi/10.3389%2Ffenrg.2023.1135188&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2023_1135188
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon