Discrete Fractional Boundary Value Problems and Inequalities

In this paper, a general nonlinear discrete fractional boundary value problem is considered, of order between one and two. The main result is an existence theorem, proving the existence of at least one solution to the boundary value problem, subject to validity of a certain key inequality that allow...

Full description

Saved in:
Bibliographic Details
Published inFractional calculus & applied analysis Vol. 24; no. 6; pp. 1777 - 1796
Main Authors Bohner, Martin, Fewster-Young, Nick
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2021
De Gruyter
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a general nonlinear discrete fractional boundary value problem is considered, of order between one and two. The main result is an existence theorem, proving the existence of at least one solution to the boundary value problem, subject to validity of a certain key inequality that allows unrestricted growth in the problem. The proof of this existence theorem is accomplished by using Brouwer’s fixed point theorem as well as two other main results of this paper, namely, first, a result showing that the solutions of the boundary value problem are exactly the solutions to a certain equivalent integral representation, and, second, the establishment of solutions satisfying certain a priori bounds provided the key inequality holds. In order to establish the latter result, several novel discrete fractional inequalities are developed, each of them interesting in itself and of potential future use in different contexts. We illustrate the usefulness of our existence results by presenting two examples.
AbstractList In this paper, a general nonlinear discrete fractional boundary value problem is considered, of order between one and two. The main result is an existence theorem, proving the existence of at least one solution to the boundary value problem, subject to validity of a certain key inequality that allows unrestricted growth in the problem. The proof of this existence theorem is accomplished by using Brouwer's fixed point theorem as well as two other main results of this paper, namely, first, a result showing that the solutions of the boundary value problem are exactly the solutions to a certain equivalent integral representation, and, second, the establishment of solutions satisfying certain bounds provided the key inequality holds. In order to establish the latter result, several novel discrete fractional inequalities are developed, each of them interesting in itself and of potential future use in different contexts. We illustrate the usefulness of our existence results by presenting two examples.
In this paper, a general nonlinear discrete fractional boundary value problem is considered, of order between one and two. The main result is an existence theorem, proving the existence of at least one solution to the boundary value problem, subject to validity of a certain key inequality that allows unrestricted growth in the problem. The proof of this existence theorem is accomplished by using Brouwer’s fixed point theorem as well as two other main results of this paper, namely, first, a result showing that the solutions of the boundary value problem are exactly the solutions to a certain equivalent integral representation, and, second, the establishment of solutions satisfying certain a priori bounds provided the key inequality holds. In order to establish the latter result, several novel discrete fractional inequalities are developed, each of them interesting in itself and of potential future use in different contexts. We illustrate the usefulness of our existence results by presenting two examples.
In this paper, a general nonlinear discrete fractional boundary value problem is considered, of order between one and two. The main result is an existence theorem, proving the existence of at least one solution to the boundary value problem, subject to validity of a certain key inequality that allows unrestricted growth in the problem. The proof of this existence theorem is accomplished by using Brouwer's fixed point theorem as well as two other main results of this paper, namely, first, a result showing that the solutions of the boundary value problem are exactly the solutions to a certain equivalent integral representation, and, second, the establishment of solutions satisfying certain a priori bounds provided the key inequality holds. In order to establish the latter result, several novel discrete fractional inequalities are developed, each of them interesting in itself and of potential future use in different contexts. We illustrate the usefulness of our existence results by presenting two examples.
Author Bohner, Martin
Fewster-Young, Nick
Author_xml – sequence: 1
  givenname: Martin
  surname: Bohner
  fullname: Bohner, Martin
  email: bohner@mst.edu
  organization: Missouri S&T
– sequence: 2
  givenname: Nick
  surname: Fewster-Young
  fullname: Fewster-Young, Nick
  organization: School of Information Technology and Mathematical Sciences, University of South Australia
BookMark eNqFkNFLwzAQxoNMcM49-l7wuTNJk6aFveh0OhgoKL6GtLmMSNduSYrsv7ddBUEUn-44vt_dd985GtVNDQhdEjwjnPBrU6qYYkpijIU4QWOSEBZTStno2HdzxtkZmnpvC8wZwzznYozmd9aXDgJES6fKYJtaVdFt09ZauUP0pqoWomfXFBVsfaRqHa1q2LeqssGCv0CnRlUepl91gl6W96-Lx3j99LBa3KzjMuEixCk2RhSA85xTnWowWVFikQoNosCgNDUC5zrNS6AZIUkqaGEUzoQyOc10MkFXw9ada_Yt-CDfm9Z1Pr2kKSaU5TzDnSoZVKVrvHdgZGmD6h8KTtlKEiz7nGSXk-xzkn1OHRX_oHbObrvX_9TPB_2HqgI4DRvXHrrm29KvHGUpEUd8NuC-O1Nv_uWSTyw7jhE
CitedBy_id crossref_primary_10_1016_j_amc_2022_127450
crossref_primary_10_1016_j_neucom_2022_08_059
crossref_primary_10_1007_s13540_022_00028_0
crossref_primary_10_3390_axioms12070650
Cites_doi 10.1016/j.jmaa.2010.02.009
10.1090/S0002-9947-1960-0124553-5
10.1515/fca-2019-0069
10.1016/j.cma.2004.06.006
10.1002/9783527626359
10.3906/mat-1904-29
10.1155/2020/6254013
10.1007/978-3-642-14574-2
10.1515/ms-2017-0422
10.1016/j.camwa.2011.11.029
10.26637/MJM0803/0017
10.2298/FIL1818339B
10.1002/mma.5869
10.1080/10236198.2019.1581180
10.4067/S0719-06462011000300009
10.3934/cpaa.2020269
10.1017/CBO9780511543005
10.1186/s13660-020-02485-8
10.1006/jmaa.2000.7194
10.1080/10236198.2018.1531129
10.1080/10236198.2018.1505882
10.1016/j.na.2007.08.042
10.1515/fca-2020-0051
10.1080/10236198.2017.1321641
10.1080/10236190903029241
10.1002/mma.6745
10.1016/j.na.2012.03.029
10.1007/978-3-319-25562-0
10.1216/RMJ-2019-49-8-2571
ContentType Journal Article
Copyright Diogenes Co.Ltd 2021
2021 Diogenes Co., Sofia
Copyright_xml – notice: Diogenes Co.Ltd 2021
– notice: 2021 Diogenes Co., Sofia
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1515/fca-2021-0077
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1314-2224
EndPage 1796
ExternalDocumentID 10_1515_fca_2021_0077
10_1515_fca_2021_00772461777
GroupedDBID 06D
0VY
2LR
2WC
30V
3V.
4.4
406
408
8FE
8FG
9-A
AACDK
AAFPC
AAGVJ
AAIAL
AAJBT
AAONY
AAPJK
AAQCX
AARHV
AASML
AASQH
AATNV
AAXCG
AAYZH
ABAKF
ABAQN
ABFKT
ABJCF
ABJNI
ABRQL
ABSOE
ABTKH
ABUWG
ABYKJ
ACAOD
ACBXY
ACDTI
ACEFL
ACGFS
ACIPV
ACIWK
ACMKP
ACPIV
ACXLN
ACZBO
ACZOJ
ADGQD
ADGYE
ADINQ
ADJVZ
ADOZN
AEFQL
AEKEB
AEMSY
AENEX
AEQDQ
AERZL
AESKC
AFBAA
AFBBN
AFCXV
AFGNR
AFKRA
AFLOW
AFWTZ
AGJBK
AGMZJ
AGQEE
AHBYD
AHSBF
AIAKS
AIGIU
AIKXB
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALUKF
AMAVY
AMKLP
AMXSW
AMYLF
ARAPS
ASPBG
AVWKF
AZFZN
AZMOX
AZQEC
BAKPI
BAPOH
BBCWN
BCIFA
BENPR
BGLVJ
BGNMA
BLHJL
BPHCQ
CCPQU
CFGNV
DPUIP
DWQXO
EBLON
EBS
EJD
FEDTE
FIGPU
GNUQQ
GQ7
H13
HCIFZ
HF~
HMJXF
HVGLF
HZ~
IAO
IWAJR
IY9
J9A
JZLTJ
K6V
K7-
KOV
L6V
LLZTM
LO0
M0N
M4Y
M7S
NPVJJ
NQJWS
NU0
OK1
P9R
PQQKQ
PROAC
PTHSS
QD8
R9I
ROL
RSV
S1Z
S27
S3B
SHX
SJN
SJYHP
SMT
SOJ
T13
TR2
U2A
VC2
WK8
WTRAM
~A9
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
AAYXX
AFOHR
CITATION
PHGZM
PHGZT
7SC
7TB
8FD
ABRTQ
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-60ff7be09952d6def8bc0767de7b0ead2f709d69ce28113672bfa087af928d3
IEDL.DBID U2A
ISSN 1311-0454
IngestDate Wed Aug 27 14:44:20 EDT 2025
Tue Jul 01 00:57:09 EDT 2025
Thu Apr 24 22:59:14 EDT 2025
Thu Jul 10 10:36:17 EDT 2025
Fri Feb 21 02:45:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Primary 26A33
discrete fractional calculus
39A12
existence of solutions
39A27
boundary value problem
discrete fractional inequalities
39A70
Secondary 34A08
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-60ff7be09952d6def8bc0767de7b0ead2f709d69ce28113672bfa087af928d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2601249580
PQPubID 2039846
PageCount 20
ParticipantIDs proquest_journals_2601249580
crossref_citationtrail_10_1515_fca_2021_0077
crossref_primary_10_1515_fca_2021_0077
walterdegruyter_journals_10_1515_fca_2021_00772461777
springer_journals_10_1515_fca_2021_0077
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationSubtitle An International Journal for Theory and Applications
PublicationTitle Fractional calculus & applied analysis
PublicationTitleAbbrev Fract Calc Appl Anal
PublicationYear 2021
Publisher Springer International Publishing
De Gruyter
Nature Publishing Group
Publisher_xml – name: Springer International Publishing
– name: De Gruyter
– name: Nature Publishing Group
References AtιcιF MEloeP WTwo-point boundary value problems for finite fractional difference equationsJ. Difference Equ. Appl.2011174445456278335910.1080/10236190903029241
ChenCBohnerMJiaBExistence and uniqueness of solutions for nonlinear Caputo fractional difference equationsTurkish J. Math.2020443857869410048310.3906/mat-1904-29
GoodrichC SLyonsBVelcsovM TAnalytical and numerical monotonicity results for discrete fractional sequential differences with negative lower boundCommun. Pure Appl. Anal.2021201339358419150810.3934/cpaa.2020269
SelvamA G MAlzabutJDhineshbabuRRashidSRehmanMDiscrete fractional order two-point boundary value problem with some relevant physical applicationsJ. Inequal. Appl.2020202019415289810.1186/s13660-020-02485-8
Garić-DemirovićMMoranjkićSNurkanovićMNurkanovićZStability, Neimark–Sacker bifurcation, and approximation of the invariant curve of certain homogeneous second-order fractional difference equationDiscrete Dyn. Nat. Soc.2020202012413533410.1155/2020/6254013
PachpatteD BBagwanA SKhandagaleA DExistence of solutions to discrete boundary value problem of fractional difference equationsMalaya J. Mat.202083832837411260810.26637/MJM0803/0017
PratapARajaRCaoJHuangCNiezabitowskiMBagdasarOStability of discrete-time fractional-order time-delayed neural networks in complex fieldMath. Methods Appl. Sci.2021441419440418526210.1002/mma.6745
Fewster-YoungNTisdellC CThe existence of solutions to second-order singular boundary value problemsNonlinear Anal.2012751347984806292754510.1016/j.na.2012.03.029
CabadaADimitrovNNontrivial solutions of non-autonomous Dirichlet fractional discrete problemsFract. Calc. Appl. Anal.2020234980995415109410.1515/fca-2020-0051
AtιcιF MEloeP WGronwall’s inequality on discrete fractional calculusComput. Math. Appl.2012641031933200298934710.1016/j.camwa.2011.11.029
BohnerMStamovaI MAn impulsive delay discrete stochastic neural network fractional-order model and applications in financeFilomat2018321863396352389942210.2298/FIL1818339B
GoodrichC SSome new existence results for fractional difference equationsInt. J. Dyn. Syst. Differ. Equ.201131-214516227970461215.39004
HartmanPOn boundary value problems for systems of ordinary, nonlinear, second order differential equationsTrans. Amer. Math. Soc.19609649350912455310.1090/S0002-9947-1960-0124553-5
LakshmikanthamVVatsalaA STheory of fractional differential inequalities and applicationsCommun. Appl. Anal.2007113-439540223681911159.34006
ChenCBohnerMJiaBMethod of upper and lower solutions for nonlinear Caputo fractional difference equations and its applicationsFract. Calc. Appl. Anal.201922513071320404457610.1515/fca-2019-0069
GoodrichC SSolutions to a discrete right-focal fractional boundary value problemInt. J. Difference Equ.2010521952162771325
DiethelmKThe Analysis of Fractional Differential Equations2010WarsawVersita10.1007/978-3-642-14574-2
KilbasA ASrivastavaH MTrujilloJ JTheory and Applications of Fractional Differential Equations2006AmsterdamElsevier Science B.V1092.45003
LakshmikanthamVVatsalaA SBasic theory of fractional differential equationsNonlinear Anal.200869826772682244636110.1016/j.na.2007.08.042
H. G. Schuster. Reviews of Nonlinear Dynamics and Complexity1, Wiley-VCH Verlag Berlin GmbH, Weinheim, (2008).
DahalRGoodrichC SA uniformly sharp convexity result for discrete fractional sequential differencesRocky Mountain J. Math.201949825712586405833810.1216/RMJ-2019-49-8-2571
HendersonJNeugebauerJ TSmallest eigenvalues for a fractional difference equation with right focal boundary conditionsJ. Difference Equ. Appl.201723813171323370298110.1080/10236198.2017.1321641
PodlubnyIFractional Differential Equations1999San Diego, CAAcademic Press, Inc0924.34008
DiethelmKFordN JFreedA DLuchkoY FAlgorithms for the fractional calculus: a selection of numerical methodsComput. Methods Appl. Mech. Engrg.20051946-8743773210564810.1016/j.cma.2004.06.006
HendersonJExistence of local solutions for fractional difference equations with Dirichlet boundary conditionsJ. Difference Equ. Appl.2019256751756399100410.1080/10236198.2018.1505882
ChenCBohnerMJiaBUlam–Hyers stability of Caputo fractional difference equationsMath. Methods Appl. Sci.2019421874617470403798310.1002/mma.5869
IslamM NNeugebauerJ TInitial value problems for fractional differential equations of Riemann-Liouville typeAdv. Dyn. Syst. Appl.202015211312441530811454.34017
HolmMSum and difference compositions in discrete fractional calculusCubo2011133153184289548210.4067/S0719-06462011000300009
JonnalagaddaJ MDiscrete fractional Lyapunov-type inequalities in nabla senseDyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal202027639741941332561454.39019
DiethelmKFordN JAnalysis of fractional differential equationsJ. Math. Anal. Appl.20022652229248187613710.1006/jmaa.2000.7194
GoodrichC SPetersonA CDiscrete Fractional Calculus2015ChamSpringer10.1007/978-3-319-25562-0
AgarwalR PMeehanMO’ReganDFixed Point Theory and Applications2001CambridgeCambridge University Press10.1017/CBO9780511543005
ChatzarakisG ESelvamG MJanagarajRMiliarasG NOscillation criteria for a class of nonlinear discrete fractional order equations with damping termMath. Slovaca202070511651182415681610.1515/ms-2017-0422
GoodrichC SExistence of a positive solution to a system of discrete fractional boundary value problemsAppl. Math. Comput.201121794740475327451531215.39003
ChenCMertRJiaBErbeLPetersonAGronwall’s inequality for a nabla fractional difference system with a retarded argument and an applicationJ. Difference Equ. Appl.2019256855868399101110.1080/10236198.2019.1581180
AtιcιF MŠengülSModeling with fractional difference equationsJ. Math. Anal. Appl.2010369119264383910.1016/j.jmaa.2010.02.009
EloeP WKublikC MNeugebauerJ TComparison of Green’s functions for a family of boundary value problems for fractional difference equationsJ. Difference Equ. Appl.2019256776787399100610.1080/10236198.2018.1531129
M Bohner (24061777_CR5) 2018; 32
A Cabada (24061777_CR6) 2020; 23
C S Goodrich (24061777_CR22) 2021; 20
J Henderson (24061777_CR25) 2019; 25
C S Goodrich (24061777_CR20) 2011; 217
N Fewster-Young (24061777_CR17) 2012; 75
J Henderson (24061777_CR26) 2017; 23
G E Chatzarakis (24061777_CR7) 2020; 70
M Holm (24061777_CR27) 2011; 13
24061777_CR36
C Chen (24061777_CR8) 2019; 22
V Lakshmikantham (24061777_CR32) 2008; 69
K Diethelm (24061777_CR14) 2002; 265
A A Kilbas (24061777_CR30) 2006
K Diethelm (24061777_CR13) 2010
D B Pachpatte (24061777_CR33) 2020; 8
C S Goodrich (24061777_CR19) 2010; 5
C S Goodrich (24061777_CR21) 2011; 3
M N Islam (24061777_CR28) 2020; 15
P Hartman (24061777_CR24) 1960; 96
F M Atιcι (24061777_CR3) 2011; 17
F M Atιcι (24061777_CR2) 2010; 369
C Chen (24061777_CR11) 2019; 25
A Pratap (24061777_CR35) 2021; 44
R P Agarwal (24061777_CR1) 2001
C Chen (24061777_CR10) 2020; 44
F M Atιcι (24061777_CR4) 2012; 64
K Diethelm (24061777_CR15) 2005; 194
A G M Selvam (24061777_CR37) 2020; 2020
C Chen (24061777_CR9) 2019; 42
P W Eloe (24061777_CR16) 2019; 25
C S Goodrich (24061777_CR23) 2015
R Dahal (24061777_CR12) 2019; 49
I Podlubny (24061777_CR34) 1999
M Garić-Demirović (24061777_CR18) 2020; 2020
J M Jonnalagadda (24061777_CR29) 2020; 27
V Lakshmikantham (24061777_CR31) 2007; 11
References_xml – reference: GoodrichC SExistence of a positive solution to a system of discrete fractional boundary value problemsAppl. Math. Comput.201121794740475327451531215.39003
– reference: LakshmikanthamVVatsalaA SBasic theory of fractional differential equationsNonlinear Anal.200869826772682244636110.1016/j.na.2007.08.042
– reference: GoodrichC SSome new existence results for fractional difference equationsInt. J. Dyn. Syst. Differ. Equ.201131-214516227970461215.39004
– reference: DiethelmKFordN JAnalysis of fractional differential equationsJ. Math. Anal. Appl.20022652229248187613710.1006/jmaa.2000.7194
– reference: PachpatteD BBagwanA SKhandagaleA DExistence of solutions to discrete boundary value problem of fractional difference equationsMalaya J. Mat.202083832837411260810.26637/MJM0803/0017
– reference: ChatzarakisG ESelvamG MJanagarajRMiliarasG NOscillation criteria for a class of nonlinear discrete fractional order equations with damping termMath. Slovaca202070511651182415681610.1515/ms-2017-0422
– reference: ChenCBohnerMJiaBExistence and uniqueness of solutions for nonlinear Caputo fractional difference equationsTurkish J. Math.2020443857869410048310.3906/mat-1904-29
– reference: CabadaADimitrovNNontrivial solutions of non-autonomous Dirichlet fractional discrete problemsFract. Calc. Appl. Anal.2020234980995415109410.1515/fca-2020-0051
– reference: IslamM NNeugebauerJ TInitial value problems for fractional differential equations of Riemann-Liouville typeAdv. Dyn. Syst. Appl.202015211312441530811454.34017
– reference: AtιcιF MEloeP WGronwall’s inequality on discrete fractional calculusComput. Math. Appl.2012641031933200298934710.1016/j.camwa.2011.11.029
– reference: KilbasA ASrivastavaH MTrujilloJ JTheory and Applications of Fractional Differential Equations2006AmsterdamElsevier Science B.V1092.45003
– reference: AgarwalR PMeehanMO’ReganDFixed Point Theory and Applications2001CambridgeCambridge University Press10.1017/CBO9780511543005
– reference: HendersonJNeugebauerJ TSmallest eigenvalues for a fractional difference equation with right focal boundary conditionsJ. Difference Equ. Appl.201723813171323370298110.1080/10236198.2017.1321641
– reference: Fewster-YoungNTisdellC CThe existence of solutions to second-order singular boundary value problemsNonlinear Anal.2012751347984806292754510.1016/j.na.2012.03.029
– reference: GoodrichC SLyonsBVelcsovM TAnalytical and numerical monotonicity results for discrete fractional sequential differences with negative lower boundCommun. Pure Appl. Anal.2021201339358419150810.3934/cpaa.2020269
– reference: DahalRGoodrichC SA uniformly sharp convexity result for discrete fractional sequential differencesRocky Mountain J. Math.201949825712586405833810.1216/RMJ-2019-49-8-2571
– reference: DiethelmKThe Analysis of Fractional Differential Equations2010WarsawVersita10.1007/978-3-642-14574-2
– reference: HendersonJExistence of local solutions for fractional difference equations with Dirichlet boundary conditionsJ. Difference Equ. Appl.2019256751756399100410.1080/10236198.2018.1505882
– reference: ChenCBohnerMJiaBMethod of upper and lower solutions for nonlinear Caputo fractional difference equations and its applicationsFract. Calc. Appl. Anal.201922513071320404457610.1515/fca-2019-0069
– reference: Garić-DemirovićMMoranjkićSNurkanovićMNurkanovićZStability, Neimark–Sacker bifurcation, and approximation of the invariant curve of certain homogeneous second-order fractional difference equationDiscrete Dyn. Nat. Soc.2020202012413533410.1155/2020/6254013
– reference: BohnerMStamovaI MAn impulsive delay discrete stochastic neural network fractional-order model and applications in financeFilomat2018321863396352389942210.2298/FIL1818339B
– reference: HartmanPOn boundary value problems for systems of ordinary, nonlinear, second order differential equationsTrans. Amer. Math. Soc.19609649350912455310.1090/S0002-9947-1960-0124553-5
– reference: EloeP WKublikC MNeugebauerJ TComparison of Green’s functions for a family of boundary value problems for fractional difference equationsJ. Difference Equ. Appl.2019256776787399100610.1080/10236198.2018.1531129
– reference: LakshmikanthamVVatsalaA STheory of fractional differential inequalities and applicationsCommun. Appl. Anal.2007113-439540223681911159.34006
– reference: PratapARajaRCaoJHuangCNiezabitowskiMBagdasarOStability of discrete-time fractional-order time-delayed neural networks in complex fieldMath. Methods Appl. Sci.2021441419440418526210.1002/mma.6745
– reference: ChenCMertRJiaBErbeLPetersonAGronwall’s inequality for a nabla fractional difference system with a retarded argument and an applicationJ. Difference Equ. Appl.2019256855868399101110.1080/10236198.2019.1581180
– reference: GoodrichC SPetersonA CDiscrete Fractional Calculus2015ChamSpringer10.1007/978-3-319-25562-0
– reference: PodlubnyIFractional Differential Equations1999San Diego, CAAcademic Press, Inc0924.34008
– reference: DiethelmKFordN JFreedA DLuchkoY FAlgorithms for the fractional calculus: a selection of numerical methodsComput. Methods Appl. Mech. Engrg.20051946-8743773210564810.1016/j.cma.2004.06.006
– reference: AtιcιF MEloeP WTwo-point boundary value problems for finite fractional difference equationsJ. Difference Equ. Appl.2011174445456278335910.1080/10236190903029241
– reference: AtιcιF MŠengülSModeling with fractional difference equationsJ. Math. Anal. Appl.2010369119264383910.1016/j.jmaa.2010.02.009
– reference: HolmMSum and difference compositions in discrete fractional calculusCubo2011133153184289548210.4067/S0719-06462011000300009
– reference: SelvamA G MAlzabutJDhineshbabuRRashidSRehmanMDiscrete fractional order two-point boundary value problem with some relevant physical applicationsJ. Inequal. Appl.2020202019415289810.1186/s13660-020-02485-8
– reference: JonnalagaddaJ MDiscrete fractional Lyapunov-type inequalities in nabla senseDyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal202027639741941332561454.39019
– reference: GoodrichC SSolutions to a discrete right-focal fractional boundary value problemInt. J. Difference Equ.2010521952162771325
– reference: ChenCBohnerMJiaBUlam–Hyers stability of Caputo fractional difference equationsMath. Methods Appl. Sci.2019421874617470403798310.1002/mma.5869
– reference: H. G. Schuster. Reviews of Nonlinear Dynamics and Complexity1, Wiley-VCH Verlag Berlin GmbH, Weinheim, (2008).
– volume: 11
  start-page: 395
  issue: 3-4
  year: 2007
  ident: 24061777_CR31
  publication-title: Commun. Appl. Anal.
– volume: 369
  start-page: 1
  issue: 1
  year: 2010
  ident: 24061777_CR2
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.02.009
– volume: 96
  start-page: 493
  year: 1960
  ident: 24061777_CR24
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-1960-0124553-5
– volume: 22
  start-page: 1307
  issue: 5
  year: 2019
  ident: 24061777_CR8
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2019-0069
– volume: 194
  start-page: 743
  issue: 6-8
  year: 2005
  ident: 24061777_CR15
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2004.06.006
– ident: 24061777_CR36
  doi: 10.1002/9783527626359
– volume: 44
  start-page: 857
  issue: 3
  year: 2020
  ident: 24061777_CR10
  publication-title: Turkish J. Math.
  doi: 10.3906/mat-1904-29
– volume: 2020
  start-page: 12
  year: 2020
  ident: 24061777_CR18
  publication-title: Discrete Dyn. Nat. Soc.
  doi: 10.1155/2020/6254013
– volume: 5
  start-page: 195
  issue: 2
  year: 2010
  ident: 24061777_CR19
  publication-title: Int. J. Difference Equ.
– volume-title: The Analysis of Fractional Differential Equations
  year: 2010
  ident: 24061777_CR13
  doi: 10.1007/978-3-642-14574-2
– volume-title: Theory and Applications of Fractional Differential Equations
  year: 2006
  ident: 24061777_CR30
– volume: 70
  start-page: 1165
  issue: 5
  year: 2020
  ident: 24061777_CR7
  publication-title: Math. Slovaca
  doi: 10.1515/ms-2017-0422
– volume: 64
  start-page: 3193
  issue: 10
  year: 2012
  ident: 24061777_CR4
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.11.029
– volume: 3
  start-page: 145
  issue: 1-2
  year: 2011
  ident: 24061777_CR21
  publication-title: Int. J. Dyn. Syst. Differ. Equ.
– volume: 8
  start-page: 832
  issue: 3
  year: 2020
  ident: 24061777_CR33
  publication-title: Malaya J. Mat.
  doi: 10.26637/MJM0803/0017
– volume: 32
  start-page: 6339
  issue: 18
  year: 2018
  ident: 24061777_CR5
  publication-title: Filomat
  doi: 10.2298/FIL1818339B
– volume: 42
  start-page: 7461
  issue: 18
  year: 2019
  ident: 24061777_CR9
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.5869
– volume: 25
  start-page: 855
  issue: 6
  year: 2019
  ident: 24061777_CR11
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236198.2019.1581180
– volume: 13
  start-page: 153
  issue: 3
  year: 2011
  ident: 24061777_CR27
  publication-title: Cubo
  doi: 10.4067/S0719-06462011000300009
– volume: 20
  start-page: 339
  issue: 1
  year: 2021
  ident: 24061777_CR22
  publication-title: Commun. Pure Appl. Anal.
  doi: 10.3934/cpaa.2020269
– volume-title: Fixed Point Theory and Applications
  year: 2001
  ident: 24061777_CR1
  doi: 10.1017/CBO9780511543005
– volume-title: Fractional Differential Equations
  year: 1999
  ident: 24061777_CR34
– volume: 2020
  start-page: 19
  year: 2020
  ident: 24061777_CR37
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-020-02485-8
– volume: 265
  start-page: 229
  issue: 2
  year: 2002
  ident: 24061777_CR14
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.2000.7194
– volume: 25
  start-page: 776
  issue: 6
  year: 2019
  ident: 24061777_CR16
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236198.2018.1531129
– volume: 25
  start-page: 751
  issue: 6
  year: 2019
  ident: 24061777_CR25
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236198.2018.1505882
– volume: 69
  start-page: 2677
  issue: 8
  year: 2008
  ident: 24061777_CR32
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2007.08.042
– volume: 23
  start-page: 980
  issue: 4
  year: 2020
  ident: 24061777_CR6
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2020-0051
– volume: 23
  start-page: 1317
  issue: 8
  year: 2017
  ident: 24061777_CR26
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236198.2017.1321641
– volume: 15
  start-page: 113
  issue: 2
  year: 2020
  ident: 24061777_CR28
  publication-title: Adv. Dyn. Syst. Appl.
– volume: 17
  start-page: 445
  issue: 4
  year: 2011
  ident: 24061777_CR3
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236190903029241
– volume: 44
  start-page: 419
  issue: 1
  year: 2021
  ident: 24061777_CR35
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6745
– volume: 27
  start-page: 397
  issue: 6
  year: 2020
  ident: 24061777_CR29
  publication-title: Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal
– volume: 75
  start-page: 4798
  issue: 13
  year: 2012
  ident: 24061777_CR17
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2012.03.029
– volume: 217
  start-page: 4740
  issue: 9
  year: 2011
  ident: 24061777_CR20
  publication-title: Appl. Math. Comput.
– volume-title: Discrete Fractional Calculus
  year: 2015
  ident: 24061777_CR23
  doi: 10.1007/978-3-319-25562-0
– volume: 49
  start-page: 2571
  issue: 8
  year: 2019
  ident: 24061777_CR12
  publication-title: Rocky Mountain J. Math.
  doi: 10.1216/RMJ-2019-49-8-2571
SSID ssib054405957
ssj0000826098
Score 2.2627492
Snippet In this paper, a general nonlinear discrete fractional boundary value problem is considered, of order between one and two. The main result is an existence...
SourceID proquest
crossref
walterdegruyter
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1777
SubjectTerms 39A12
39A27
39A70
Abstract Harmonic Analysis
Analysis
boundary value problem
Boundary value problems
discrete fractional calculus
discrete fractional inequalities
existence of solutions
Existence theorems
Fixed points (mathematics)
Functional Analysis
Inequalities
Integral Transforms
Mathematics
Operational Calculus
Primary 26A33
Research Paper
Secondary 34A08
Title Discrete Fractional Boundary Value Problems and Inequalities
URI https://link.springer.com/article/10.1515/fca-2021-0077
https://www.degruyter.com/doi/10.1515/fca-2021-0077
https://www.proquest.com/docview/2601249580
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7aerGH4hOrteQgejF0m2azG_BSH7UKFUErvYUkuytCiZKmSP-9s5ukRaXoMewjMDOZfMvMfh_AiRdhOox4V7cNUtulUtlchMTmEo8TtBsSZeiLRw_ecOzeT-ikAp3yLozpdi9LkiZTG42eLu2oOESXOrgrYawKGxQfdA_X2OmXAURdhB9-UcYzqRjBMzF6uJpVxtZ0cwXP5q8dv_-XVmBzWR-tQ-PTVLCFfE3ni6ysmJof0WALGgWCtPq5y7ehIpMdqI-W9KuzXbi4fsNsgHDYGqT5xQVccGkElNKF9RJO59J6zJVkZlaYCOsukfntSjw378HT4Ob5amgXMgl23KMssz2iFIskQj3qCE9IxaOYMI8JySKCgeIoRnzh-bF0uFZwYU6kQsJZqHyHi94-1JL3RB6AxRTCDY7ze7FyfYHDrtBiVr4kwol92oTz0kRBXDCIayGLaaBPEmjRAC0aaIsG2qJNOF1O_8ipM9ZNbJX2DoovaBZoqjOti81JE85KH6yG12xEf7jojwWaTI8xdvjvNxzBpokY08_SglqWzuUxopIsakOVD27bJh6_AIbC2Wc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHKCHilWUNQeWCxGuG8eOBAe2qqUUIbGIE1ES2wipCqiLUD-Gf2XsJEWAEFx69pJoxh6_0djvAWz7MYbDWFTNtUHmekxpV8iIuEJhOsGqEdGWvrh95TfuvIsH9jAB78VbGHvbvShJ2khtNXqq7EAnEbqU4qyE8_wWZUsN3zBH6x01z9ChO5TWz29PG24uI-AmNcb7rk-05rFCKMSo9KXSIk4we-dS8ZigIanmJJB-kCgqjMIJp7GOiOCRDqiQNZx1EqYRdQizae7ocbFcmYdgJ8iLhjbwI1QnVn3XcNi4htwuZ_X88f9fT8FPaDuqxpag_Gbr5VI9dQfDflGftcdefQ7KOV51jrMFNg8TKl2AUntE9tpbhMOzZ4w9CL6dejd7JoEDTqxcU3fo3EedgXKuM92anhOl0mmmKnvLiVn6EtyMwZrLMJW-pGoFHK4R3AjsX0u0F0hs9qSRzgoUkTQJWAX2CxOFSc5XbmQzOqHJW9CiIVo0NBYNjUUrsDvq_poRdfzWcb2wd5jv115oiNWMCrcgFdgrfPDZ_MtE7JuL_hhgqPs456v__sIWzDRu25fhZfOqtQazdvXYmzTrMNXvDtQG4qF-vGlXpQOP490EH5xXFX8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZS8NAEB48QPSheGI98-DxYnC7zWY3oA9qLa0Xggc-GZLsrggSpU0p_Un-S2c3SUVF9KXP2SPMzO7OMDPfB7Dlx3gdxqJmygaZ6zGlXSEj4gqF4QSrRURb-OLLK7915509sIcxeC97YWy1e5mSzHsaDEpTmu2_SZ3z9dTYvk4iVC_FHQjnRUXluRr0MV7rHrYbqNxtSpuntyctt6AUcJM645nrE615rNAtYlT6UmkRJxjJc6l4TFCoVHMSSD9IFBWG7YTTWEdE8EgHVMg6rjoOk55pO8ajc0ePStNlHjo-QZFAtI8Auu3EMvEaPBvXAN0VCJ8__v_ri_jp5g4zszNQ6dvcuVRPnd4gK3O19glszkKl8F2do9zY5mBMpfMwczkEfu0uwEHjGe8hdMSdZidvmcAJx5a6qTNw7qOXnnKucw6brhOl0mmnKu_rxIh9EW5GIM0lmEhfU7UMDtfo6AgcX0-0F0j87ElDoxUoImkSsCrslSIKkwK73FBovIQmhkGJhijR0Eg0NBKtws5w-FsO2vHbwLVS3mFxdruhAVkzjNyCVGG31MHn518WYt9U9McEA-PHOV_59w6bMHXdaIYX7avzVZi2xmOLatZgIuv01Dq6Rlm8YY3SgcfRnoEPwUcZsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+Fractional+Boundary+Value+Problems+and+Inequalities&rft.jtitle=Fractional+calculus+%26+applied+analysis&rft.au=Bohner%2C+Martin&rft.au=Fewster-Young%2C+Nick&rft.date=2021-12-01&rft.issn=1311-0454&rft.eissn=1314-2224&rft.volume=24&rft.issue=6&rft.spage=1777&rft.epage=1796&rft_id=info:doi/10.1515%2Ffca-2021-0077&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_fca_2021_0077
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1311-0454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1311-0454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1311-0454&client=summon