Discrete Fractional Boundary Value Problems and Inequalities
In this paper, a general nonlinear discrete fractional boundary value problem is considered, of order between one and two. The main result is an existence theorem, proving the existence of at least one solution to the boundary value problem, subject to validity of a certain key inequality that allow...
Saved in:
Published in | Fractional calculus & applied analysis Vol. 24; no. 6; pp. 1777 - 1796 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2021
De Gruyter Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a general nonlinear discrete fractional boundary value problem is considered, of order between one and two. The main result is an existence theorem, proving the existence of at least one solution to the boundary value problem, subject to validity of a certain key inequality that allows unrestricted growth in the problem. The proof of this existence theorem is accomplished by using Brouwer’s fixed point theorem as well as two other main results of this paper, namely, first, a result showing that the solutions of the boundary value problem are exactly the solutions to a certain equivalent integral representation, and, second, the establishment of solutions satisfying certain
a priori
bounds provided the key inequality holds. In order to establish the latter result, several novel discrete fractional inequalities are developed, each of them interesting in itself and of potential future use in different contexts. We illustrate the usefulness of our existence results by presenting two examples. |
---|---|
AbstractList | In this paper, a general nonlinear discrete fractional boundary value problem is considered, of order between one and two. The main result is an existence theorem, proving the existence of at least one solution to the boundary value problem, subject to validity of a certain key inequality that allows unrestricted growth in the problem. The proof of this existence theorem is accomplished by using Brouwer's fixed point theorem as well as two other main results of this paper, namely, first, a result showing that the solutions of the boundary value problem are exactly the solutions to a certain equivalent integral representation, and, second, the establishment of solutions satisfying certain
bounds provided the key inequality holds. In order to establish the latter result, several novel discrete fractional inequalities are developed, each of them interesting in itself and of potential future use in different contexts. We illustrate the usefulness of our existence results by presenting two examples. In this paper, a general nonlinear discrete fractional boundary value problem is considered, of order between one and two. The main result is an existence theorem, proving the existence of at least one solution to the boundary value problem, subject to validity of a certain key inequality that allows unrestricted growth in the problem. The proof of this existence theorem is accomplished by using Brouwer’s fixed point theorem as well as two other main results of this paper, namely, first, a result showing that the solutions of the boundary value problem are exactly the solutions to a certain equivalent integral representation, and, second, the establishment of solutions satisfying certain a priori bounds provided the key inequality holds. In order to establish the latter result, several novel discrete fractional inequalities are developed, each of them interesting in itself and of potential future use in different contexts. We illustrate the usefulness of our existence results by presenting two examples. In this paper, a general nonlinear discrete fractional boundary value problem is considered, of order between one and two. The main result is an existence theorem, proving the existence of at least one solution to the boundary value problem, subject to validity of a certain key inequality that allows unrestricted growth in the problem. The proof of this existence theorem is accomplished by using Brouwer's fixed point theorem as well as two other main results of this paper, namely, first, a result showing that the solutions of the boundary value problem are exactly the solutions to a certain equivalent integral representation, and, second, the establishment of solutions satisfying certain a priori bounds provided the key inequality holds. In order to establish the latter result, several novel discrete fractional inequalities are developed, each of them interesting in itself and of potential future use in different contexts. We illustrate the usefulness of our existence results by presenting two examples. |
Author | Bohner, Martin Fewster-Young, Nick |
Author_xml | – sequence: 1 givenname: Martin surname: Bohner fullname: Bohner, Martin email: bohner@mst.edu organization: Missouri S&T – sequence: 2 givenname: Nick surname: Fewster-Young fullname: Fewster-Young, Nick organization: School of Information Technology and Mathematical Sciences, University of South Australia |
BookMark | eNqFkNFLwzAQxoNMcM49-l7wuTNJk6aFveh0OhgoKL6GtLmMSNduSYrsv7ddBUEUn-44vt_dd985GtVNDQhdEjwjnPBrU6qYYkpijIU4QWOSEBZTStno2HdzxtkZmnpvC8wZwzznYozmd9aXDgJES6fKYJtaVdFt09ZauUP0pqoWomfXFBVsfaRqHa1q2LeqssGCv0CnRlUepl91gl6W96-Lx3j99LBa3KzjMuEixCk2RhSA85xTnWowWVFikQoNosCgNDUC5zrNS6AZIUkqaGEUzoQyOc10MkFXw9ada_Yt-CDfm9Z1Pr2kKSaU5TzDnSoZVKVrvHdgZGmD6h8KTtlKEiz7nGSXk-xzkn1OHRX_oHbObrvX_9TPB_2HqgI4DRvXHrrm29KvHGUpEUd8NuC-O1Nv_uWSTyw7jhE |
CitedBy_id | crossref_primary_10_1016_j_amc_2022_127450 crossref_primary_10_1016_j_neucom_2022_08_059 crossref_primary_10_1007_s13540_022_00028_0 crossref_primary_10_3390_axioms12070650 |
Cites_doi | 10.1016/j.jmaa.2010.02.009 10.1090/S0002-9947-1960-0124553-5 10.1515/fca-2019-0069 10.1016/j.cma.2004.06.006 10.1002/9783527626359 10.3906/mat-1904-29 10.1155/2020/6254013 10.1007/978-3-642-14574-2 10.1515/ms-2017-0422 10.1016/j.camwa.2011.11.029 10.26637/MJM0803/0017 10.2298/FIL1818339B 10.1002/mma.5869 10.1080/10236198.2019.1581180 10.4067/S0719-06462011000300009 10.3934/cpaa.2020269 10.1017/CBO9780511543005 10.1186/s13660-020-02485-8 10.1006/jmaa.2000.7194 10.1080/10236198.2018.1531129 10.1080/10236198.2018.1505882 10.1016/j.na.2007.08.042 10.1515/fca-2020-0051 10.1080/10236198.2017.1321641 10.1080/10236190903029241 10.1002/mma.6745 10.1016/j.na.2012.03.029 10.1007/978-3-319-25562-0 10.1216/RMJ-2019-49-8-2571 |
ContentType | Journal Article |
Copyright | Diogenes Co.Ltd 2021 2021 Diogenes Co., Sofia |
Copyright_xml | – notice: Diogenes Co.Ltd 2021 – notice: 2021 Diogenes Co., Sofia |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1515/fca-2021-0077 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1314-2224 |
EndPage | 1796 |
ExternalDocumentID | 10_1515_fca_2021_0077 10_1515_fca_2021_00772461777 |
GroupedDBID | 06D 0VY 2LR 2WC 30V 3V. 4.4 406 408 8FE 8FG 9-A AACDK AAFPC AAGVJ AAIAL AAJBT AAONY AAPJK AAQCX AARHV AASML AASQH AATNV AAXCG AAYZH ABAKF ABAQN ABFKT ABJCF ABJNI ABRQL ABSOE ABTKH ABUWG ABYKJ ACAOD ACBXY ACDTI ACEFL ACGFS ACIPV ACIWK ACMKP ACPIV ACXLN ACZBO ACZOJ ADGQD ADGYE ADINQ ADJVZ ADOZN AEFQL AEKEB AEMSY AENEX AEQDQ AERZL AESKC AFBAA AFBBN AFCXV AFGNR AFKRA AFLOW AFWTZ AGJBK AGMZJ AGQEE AHBYD AHSBF AIAKS AIGIU AIKXB AKXKS ALMA_UNASSIGNED_HOLDINGS ALUKF AMAVY AMKLP AMXSW AMYLF ARAPS ASPBG AVWKF AZFZN AZMOX AZQEC BAKPI BAPOH BBCWN BCIFA BENPR BGLVJ BGNMA BLHJL BPHCQ CCPQU CFGNV DPUIP DWQXO EBLON EBS EJD FEDTE FIGPU GNUQQ GQ7 H13 HCIFZ HF~ HMJXF HVGLF HZ~ IAO IWAJR IY9 J9A JZLTJ K6V K7- KOV L6V LLZTM LO0 M0N M4Y M7S NPVJJ NQJWS NU0 OK1 P9R PQQKQ PROAC PTHSS QD8 R9I ROL RSV S1Z S27 S3B SHX SJN SJYHP SMT SOJ T13 TR2 U2A VC2 WK8 WTRAM ~A9 ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA AAYXX AFOHR CITATION PHGZM PHGZT 7SC 7TB 8FD ABRTQ FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c357t-60ff7be09952d6def8bc0767de7b0ead2f709d69ce28113672bfa087af928d3 |
IEDL.DBID | U2A |
ISSN | 1311-0454 |
IngestDate | Wed Aug 27 14:44:20 EDT 2025 Tue Jul 01 00:57:09 EDT 2025 Thu Apr 24 22:59:14 EDT 2025 Thu Jul 10 10:36:17 EDT 2025 Fri Feb 21 02:45:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Primary 26A33 discrete fractional calculus 39A12 existence of solutions 39A27 boundary value problem discrete fractional inequalities 39A70 Secondary 34A08 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-60ff7be09952d6def8bc0767de7b0ead2f709d69ce28113672bfa087af928d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2601249580 |
PQPubID | 2039846 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2601249580 crossref_citationtrail_10_1515_fca_2021_0077 crossref_primary_10_1515_fca_2021_0077 walterdegruyter_journals_10_1515_fca_2021_00772461777 springer_journals_10_1515_fca_2021_0077 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationSubtitle | An International Journal for Theory and Applications |
PublicationTitle | Fractional calculus & applied analysis |
PublicationTitleAbbrev | Fract Calc Appl Anal |
PublicationYear | 2021 |
Publisher | Springer International Publishing De Gruyter Nature Publishing Group |
Publisher_xml | – name: Springer International Publishing – name: De Gruyter – name: Nature Publishing Group |
References | AtιcιF MEloeP WTwo-point boundary value problems for finite fractional difference equationsJ. Difference Equ. Appl.2011174445456278335910.1080/10236190903029241 ChenCBohnerMJiaBExistence and uniqueness of solutions for nonlinear Caputo fractional difference equationsTurkish J. Math.2020443857869410048310.3906/mat-1904-29 GoodrichC SLyonsBVelcsovM TAnalytical and numerical monotonicity results for discrete fractional sequential differences with negative lower boundCommun. Pure Appl. Anal.2021201339358419150810.3934/cpaa.2020269 SelvamA G MAlzabutJDhineshbabuRRashidSRehmanMDiscrete fractional order two-point boundary value problem with some relevant physical applicationsJ. Inequal. Appl.2020202019415289810.1186/s13660-020-02485-8 Garić-DemirovićMMoranjkićSNurkanovićMNurkanovićZStability, Neimark–Sacker bifurcation, and approximation of the invariant curve of certain homogeneous second-order fractional difference equationDiscrete Dyn. Nat. Soc.2020202012413533410.1155/2020/6254013 PachpatteD BBagwanA SKhandagaleA DExistence of solutions to discrete boundary value problem of fractional difference equationsMalaya J. Mat.202083832837411260810.26637/MJM0803/0017 PratapARajaRCaoJHuangCNiezabitowskiMBagdasarOStability of discrete-time fractional-order time-delayed neural networks in complex fieldMath. Methods Appl. Sci.2021441419440418526210.1002/mma.6745 Fewster-YoungNTisdellC CThe existence of solutions to second-order singular boundary value problemsNonlinear Anal.2012751347984806292754510.1016/j.na.2012.03.029 CabadaADimitrovNNontrivial solutions of non-autonomous Dirichlet fractional discrete problemsFract. Calc. Appl. Anal.2020234980995415109410.1515/fca-2020-0051 AtιcιF MEloeP WGronwall’s inequality on discrete fractional calculusComput. Math. Appl.2012641031933200298934710.1016/j.camwa.2011.11.029 BohnerMStamovaI MAn impulsive delay discrete stochastic neural network fractional-order model and applications in financeFilomat2018321863396352389942210.2298/FIL1818339B GoodrichC SSome new existence results for fractional difference equationsInt. J. Dyn. Syst. Differ. Equ.201131-214516227970461215.39004 HartmanPOn boundary value problems for systems of ordinary, nonlinear, second order differential equationsTrans. Amer. Math. Soc.19609649350912455310.1090/S0002-9947-1960-0124553-5 LakshmikanthamVVatsalaA STheory of fractional differential inequalities and applicationsCommun. Appl. Anal.2007113-439540223681911159.34006 ChenCBohnerMJiaBMethod of upper and lower solutions for nonlinear Caputo fractional difference equations and its applicationsFract. Calc. Appl. Anal.201922513071320404457610.1515/fca-2019-0069 GoodrichC SSolutions to a discrete right-focal fractional boundary value problemInt. J. Difference Equ.2010521952162771325 DiethelmKThe Analysis of Fractional Differential Equations2010WarsawVersita10.1007/978-3-642-14574-2 KilbasA ASrivastavaH MTrujilloJ JTheory and Applications of Fractional Differential Equations2006AmsterdamElsevier Science B.V1092.45003 LakshmikanthamVVatsalaA SBasic theory of fractional differential equationsNonlinear Anal.200869826772682244636110.1016/j.na.2007.08.042 H. G. Schuster. Reviews of Nonlinear Dynamics and Complexity1, Wiley-VCH Verlag Berlin GmbH, Weinheim, (2008). DahalRGoodrichC SA uniformly sharp convexity result for discrete fractional sequential differencesRocky Mountain J. Math.201949825712586405833810.1216/RMJ-2019-49-8-2571 HendersonJNeugebauerJ TSmallest eigenvalues for a fractional difference equation with right focal boundary conditionsJ. Difference Equ. Appl.201723813171323370298110.1080/10236198.2017.1321641 PodlubnyIFractional Differential Equations1999San Diego, CAAcademic Press, Inc0924.34008 DiethelmKFordN JFreedA DLuchkoY FAlgorithms for the fractional calculus: a selection of numerical methodsComput. Methods Appl. Mech. Engrg.20051946-8743773210564810.1016/j.cma.2004.06.006 HendersonJExistence of local solutions for fractional difference equations with Dirichlet boundary conditionsJ. Difference Equ. Appl.2019256751756399100410.1080/10236198.2018.1505882 ChenCBohnerMJiaBUlam–Hyers stability of Caputo fractional difference equationsMath. Methods Appl. Sci.2019421874617470403798310.1002/mma.5869 IslamM NNeugebauerJ TInitial value problems for fractional differential equations of Riemann-Liouville typeAdv. Dyn. Syst. Appl.202015211312441530811454.34017 HolmMSum and difference compositions in discrete fractional calculusCubo2011133153184289548210.4067/S0719-06462011000300009 JonnalagaddaJ MDiscrete fractional Lyapunov-type inequalities in nabla senseDyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal202027639741941332561454.39019 DiethelmKFordN JAnalysis of fractional differential equationsJ. Math. Anal. Appl.20022652229248187613710.1006/jmaa.2000.7194 GoodrichC SPetersonA CDiscrete Fractional Calculus2015ChamSpringer10.1007/978-3-319-25562-0 AgarwalR PMeehanMO’ReganDFixed Point Theory and Applications2001CambridgeCambridge University Press10.1017/CBO9780511543005 ChatzarakisG ESelvamG MJanagarajRMiliarasG NOscillation criteria for a class of nonlinear discrete fractional order equations with damping termMath. Slovaca202070511651182415681610.1515/ms-2017-0422 GoodrichC SExistence of a positive solution to a system of discrete fractional boundary value problemsAppl. Math. Comput.201121794740475327451531215.39003 ChenCMertRJiaBErbeLPetersonAGronwall’s inequality for a nabla fractional difference system with a retarded argument and an applicationJ. Difference Equ. Appl.2019256855868399101110.1080/10236198.2019.1581180 AtιcιF MŠengülSModeling with fractional difference equationsJ. Math. Anal. Appl.2010369119264383910.1016/j.jmaa.2010.02.009 EloeP WKublikC MNeugebauerJ TComparison of Green’s functions for a family of boundary value problems for fractional difference equationsJ. Difference Equ. Appl.2019256776787399100610.1080/10236198.2018.1531129 M Bohner (24061777_CR5) 2018; 32 A Cabada (24061777_CR6) 2020; 23 C S Goodrich (24061777_CR22) 2021; 20 J Henderson (24061777_CR25) 2019; 25 C S Goodrich (24061777_CR20) 2011; 217 N Fewster-Young (24061777_CR17) 2012; 75 J Henderson (24061777_CR26) 2017; 23 G E Chatzarakis (24061777_CR7) 2020; 70 M Holm (24061777_CR27) 2011; 13 24061777_CR36 C Chen (24061777_CR8) 2019; 22 V Lakshmikantham (24061777_CR32) 2008; 69 K Diethelm (24061777_CR14) 2002; 265 A A Kilbas (24061777_CR30) 2006 K Diethelm (24061777_CR13) 2010 D B Pachpatte (24061777_CR33) 2020; 8 C S Goodrich (24061777_CR19) 2010; 5 C S Goodrich (24061777_CR21) 2011; 3 M N Islam (24061777_CR28) 2020; 15 P Hartman (24061777_CR24) 1960; 96 F M Atιcι (24061777_CR3) 2011; 17 F M Atιcι (24061777_CR2) 2010; 369 C Chen (24061777_CR11) 2019; 25 A Pratap (24061777_CR35) 2021; 44 R P Agarwal (24061777_CR1) 2001 C Chen (24061777_CR10) 2020; 44 F M Atιcι (24061777_CR4) 2012; 64 K Diethelm (24061777_CR15) 2005; 194 A G M Selvam (24061777_CR37) 2020; 2020 C Chen (24061777_CR9) 2019; 42 P W Eloe (24061777_CR16) 2019; 25 C S Goodrich (24061777_CR23) 2015 R Dahal (24061777_CR12) 2019; 49 I Podlubny (24061777_CR34) 1999 M Garić-Demirović (24061777_CR18) 2020; 2020 J M Jonnalagadda (24061777_CR29) 2020; 27 V Lakshmikantham (24061777_CR31) 2007; 11 |
References_xml | – reference: GoodrichC SExistence of a positive solution to a system of discrete fractional boundary value problemsAppl. Math. Comput.201121794740475327451531215.39003 – reference: LakshmikanthamVVatsalaA SBasic theory of fractional differential equationsNonlinear Anal.200869826772682244636110.1016/j.na.2007.08.042 – reference: GoodrichC SSome new existence results for fractional difference equationsInt. J. Dyn. Syst. Differ. Equ.201131-214516227970461215.39004 – reference: DiethelmKFordN JAnalysis of fractional differential equationsJ. Math. Anal. Appl.20022652229248187613710.1006/jmaa.2000.7194 – reference: PachpatteD BBagwanA SKhandagaleA DExistence of solutions to discrete boundary value problem of fractional difference equationsMalaya J. Mat.202083832837411260810.26637/MJM0803/0017 – reference: ChatzarakisG ESelvamG MJanagarajRMiliarasG NOscillation criteria for a class of nonlinear discrete fractional order equations with damping termMath. Slovaca202070511651182415681610.1515/ms-2017-0422 – reference: ChenCBohnerMJiaBExistence and uniqueness of solutions for nonlinear Caputo fractional difference equationsTurkish J. Math.2020443857869410048310.3906/mat-1904-29 – reference: CabadaADimitrovNNontrivial solutions of non-autonomous Dirichlet fractional discrete problemsFract. Calc. Appl. Anal.2020234980995415109410.1515/fca-2020-0051 – reference: IslamM NNeugebauerJ TInitial value problems for fractional differential equations of Riemann-Liouville typeAdv. Dyn. Syst. Appl.202015211312441530811454.34017 – reference: AtιcιF MEloeP WGronwall’s inequality on discrete fractional calculusComput. Math. Appl.2012641031933200298934710.1016/j.camwa.2011.11.029 – reference: KilbasA ASrivastavaH MTrujilloJ JTheory and Applications of Fractional Differential Equations2006AmsterdamElsevier Science B.V1092.45003 – reference: AgarwalR PMeehanMO’ReganDFixed Point Theory and Applications2001CambridgeCambridge University Press10.1017/CBO9780511543005 – reference: HendersonJNeugebauerJ TSmallest eigenvalues for a fractional difference equation with right focal boundary conditionsJ. Difference Equ. Appl.201723813171323370298110.1080/10236198.2017.1321641 – reference: Fewster-YoungNTisdellC CThe existence of solutions to second-order singular boundary value problemsNonlinear Anal.2012751347984806292754510.1016/j.na.2012.03.029 – reference: GoodrichC SLyonsBVelcsovM TAnalytical and numerical monotonicity results for discrete fractional sequential differences with negative lower boundCommun. Pure Appl. Anal.2021201339358419150810.3934/cpaa.2020269 – reference: DahalRGoodrichC SA uniformly sharp convexity result for discrete fractional sequential differencesRocky Mountain J. Math.201949825712586405833810.1216/RMJ-2019-49-8-2571 – reference: DiethelmKThe Analysis of Fractional Differential Equations2010WarsawVersita10.1007/978-3-642-14574-2 – reference: HendersonJExistence of local solutions for fractional difference equations with Dirichlet boundary conditionsJ. Difference Equ. Appl.2019256751756399100410.1080/10236198.2018.1505882 – reference: ChenCBohnerMJiaBMethod of upper and lower solutions for nonlinear Caputo fractional difference equations and its applicationsFract. Calc. Appl. Anal.201922513071320404457610.1515/fca-2019-0069 – reference: Garić-DemirovićMMoranjkićSNurkanovićMNurkanovićZStability, Neimark–Sacker bifurcation, and approximation of the invariant curve of certain homogeneous second-order fractional difference equationDiscrete Dyn. Nat. Soc.2020202012413533410.1155/2020/6254013 – reference: BohnerMStamovaI MAn impulsive delay discrete stochastic neural network fractional-order model and applications in financeFilomat2018321863396352389942210.2298/FIL1818339B – reference: HartmanPOn boundary value problems for systems of ordinary, nonlinear, second order differential equationsTrans. Amer. Math. Soc.19609649350912455310.1090/S0002-9947-1960-0124553-5 – reference: EloeP WKublikC MNeugebauerJ TComparison of Green’s functions for a family of boundary value problems for fractional difference equationsJ. Difference Equ. Appl.2019256776787399100610.1080/10236198.2018.1531129 – reference: LakshmikanthamVVatsalaA STheory of fractional differential inequalities and applicationsCommun. Appl. Anal.2007113-439540223681911159.34006 – reference: PratapARajaRCaoJHuangCNiezabitowskiMBagdasarOStability of discrete-time fractional-order time-delayed neural networks in complex fieldMath. Methods Appl. Sci.2021441419440418526210.1002/mma.6745 – reference: ChenCMertRJiaBErbeLPetersonAGronwall’s inequality for a nabla fractional difference system with a retarded argument and an applicationJ. Difference Equ. Appl.2019256855868399101110.1080/10236198.2019.1581180 – reference: GoodrichC SPetersonA CDiscrete Fractional Calculus2015ChamSpringer10.1007/978-3-319-25562-0 – reference: PodlubnyIFractional Differential Equations1999San Diego, CAAcademic Press, Inc0924.34008 – reference: DiethelmKFordN JFreedA DLuchkoY FAlgorithms for the fractional calculus: a selection of numerical methodsComput. Methods Appl. Mech. Engrg.20051946-8743773210564810.1016/j.cma.2004.06.006 – reference: AtιcιF MEloeP WTwo-point boundary value problems for finite fractional difference equationsJ. Difference Equ. Appl.2011174445456278335910.1080/10236190903029241 – reference: AtιcιF MŠengülSModeling with fractional difference equationsJ. Math. Anal. Appl.2010369119264383910.1016/j.jmaa.2010.02.009 – reference: HolmMSum and difference compositions in discrete fractional calculusCubo2011133153184289548210.4067/S0719-06462011000300009 – reference: SelvamA G MAlzabutJDhineshbabuRRashidSRehmanMDiscrete fractional order two-point boundary value problem with some relevant physical applicationsJ. Inequal. Appl.2020202019415289810.1186/s13660-020-02485-8 – reference: JonnalagaddaJ MDiscrete fractional Lyapunov-type inequalities in nabla senseDyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal202027639741941332561454.39019 – reference: GoodrichC SSolutions to a discrete right-focal fractional boundary value problemInt. J. Difference Equ.2010521952162771325 – reference: ChenCBohnerMJiaBUlam–Hyers stability of Caputo fractional difference equationsMath. Methods Appl. Sci.2019421874617470403798310.1002/mma.5869 – reference: H. G. Schuster. Reviews of Nonlinear Dynamics and Complexity1, Wiley-VCH Verlag Berlin GmbH, Weinheim, (2008). – volume: 11 start-page: 395 issue: 3-4 year: 2007 ident: 24061777_CR31 publication-title: Commun. Appl. Anal. – volume: 369 start-page: 1 issue: 1 year: 2010 ident: 24061777_CR2 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2010.02.009 – volume: 96 start-page: 493 year: 1960 ident: 24061777_CR24 publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-1960-0124553-5 – volume: 22 start-page: 1307 issue: 5 year: 2019 ident: 24061777_CR8 publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2019-0069 – volume: 194 start-page: 743 issue: 6-8 year: 2005 ident: 24061777_CR15 publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2004.06.006 – ident: 24061777_CR36 doi: 10.1002/9783527626359 – volume: 44 start-page: 857 issue: 3 year: 2020 ident: 24061777_CR10 publication-title: Turkish J. Math. doi: 10.3906/mat-1904-29 – volume: 2020 start-page: 12 year: 2020 ident: 24061777_CR18 publication-title: Discrete Dyn. Nat. Soc. doi: 10.1155/2020/6254013 – volume: 5 start-page: 195 issue: 2 year: 2010 ident: 24061777_CR19 publication-title: Int. J. Difference Equ. – volume-title: The Analysis of Fractional Differential Equations year: 2010 ident: 24061777_CR13 doi: 10.1007/978-3-642-14574-2 – volume-title: Theory and Applications of Fractional Differential Equations year: 2006 ident: 24061777_CR30 – volume: 70 start-page: 1165 issue: 5 year: 2020 ident: 24061777_CR7 publication-title: Math. Slovaca doi: 10.1515/ms-2017-0422 – volume: 64 start-page: 3193 issue: 10 year: 2012 ident: 24061777_CR4 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.11.029 – volume: 3 start-page: 145 issue: 1-2 year: 2011 ident: 24061777_CR21 publication-title: Int. J. Dyn. Syst. Differ. Equ. – volume: 8 start-page: 832 issue: 3 year: 2020 ident: 24061777_CR33 publication-title: Malaya J. Mat. doi: 10.26637/MJM0803/0017 – volume: 32 start-page: 6339 issue: 18 year: 2018 ident: 24061777_CR5 publication-title: Filomat doi: 10.2298/FIL1818339B – volume: 42 start-page: 7461 issue: 18 year: 2019 ident: 24061777_CR9 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.5869 – volume: 25 start-page: 855 issue: 6 year: 2019 ident: 24061777_CR11 publication-title: J. Difference Equ. Appl. doi: 10.1080/10236198.2019.1581180 – volume: 13 start-page: 153 issue: 3 year: 2011 ident: 24061777_CR27 publication-title: Cubo doi: 10.4067/S0719-06462011000300009 – volume: 20 start-page: 339 issue: 1 year: 2021 ident: 24061777_CR22 publication-title: Commun. Pure Appl. Anal. doi: 10.3934/cpaa.2020269 – volume-title: Fixed Point Theory and Applications year: 2001 ident: 24061777_CR1 doi: 10.1017/CBO9780511543005 – volume-title: Fractional Differential Equations year: 1999 ident: 24061777_CR34 – volume: 2020 start-page: 19 year: 2020 ident: 24061777_CR37 publication-title: J. Inequal. Appl. doi: 10.1186/s13660-020-02485-8 – volume: 265 start-page: 229 issue: 2 year: 2002 ident: 24061777_CR14 publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.2000.7194 – volume: 25 start-page: 776 issue: 6 year: 2019 ident: 24061777_CR16 publication-title: J. Difference Equ. Appl. doi: 10.1080/10236198.2018.1531129 – volume: 25 start-page: 751 issue: 6 year: 2019 ident: 24061777_CR25 publication-title: J. Difference Equ. Appl. doi: 10.1080/10236198.2018.1505882 – volume: 69 start-page: 2677 issue: 8 year: 2008 ident: 24061777_CR32 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2007.08.042 – volume: 23 start-page: 980 issue: 4 year: 2020 ident: 24061777_CR6 publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2020-0051 – volume: 23 start-page: 1317 issue: 8 year: 2017 ident: 24061777_CR26 publication-title: J. Difference Equ. Appl. doi: 10.1080/10236198.2017.1321641 – volume: 15 start-page: 113 issue: 2 year: 2020 ident: 24061777_CR28 publication-title: Adv. Dyn. Syst. Appl. – volume: 17 start-page: 445 issue: 4 year: 2011 ident: 24061777_CR3 publication-title: J. Difference Equ. Appl. doi: 10.1080/10236190903029241 – volume: 44 start-page: 419 issue: 1 year: 2021 ident: 24061777_CR35 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6745 – volume: 27 start-page: 397 issue: 6 year: 2020 ident: 24061777_CR29 publication-title: Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal – volume: 75 start-page: 4798 issue: 13 year: 2012 ident: 24061777_CR17 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2012.03.029 – volume: 217 start-page: 4740 issue: 9 year: 2011 ident: 24061777_CR20 publication-title: Appl. Math. Comput. – volume-title: Discrete Fractional Calculus year: 2015 ident: 24061777_CR23 doi: 10.1007/978-3-319-25562-0 – volume: 49 start-page: 2571 issue: 8 year: 2019 ident: 24061777_CR12 publication-title: Rocky Mountain J. Math. doi: 10.1216/RMJ-2019-49-8-2571 |
SSID | ssib054405957 ssj0000826098 |
Score | 2.2627492 |
Snippet | In this paper, a general nonlinear discrete fractional boundary value problem is considered, of order between one and two. The main result is an existence... |
SourceID | proquest crossref walterdegruyter springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1777 |
SubjectTerms | 39A12 39A27 39A70 Abstract Harmonic Analysis Analysis boundary value problem Boundary value problems discrete fractional calculus discrete fractional inequalities existence of solutions Existence theorems Fixed points (mathematics) Functional Analysis Inequalities Integral Transforms Mathematics Operational Calculus Primary 26A33 Research Paper Secondary 34A08 |
Title | Discrete Fractional Boundary Value Problems and Inequalities |
URI | https://link.springer.com/article/10.1515/fca-2021-0077 https://www.degruyter.com/doi/10.1515/fca-2021-0077 https://www.proquest.com/docview/2601249580 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7aerGH4hOrteQgejF0m2azG_BSH7UKFUErvYUkuytCiZKmSP-9s5ukRaXoMewjMDOZfMvMfh_AiRdhOox4V7cNUtulUtlchMTmEo8TtBsSZeiLRw_ecOzeT-ikAp3yLozpdi9LkiZTG42eLu2oOESXOrgrYawKGxQfdA_X2OmXAURdhB9-UcYzqRjBMzF6uJpVxtZ0cwXP5q8dv_-XVmBzWR-tQ-PTVLCFfE3ni6ysmJof0WALGgWCtPq5y7ehIpMdqI-W9KuzXbi4fsNsgHDYGqT5xQVccGkElNKF9RJO59J6zJVkZlaYCOsukfntSjw378HT4Ob5amgXMgl23KMssz2iFIskQj3qCE9IxaOYMI8JySKCgeIoRnzh-bF0uFZwYU6kQsJZqHyHi94-1JL3RB6AxRTCDY7ze7FyfYHDrtBiVr4kwol92oTz0kRBXDCIayGLaaBPEmjRAC0aaIsG2qJNOF1O_8ipM9ZNbJX2DoovaBZoqjOti81JE85KH6yG12xEf7jojwWaTI8xdvjvNxzBpokY08_SglqWzuUxopIsakOVD27bJh6_AIbC2Wc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHKCHilWUNQeWCxGuG8eOBAe2qqUUIbGIE1ES2wipCqiLUD-Gf2XsJEWAEFx69pJoxh6_0djvAWz7MYbDWFTNtUHmekxpV8iIuEJhOsGqEdGWvrh95TfuvIsH9jAB78VbGHvbvShJ2khtNXqq7EAnEbqU4qyE8_wWZUsN3zBH6x01z9ChO5TWz29PG24uI-AmNcb7rk-05rFCKMSo9KXSIk4we-dS8ZigIanmJJB-kCgqjMIJp7GOiOCRDqiQNZx1EqYRdQizae7ocbFcmYdgJ8iLhjbwI1QnVn3XcNi4htwuZ_X88f9fT8FPaDuqxpag_Gbr5VI9dQfDflGftcdefQ7KOV51jrMFNg8TKl2AUntE9tpbhMOzZ4w9CL6dejd7JoEDTqxcU3fo3EedgXKuM92anhOl0mmmKnvLiVn6EtyMwZrLMJW-pGoFHK4R3AjsX0u0F0hs9qSRzgoUkTQJWAX2CxOFSc5XbmQzOqHJW9CiIVo0NBYNjUUrsDvq_poRdfzWcb2wd5jv115oiNWMCrcgFdgrfPDZ_MtE7JuL_hhgqPs456v__sIWzDRu25fhZfOqtQazdvXYmzTrMNXvDtQG4qF-vGlXpQOP490EH5xXFX8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZS8NAEB48QPSheGI98-DxYnC7zWY3oA9qLa0Xggc-GZLsrggSpU0p_Un-S2c3SUVF9KXP2SPMzO7OMDPfB7Dlx3gdxqJmygaZ6zGlXSEj4gqF4QSrRURb-OLLK7915509sIcxeC97YWy1e5mSzHsaDEpTmu2_SZ3z9dTYvk4iVC_FHQjnRUXluRr0MV7rHrYbqNxtSpuntyctt6AUcJM645nrE615rNAtYlT6UmkRJxjJc6l4TFCoVHMSSD9IFBWG7YTTWEdE8EgHVMg6rjoOk55pO8ajc0ePStNlHjo-QZFAtI8Auu3EMvEaPBvXAN0VCJ8__v_ri_jp5g4zszNQ6dvcuVRPnd4gK3O19glszkKl8F2do9zY5mBMpfMwczkEfu0uwEHjGe8hdMSdZidvmcAJx5a6qTNw7qOXnnKucw6brhOl0mmnKu_rxIh9EW5GIM0lmEhfU7UMDtfo6AgcX0-0F0j87ElDoxUoImkSsCrslSIKkwK73FBovIQmhkGJhijR0Eg0NBKtws5w-FsO2vHbwLVS3mFxdruhAVkzjNyCVGG31MHn518WYt9U9McEA-PHOV_59w6bMHXdaIYX7avzVZi2xmOLatZgIuv01Dq6Rlm8YY3SgcfRnoEPwUcZsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+Fractional+Boundary+Value+Problems+and+Inequalities&rft.jtitle=Fractional+calculus+%26+applied+analysis&rft.au=Bohner%2C+Martin&rft.au=Fewster-Young%2C+Nick&rft.date=2021-12-01&rft.issn=1311-0454&rft.eissn=1314-2224&rft.volume=24&rft.issue=6&rft.spage=1777&rft.epage=1796&rft_id=info:doi/10.1515%2Ffca-2021-0077&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_fca_2021_0077 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1311-0454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1311-0454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1311-0454&client=summon |