Accelerated ultrashort echo time quantitative magnetization transfer (UTE-qMT) imaging of macromolecular fraction (MMF) in cortical bone based on a self-attention convolutional neural network
To combine ultrashort echo time quantitative magnetization transfer (UTE-qMT) imaging with a self-attention convolutional neural network (SAT-Net) for accelerated mapping of macromolecular fraction (MMF) in cortical bone. This institutional review board-approved study involved 31 young female subjec...
Saved in:
Published in | Magnetic resonance imaging Vol. 121; p. 110405 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.09.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To combine ultrashort echo time quantitative magnetization transfer (UTE-qMT) imaging with a self-attention convolutional neural network (SAT-Net) for accelerated mapping of macromolecular fraction (MMF) in cortical bone.
This institutional review board-approved study involved 31 young female subjects (young control, <45 years) and 50 postmenopausal subjects (6 normal (old control), 14 with osteopenia (osteopenia group), and 30 with osteoporosis (OP group)). After written informed consent was obtained from each subject, 15 UTE-qMT images of the tibial midshaft were acquired with three saturation powers (500°, 1000°, and 1500°) and five frequency offsets (2, 5, 10, 20, and 50 kHz) for each power to estimate the baseline MMF using a two-pool model. The densely connected SAT-Net model was used to predict bone MMF maps based on seven evenly distributed UTE-qMT images, which were well separated in terms of MT powers and frequency offsets (namely 5 and 20 kHz for 500° and 1500°, and 2, 10, 50 kHz for 1000°). Errors relative to the baseline MMF were calculated. Linear regression was used to assess the performance of the SAT-Net model. The mean MMF values for different groups were calculated.
Conventional two-pool modeling of seven evenly distributed UTE-qMT input images shows a significant relative error of ∼34 %. In comparison, the SAT-Net model accurately predicted MMF values for the tibial midshafts of 81 human subjects with a high correlation (R2 = 0.97, P < 0.0001) between the baseline and predicted values. The SAT-Net model accelerated UTE-qMT data acquisition by 2.1-fold, with relative errors in MMF mapping less than 2.4 %. The average MMF values were 46.10 ± 13.25 % for the young control group, 40.03 ± 2.56 % for the old control group, 31.22 ± 13.18 % for the osteopenia group, and 22.53 ± 8.12 % for the OP group.
While it is difficult to accelerate MMF mapping in bone using conventional two-pool modeling, the SAT-Net model allows accurate MMF mapping with a substantial reduction in the number of UTE-qMT input images. UTE-qMT with SAT-Net makes clinical evaluation of bone matrix possible. |
---|---|
AbstractList | To combine ultrashort echo time quantitative magnetization transfer (UTE-qMT) imaging with a self-attention convolutional neural network (SAT-Net) for accelerated mapping of macromolecular fraction (MMF) in cortical bone.
This institutional review board-approved study involved 31 young female subjects (young control, <45 years) and 50 postmenopausal subjects (6 normal (old control), 14 with osteopenia (osteopenia group), and 30 with osteoporosis (OP group)). After written informed consent was obtained from each subject, 15 UTE-qMT images of the tibial midshaft were acquired with three saturation powers (500°, 1000°, and 1500°) and five frequency offsets (2, 5, 10, 20, and 50 kHz) for each power to estimate the baseline MMF using a two-pool model. The densely connected SAT-Net model was used to predict bone MMF maps based on seven evenly distributed UTE-qMT images, which were well separated in terms of MT powers and frequency offsets (namely 5 and 20 kHz for 500° and 1500°, and 2, 10, 50 kHz for 1000°). Errors relative to the baseline MMF were calculated. Linear regression was used to assess the performance of the SAT-Net model. The mean MMF values for different groups were calculated.
Conventional two-pool modeling of seven evenly distributed UTE-qMT input images shows a significant relative error of ∼34 %. In comparison, the SAT-Net model accurately predicted MMF values for the tibial midshafts of 81 human subjects with a high correlation (R
= 0.97, P < 0.0001) between the baseline and predicted values. The SAT-Net model accelerated UTE-qMT data acquisition by 2.1-fold, with relative errors in MMF mapping less than 2.4 %. The average MMF values were 46.10 ± 13.25 % for the young control group, 40.03 ± 2.56 % for the old control group, 31.22 ± 13.18 % for the osteopenia group, and 22.53 ± 8.12 % for the OP group.
While it is difficult to accelerate MMF mapping in bone using conventional two-pool modeling, the SAT-Net model allows accurate MMF mapping with a substantial reduction in the number of UTE-qMT input images. UTE-qMT with SAT-Net makes clinical evaluation of bone matrix possible. To combine ultrashort echo time quantitative magnetization transfer (UTE-qMT) imaging with a self-attention convolutional neural network (SAT-Net) for accelerated mapping of macromolecular fraction (MMF) in cortical bone.PURPOSETo combine ultrashort echo time quantitative magnetization transfer (UTE-qMT) imaging with a self-attention convolutional neural network (SAT-Net) for accelerated mapping of macromolecular fraction (MMF) in cortical bone.This institutional review board-approved study involved 31 young female subjects (young control, <45 years) and 50 postmenopausal subjects (6 normal (old control), 14 with osteopenia (osteopenia group), and 30 with osteoporosis (OP group)). After written informed consent was obtained from each subject, 15 UTE-qMT images of the tibial midshaft were acquired with three saturation powers (500°, 1000°, and 1500°) and five frequency offsets (2, 5, 10, 20, and 50 kHz) for each power to estimate the baseline MMF using a two-pool model. The densely connected SAT-Net model was used to predict bone MMF maps based on seven evenly distributed UTE-qMT images, which were well separated in terms of MT powers and frequency offsets (namely 5 and 20 kHz for 500° and 1500°, and 2, 10, 50 kHz for 1000°). Errors relative to the baseline MMF were calculated. Linear regression was used to assess the performance of the SAT-Net model. The mean MMF values for different groups were calculated.MATERIALS AND METHODSThis institutional review board-approved study involved 31 young female subjects (young control, <45 years) and 50 postmenopausal subjects (6 normal (old control), 14 with osteopenia (osteopenia group), and 30 with osteoporosis (OP group)). After written informed consent was obtained from each subject, 15 UTE-qMT images of the tibial midshaft were acquired with three saturation powers (500°, 1000°, and 1500°) and five frequency offsets (2, 5, 10, 20, and 50 kHz) for each power to estimate the baseline MMF using a two-pool model. The densely connected SAT-Net model was used to predict bone MMF maps based on seven evenly distributed UTE-qMT images, which were well separated in terms of MT powers and frequency offsets (namely 5 and 20 kHz for 500° and 1500°, and 2, 10, 50 kHz for 1000°). Errors relative to the baseline MMF were calculated. Linear regression was used to assess the performance of the SAT-Net model. The mean MMF values for different groups were calculated.Conventional two-pool modeling of seven evenly distributed UTE-qMT input images shows a significant relative error of ~34 %. In comparison, the SAT-Net model accurately predicted MMF values for the tibial midshafts of 81 human subjects with a high correlation (R2 = 0.97, P < 0.0001) between the baseline and predicted values. The SAT-Net model accelerated UTE-qMT data acquisition by 2.1-fold, with relative errors in MMF mapping less than 2.4 %. The average MMF values were 46.10 ± 13.25 % for the young control group, 40.03 ± 2.56 % for the old control group, 31.22 ± 13.18 % for the osteopenia group, and 22.53 ± 8.12 % for the OP group.RESULTSConventional two-pool modeling of seven evenly distributed UTE-qMT input images shows a significant relative error of ~34 %. In comparison, the SAT-Net model accurately predicted MMF values for the tibial midshafts of 81 human subjects with a high correlation (R2 = 0.97, P < 0.0001) between the baseline and predicted values. The SAT-Net model accelerated UTE-qMT data acquisition by 2.1-fold, with relative errors in MMF mapping less than 2.4 %. The average MMF values were 46.10 ± 13.25 % for the young control group, 40.03 ± 2.56 % for the old control group, 31.22 ± 13.18 % for the osteopenia group, and 22.53 ± 8.12 % for the OP group.While it is difficult to accelerate MMF mapping in bone using conventional two-pool modeling, the SAT-Net model allows accurate MMF mapping with a substantial reduction in the number of UTE-qMT input images. UTE-qMT with SAT-Net makes clinical evaluation of bone matrix possible.CONCLUSIONWhile it is difficult to accelerate MMF mapping in bone using conventional two-pool modeling, the SAT-Net model allows accurate MMF mapping with a substantial reduction in the number of UTE-qMT input images. UTE-qMT with SAT-Net makes clinical evaluation of bone matrix possible. To combine ultrashort echo time quantitative magnetization transfer (UTE-qMT) imaging with a self-attention convolutional neural network (SAT-Net) for accelerated mapping of macromolecular fraction (MMF) in cortical bone. This institutional review board-approved study involved 31 young female subjects (young control, <45 years) and 50 postmenopausal subjects (6 normal (old control), 14 with osteopenia (osteopenia group), and 30 with osteoporosis (OP group)). After written informed consent was obtained from each subject, 15 UTE-qMT images of the tibial midshaft were acquired with three saturation powers (500°, 1000°, and 1500°) and five frequency offsets (2, 5, 10, 20, and 50 kHz) for each power to estimate the baseline MMF using a two-pool model. The densely connected SAT-Net model was used to predict bone MMF maps based on seven evenly distributed UTE-qMT images, which were well separated in terms of MT powers and frequency offsets (namely 5 and 20 kHz for 500° and 1500°, and 2, 10, 50 kHz for 1000°). Errors relative to the baseline MMF were calculated. Linear regression was used to assess the performance of the SAT-Net model. The mean MMF values for different groups were calculated. Conventional two-pool modeling of seven evenly distributed UTE-qMT input images shows a significant relative error of ∼34 %. In comparison, the SAT-Net model accurately predicted MMF values for the tibial midshafts of 81 human subjects with a high correlation (R2 = 0.97, P < 0.0001) between the baseline and predicted values. The SAT-Net model accelerated UTE-qMT data acquisition by 2.1-fold, with relative errors in MMF mapping less than 2.4 %. The average MMF values were 46.10 ± 13.25 % for the young control group, 40.03 ± 2.56 % for the old control group, 31.22 ± 13.18 % for the osteopenia group, and 22.53 ± 8.12 % for the OP group. While it is difficult to accelerate MMF mapping in bone using conventional two-pool modeling, the SAT-Net model allows accurate MMF mapping with a substantial reduction in the number of UTE-qMT input images. UTE-qMT with SAT-Net makes clinical evaluation of bone matrix possible. |
ArticleNumber | 110405 |
Author | Athertya, Jiyo Shin, Soo Hyun Chung, Christine B. Wang, Avery Tang, Harry Du, Kevin Wang, Yidan Hu, Megan Ma, Yajun Jerban, Saeed Chang, Eric Y. |
Author_xml | – sequence: 1 givenname: Kevin surname: Du fullname: Du, Kevin organization: Department of Radiology, University of California, San Diego, CA, USA – sequence: 2 givenname: Harry surname: Tang fullname: Tang, Harry organization: Department of Radiology, University of California, San Diego, CA, USA – sequence: 3 givenname: Jiyo surname: Athertya fullname: Athertya, Jiyo organization: Department of Radiology, University of California, San Diego, CA, USA – sequence: 4 givenname: Yidan surname: Wang fullname: Wang, Yidan organization: Department of Radiology, University of California, San Diego, CA, USA – sequence: 5 givenname: Megan surname: Hu fullname: Hu, Megan organization: Department of Radiology, University of California, San Diego, CA, USA – sequence: 6 givenname: Avery surname: Wang fullname: Wang, Avery organization: Department of Radiology, University of California, San Diego, CA, USA – sequence: 7 givenname: Saeed surname: Jerban fullname: Jerban, Saeed organization: Department of Radiology, University of California, San Diego, CA, USA – sequence: 8 givenname: Soo Hyun surname: Shin fullname: Shin, Soo Hyun organization: Department of Radiology, University of California, San Diego, CA, USA – sequence: 9 givenname: Yajun surname: Ma fullname: Ma, Yajun organization: Department of Radiology, University of California, San Diego, CA, USA – sequence: 10 givenname: Christine B. surname: Chung fullname: Chung, Christine B. organization: Department of Radiology, University of California, San Diego, CA, USA – sequence: 11 givenname: Eric Y. surname: Chang fullname: Chang, Eric Y. email: e8chang@health.ucsd.edu organization: Department of Radiology, University of California, San Diego, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40328420$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFuEzEQhi1URNPCA3BBPobDhvF6vZsVp6pqAakRl1TiZnm949bprt3Y3qDycrwaTlI4cIDT2PL32Z5_zsiJ8w4JectgwYDVHzaLMdhFCaVYMAYViBdkxpYNL8SyrU7IDBoORVOKb6fkLMYNAIiSi1fktAJeLqsSZuTnhdY4YFAJezoNKah470OiqO89TXZEup2USzapZHdIR3XnMNkfeecdzbSLBgOd366viu1q_Z7aTFh3R73JrA5-9APqaVCBmqD0wZqvVtcZdFTnh6xWA-1yW7RTMX8hnysacTCFSgndQdDe7fww7dcZdjiFQ0nffXh4TV4aNUR881zPye311fryc3Hz9dOXy4ubQnPRpKKGpmk6YG2zVAhdD9pgzWrDUBjgtdC96VpoG6yF0GqJYDTnXc2MYbWoS83Pyfx472Pw2wljkqONOblBOfRTlLwExljVtjyj757RqRuxl48hhxKe5O_QM8COQM4nxoDmD8JA7gcrNzIPVu4HK4-Dzc7Ho4O5yZ3FIKO26DT2NqBOsvf2n3b7l60H6_bZP-DTf9xfYj3Bqg |
Cites_doi | 10.1063/1.3156332 10.1002/nbm.1066 10.1002/mrm.27066 10.1016/j.bone.2019.03.013 10.1002/nbm.3609 10.1007/s10278-024-01089-8 10.1002/(SICI)1097-4636(199905)45:2<108::AID-JBM5>3.0.CO;2-A 10.1148/radiol.15141850 10.1016/j.bone.2016.03.007 10.1063/5.0086459 10.1007/s00198-005-2035-9 10.1002/mrm.21866 10.1038/s41598-019-54559-3 10.1002/nbm.2906 10.1002/mrm.24870 10.1016/j.jmr.2010.09.013 10.1002/mrm.22459 10.1002/mrm.26716 10.1016/j.neuroimage.2024.120800 10.1002/jbmr.1535 10.1002/nbm.3547 10.1002/mrm.26846 10.1016/j.mri.2019.03.012 10.1359/jbmr.061113 10.1109/TMI.2009.2035616 10.1016/j.mri.2020.09.014 10.1006/jmre.2000.2059 10.1002/nbm.3994 10.1093/jbmr/zjae053 10.1016/S8756-3282(02)00815-3 10.1016/j.bone.2019.05.038 10.1002/mrm.1910290607 10.1002/nbm.4214 10.1016/j.mri.2020.06.011 10.1016/j.ins.2019.03.080 10.1056/NEJM199208273270908 10.1056/NEJMra053077 10.1196/annals.1346.039 10.1002/nbm.4045 10.1146/annurev-bioeng-071516-044442 |
ContentType | Journal Article |
Copyright | 2024 Copyright © 2024. Published by Elsevier Inc. Copyright © 2025. Published by Elsevier Inc. |
Copyright_xml | – notice: 2024 – notice: Copyright © 2024. Published by Elsevier Inc. – notice: Copyright © 2025. Published by Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.mri.2025.110405 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1873-5894 |
ExternalDocumentID | 40328420 10_1016_j_mri_2025_110405 S0730725X2500089X |
Genre | Journal Article |
GrantInformation_xml | – fundername: CSRD VA grantid: I01 CX000625 – fundername: BLRD VA grantid: I01 BX005952 – fundername: NIAMS NIH HHS grantid: R01 AR075825 – fundername: NIAMS NIH HHS grantid: P30 AR073761 – fundername: NIAMS NIH HHS grantid: K01 AR080257 – fundername: NIAMS NIH HHS grantid: R01 AR079484 |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABDPE ABFNM ABGSF ABJNI ABMAC ABMZM ABNEU ABOCM ABUDA ABWVN ABXDB ACDAQ ACFVG ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSQ SSU SSZ T5K WUQ XPP Z5R ZGI ZMT ~G- ~S- AFCTW AGRNS RIG AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c357t-60777b01978ae0bd0cfe616f1e5f0365cdfb9097e655ca8e0fc33b61ff16562c3 |
IEDL.DBID | .~1 |
ISSN | 0730-725X 1873-5894 |
IngestDate | Wed Jul 02 04:37:43 EDT 2025 Sun Jun 08 01:33:15 EDT 2025 Tue Aug 05 12:07:28 EDT 2025 Sat Jul 05 17:12:01 EDT 2025 Tue Aug 26 18:33:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | SAT-net OP UTE-qMT Bone MRI MMF |
Language | English |
License | Copyright © 2024. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-60777b01978ae0bd0cfe616f1e5f0365cdfb9097e655ca8e0fc33b61ff16562c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 40328420 |
PQID | 3201114993 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3201114993 pubmed_primary_40328420 crossref_primary_10_1016_j_mri_2025_110405 elsevier_sciencedirect_doi_10_1016_j_mri_2025_110405 elsevier_clinicalkey_doi_10_1016_j_mri_2025_110405 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-01 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Magnetic resonance imaging |
PublicationTitleAlternate | Magn Reson Imaging |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Du, Bydder (bb0050) 2013; 26 Lu, Ma, Chang, Athertya, Jang, Jerban (bb0245) 2024; 37 Sled, Pike (bb0130) 2000; 145 Manhard, Horch, Harkins, Gochberg, Nyman, Does (bb0060) 2014; 71 Wu, Ma, Kee, Kovalchuk, Capaldi, Ren (bb0200) 2021 Ritchie, Buehler, Hansma (bb0030) 2009; 62 Tai, Yang, Liu (bb0230) 2017 Henkelman, Huang, Xiang, Stanisz, Swanson, Bronskill (bb0170) 1993; 29 Klein, Staring, Murphy, Viergever, Pluim (bb0180) 2010; 29 Manhard, Uppuganti, Granke, Gochberg, Nyman, Does (bb0065) 2016; 87 Milletari, Navab, Ahmadi (bb0220) 2016 Springenberg, Dosovitskiy, Brox, Riedmiller (bb0235) 2014 Ma, Shao, Du, Chang (bb0145) 2016; 29 Seeman, Delmas (bb0015) 2006; 354 Ma, Chang, Carl, Du (bb0100) 2018; 79 Jerban, Ma, Nazaran, Dorthe, Cory, Carl (bb0115) 2018; 31 Lo, Du, Lee, Zeng, Athertya, Silva (bb0240) 2024; 298 Viguet-Carrin, Garnero, Delmas (bb0025) 2006; 17 Wu, Ma, Du, Xing (bb0195) 2020; 11314 Wu, Alley, Li, Datta, Wen, Sandino (bb0210) 2022; 9 Huang, Liu, Van Der Maaten, Weinberger (bb0225) 2017 Jerban, Ma, Dorthe, Kakos, Le, Alenezi (bb0120) 2019; 11 Zioupos, Currey, Hamer (bb0035) 1999; 45 Ma, Jang, Jerban, Chang, Chung, Bydder (bb0085) 2022; 9 Horch, Nyman, Gochberg, Dortch, Does (bb0090) 2010; 64 Ma, Tadros, Du, Chang (bb0150) 2018; 79 Wu, Ma, Du, Xing (bb0165) 2020; 72 Jerban, Ma, Wong, Nazaran, Searleman, Wan (bb0110) 2019; 123 Burge, Dawson-Hughes, Solomon, Wong, King, Tosteson (bb0005) 2007; 22 Jerban, Ma, Wan, Searleman, Jang, Sah (bb0105) 2019; 32 Ma, Chang, Bydder, Du (bb0095) 2016; 29 Wu, Li, Xing, Gold (bb0205) 2020; 74 Du, Carl, Bydder, Takahashi, Chung, Bydder (bb0075) 2010; 207 Wu, Ma, Liu, Du, Xing (bb0160) 2019; 490 Jerban, Ma, Namiranian, Ashir, Shirazian, Wei (bb0135) 2019; 9 Springer, Martirosian, Machann, Schwenzer, Claussen, Schick (bb0055) 2009; 61 Ronneberger, Fischer, Brox (bb0215) 2015 Wehrli, Song, Saha, Wright (bb0045) 2006; 19 Wu, Zhao, Wan, Kakos, Li, Jerban (bb0185) 2020; 33 Rajapakse, Bashoor-Zadeh, Li, Sun, Wright, Wehrli (bb0070) 2015; 276 Wu, Ma, Capaldi, Liu, Zhao, Du (bb0190) 2020; 66 Ma, Lu, Carl, Zhu, Szeverenyi, Bydder (bb0175) 2018; 80 Riggs, Melton (bb0010) 1992; 327 Jerban, Ma, Li, Jang, Wan, Guo (bb0140) 2019; 127 Turner (bb0020) 2006; 1068 Jerban, Ma, Wei, Shen, Ibrahim, Jang (bb0125) 2024; 39 Burr (bb0040) 2002; 31 Shen, Wu, Suk (bb0155) 2017; 19 Bae, Chen, Chung, Masuda, D’Lima, Du (bb0080) 2012; 27 Wu (10.1016/j.mri.2025.110405_bb0210) 2022; 9 Lu (10.1016/j.mri.2025.110405_bb0245) 2024; 37 Ma (10.1016/j.mri.2025.110405_bb0100) 2018; 79 Ma (10.1016/j.mri.2025.110405_bb0145) 2016; 29 Manhard (10.1016/j.mri.2025.110405_bb0065) 2016; 87 Jerban (10.1016/j.mri.2025.110405_bb0125) 2024; 39 Bae (10.1016/j.mri.2025.110405_bb0080) 2012; 27 Shen (10.1016/j.mri.2025.110405_bb0155) 2017; 19 Riggs (10.1016/j.mri.2025.110405_bb0010) 1992; 327 Tai (10.1016/j.mri.2025.110405_bb0230) 2017 Sled (10.1016/j.mri.2025.110405_bb0130) 2000; 145 Wehrli (10.1016/j.mri.2025.110405_bb0045) 2006; 19 Turner (10.1016/j.mri.2025.110405_bb0020) 2006; 1068 Ma (10.1016/j.mri.2025.110405_bb0175) 2018; 80 Ma (10.1016/j.mri.2025.110405_bb0150) 2018; 79 Wu (10.1016/j.mri.2025.110405_bb0190) 2020; 66 Zioupos (10.1016/j.mri.2025.110405_bb0035) 1999; 45 Wu (10.1016/j.mri.2025.110405_bb0200) 2021 Burr (10.1016/j.mri.2025.110405_bb0040) 2002; 31 Milletari (10.1016/j.mri.2025.110405_bb0220) 2016 Ronneberger (10.1016/j.mri.2025.110405_bb0215) 2015 Ritchie (10.1016/j.mri.2025.110405_bb0030) 2009; 62 Henkelman (10.1016/j.mri.2025.110405_bb0170) 1993; 29 Jerban (10.1016/j.mri.2025.110405_bb0120) 2019; 11 Jerban (10.1016/j.mri.2025.110405_bb0110) 2019; 123 Jerban (10.1016/j.mri.2025.110405_bb0140) 2019; 127 Springenberg (10.1016/j.mri.2025.110405_bb0235) 2014 Jerban (10.1016/j.mri.2025.110405_bb0135) 2019; 9 Du (10.1016/j.mri.2025.110405_bb0075) 2010; 207 Springer (10.1016/j.mri.2025.110405_bb0055) 2009; 61 Wu (10.1016/j.mri.2025.110405_bb0195) 2020; 11314 Rajapakse (10.1016/j.mri.2025.110405_bb0070) 2015; 276 Wu (10.1016/j.mri.2025.110405_bb0160) 2019; 490 Du (10.1016/j.mri.2025.110405_bb0050) 2013; 26 Wu (10.1016/j.mri.2025.110405_bb0165) 2020; 72 Viguet-Carrin (10.1016/j.mri.2025.110405_bb0025) 2006; 17 Ma (10.1016/j.mri.2025.110405_bb0085) 2022; 9 Horch (10.1016/j.mri.2025.110405_bb0090) 2010; 64 Huang (10.1016/j.mri.2025.110405_bb0225) 2017 Lo (10.1016/j.mri.2025.110405_bb0240) 2024; 298 Jerban (10.1016/j.mri.2025.110405_bb0105) 2019; 32 Klein (10.1016/j.mri.2025.110405_bb0180) 2010; 29 Manhard (10.1016/j.mri.2025.110405_bb0060) 2014; 71 Ma (10.1016/j.mri.2025.110405_bb0095) 2016; 29 Jerban (10.1016/j.mri.2025.110405_bb0115) 2018; 31 Wu (10.1016/j.mri.2025.110405_bb0185) 2020; 33 Burge (10.1016/j.mri.2025.110405_bb0005) 2007; 22 Seeman (10.1016/j.mri.2025.110405_bb0015) 2006; 354 Wu (10.1016/j.mri.2025.110405_bb0205) 2020; 74 |
References_xml | – volume: 29 start-page: 196 year: 2010 end-page: 205 ident: bb0180 article-title: Elastix: a toolbox for intensity-based medical image registration publication-title: IEEE Trans Med Imaging – volume: 64 start-page: 680 year: 2010 end-page: 687 ident: bb0090 article-title: Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging publication-title: Magn Reson Med – volume: 27 start-page: 848 year: 2012 end-page: 857 ident: bb0080 article-title: Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties publication-title: J Bone Miner Res – volume: 79 start-page: 1941 year: 2018 end-page: 1949 ident: bb0150 article-title: Quantitative two-dimensional ultrashort echo time magnetization transfer (2D UTE-MT) imaging of cortical bone publication-title: Magn Reson Med – volume: 327 start-page: 620 year: 1992 end-page: 627 ident: bb0010 article-title: The prevention and treatment of osteoporosis publication-title: N Engl J Med – volume: 61 start-page: 1040 year: 2009 end-page: 1048 ident: bb0055 article-title: Magnetization transfer contrast imaging in bovine and human cortical bone applying an ultrashort echo time sequence at 3 tesla publication-title: Magn Reson Med – volume: 31 year: 2018 ident: bb0115 article-title: Detecting stress injury (fatigue fracture) in fibular cortical bone using quantitative ultrashort echo time-magnetization transfer (UTE-MT): an ex vivo study publication-title: NMR Biomed – volume: 26 start-page: 489 year: 2013 end-page: 506 ident: bb0050 article-title: Qualitative and quantitative ultrashort-TE MRI of cortical bone publication-title: NMR Biomed – volume: 17 start-page: 319 year: 2006 end-page: 336 ident: bb0025 article-title: The role of collagen in bone strength publication-title: Osteoporos Int – volume: 72 start-page: 78 year: 2020 end-page: 86 ident: bb0165 article-title: Accelerating quantitative MR imaging with the incorporation of B(1) compensation using deep learning publication-title: Magn Reson Imaging – start-page: 565 year: 2016 end-page: 571 ident: bb0220 article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation publication-title: 2016 Fourth international conference on 3D vision (3DV) – volume: 11314 start-page: 162 year: 2020 end-page: 167 ident: bb0195 article-title: Deciphering tissue relaxation parameters from a single MR image using deep learning publication-title: Medical Imaging 2020: Computer-aided diagnosis – volume: 45 start-page: 108 year: 1999 end-page: 116 ident: bb0035 article-title: The role of collagen in the declining mechanical properties of aging human cortical bone publication-title: J Biomed Mater Res – volume: 66 start-page: 93 year: 2020 end-page: 103 ident: bb0190 article-title: Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled MRI publication-title: Magn Reson Imaging – start-page: 4700 year: 2017 end-page: 4708 ident: bb0225 article-title: Densely connected convolutional networks publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 11 year: 2019 ident: bb0120 article-title: Assessing cortical bone mechanical properties using collagen proton fraction from ultrashort echo time magnetization transfer (UTE-MT) MRI modeling publication-title: Bone Rep – volume: 19 start-page: 221 year: 2017 end-page: 248 ident: bb0155 article-title: Deep learning in medical image analysis publication-title: Annu Rev Biomed Eng – volume: 354 start-page: 2250 year: 2006 end-page: 2261 ident: bb0015 article-title: Bone quality--the material and structural basis of bone strength and fragility publication-title: N Engl J Med – volume: 207 start-page: 304 year: 2010 end-page: 311 ident: bb0075 article-title: Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone publication-title: J Magn Reson – volume: 80 start-page: 598 year: 2018 end-page: 608 ident: bb0175 article-title: Accurate T(1) mapping of short T(2) tissues using a three-dimensional ultrashort echo time cones actual flip angle imaging-variable repetition time (3D UTE-cones AFI-VTR) method publication-title: Magn Reson Med – volume: 276 start-page: 526 year: 2015 end-page: 535 ident: bb0070 article-title: Volumetric cortical bone porosity assessment with MR imaging: validation and clinical feasibility publication-title: Radiology – volume: 145 start-page: 24 year: 2000 end-page: 36 ident: bb0130 article-title: Quantitative interpretation of magnetization transfer in spoiled gradient echo MRI sequences publication-title: J Magn Reson – volume: 29 start-page: 912 year: 2016 end-page: 917 ident: bb0095 article-title: Can ultrashort-TE (UTE) MRI sequences on a 3-T clinical scanner detect signal directly from collagen protons: freeze-dry and D2 O exchange studies of cortical bone and Achilles tendon specimens publication-title: NMR Biomed – volume: 39 start-page: 707 year: 2024 end-page: 716 ident: bb0125 article-title: Ultrashort echo time MRI detects significantly lower collagen but higher pore water in the tibial cortex of female patients with osteopenia and osteoporosis publication-title: J Bone Miner Res – volume: 127 start-page: 120 year: 2019 end-page: 128 ident: bb0140 article-title: Volumetric mapping of bound and pore water as well as collagen protons in cortical bone using 3D ultrashort echo time cones MR imaging techniques publication-title: Bone – start-page: 3147 year: 2017 end-page: 3155 ident: bb0230 article-title: Image super-resolution via deep recursive residual network publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 123 start-page: 8 year: 2019 end-page: 17 ident: bb0110 article-title: Ultrashort echo time magnetic resonance imaging (UTE-MRI) of cortical bone correlates well with histomorphometric assessment of bone microstructure publication-title: Bone – volume: 37 start-page: 2126 year: 2024 end-page: 2134 ident: bb0245 article-title: Deep convolutional neural network for dedicated regions-of-interest based multi-parameter quantitative ultrashort Echo time (UTE) magnetic resonance imaging of the knee joint publication-title: J Imaging Inform Med – volume: 71 start-page: 2166 year: 2014 end-page: 2171 ident: bb0060 article-title: Validation of quantitative bound- and pore-water imaging in cortical bone publication-title: Magn Reson Med – volume: 33 year: 2020 ident: bb0185 article-title: Quantitative three-dimensional ultrashort echo time cones imaging of the knee joint with motion correction publication-title: NMR Biomed – year: 2014 ident: bb0235 article-title: Striving for simplicity: the all convolutional net publication-title: arXiv – volume: 62 start-page: 41 year: 2009 end-page: 47 ident: bb0030 article-title: Plasticity and toughness in bone publication-title: Phys Today – volume: 490 start-page: 317 year: 2019 end-page: 328 ident: bb0160 article-title: Self-attention convolutional neural network for improved MR image reconstruction publication-title: Inf Sci (N Y) – volume: 32 year: 2019 ident: bb0105 article-title: Collagen proton fraction from ultrashort echo time magnetization transfer (UTE-MT) MRI modelling correlates significantly with cortical bone porosity measured with micro-computed tomography (muCT) publication-title: NMR Biomed – volume: 87 start-page: 1 year: 2016 end-page: 10 ident: bb0065 article-title: MRI-derived bound and pore water concentrations as predictors of fracture resistance publication-title: Bone – volume: 9 start-page: 17974 year: 2019 ident: bb0135 article-title: Age-related decrease in collagen proton fraction in tibial tendons estimated by magnetization transfer modeling of ultrashort echo time magnetic resonance imaging (UTE-MRI) publication-title: Sci Rep – start-page: 234 year: 2015 end-page: 241 ident: bb0215 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18 – volume: 79 start-page: 692 year: 2018 end-page: 700 ident: bb0100 article-title: Quantitative magnetization transfer ultrashort echo time imaging using a time-efficient 3D multispoke cones sequence publication-title: Magn Reson Med – year: 2021 ident: bb0200 article-title: Quantitative parametric mapping of tissues properties from standard magnetic resonance imaging enabled by deep learning publication-title: arXiv – volume: 1068 start-page: 429 year: 2006 end-page: 446 ident: bb0020 article-title: Bone strength: current concepts publication-title: Ann N Y Acad Sci – volume: 9 year: 2022 ident: bb0210 article-title: Deep learning-based water-fat separation from dual-Echo chemical shift-encoded imaging publication-title: Bioengineering (Basel) – volume: 31 start-page: 8 year: 2002 end-page: 11 ident: bb0040 article-title: The contribution of the organic matrix to bone’s material properties publication-title: Bone – volume: 29 start-page: 759 year: 1993 end-page: 766 ident: bb0170 article-title: Quantitative interpretation of magnetization transfer publication-title: Magn Reson Med – volume: 74 start-page: 121 year: 2020 end-page: 127 ident: bb0205 article-title: Deriving new soft tissue contrasts from conventional MR images using deep learning publication-title: Magn Reson Imaging – volume: 298 year: 2024 ident: bb0240 article-title: Multicompartment imaging of the brain using a comprehensive MR imaging protocol publication-title: Neuroimage – volume: 9 year: 2022 ident: bb0085 article-title: Making the invisible visible-ultrashort echo time magnetic resonance imaging: technical developments and applications publication-title: Appl Phys Rev – volume: 22 start-page: 465 year: 2007 end-page: 475 ident: bb0005 article-title: Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025 publication-title: J Bone Miner Res – volume: 19 start-page: 731 year: 2006 end-page: 764 ident: bb0045 article-title: Quantitative MRI for the assessment of bone structure and function publication-title: NMR Biomed – volume: 29 start-page: 1546 year: 2016 end-page: 1552 ident: bb0145 article-title: Ultrashort echo time magnetization transfer (UTE-MT) imaging and modeling: magic angle independent biomarkers of tissue properties publication-title: NMR Biomed – volume: 62 start-page: 41 issue: 6 year: 2009 ident: 10.1016/j.mri.2025.110405_bb0030 article-title: Plasticity and toughness in bone publication-title: Phys Today doi: 10.1063/1.3156332 – volume: 19 start-page: 731 issue: 7 year: 2006 ident: 10.1016/j.mri.2025.110405_bb0045 article-title: Quantitative MRI for the assessment of bone structure and function publication-title: NMR Biomed doi: 10.1002/nbm.1066 – volume: 11314 start-page: 162 year: 2020 ident: 10.1016/j.mri.2025.110405_bb0195 article-title: Deciphering tissue relaxation parameters from a single MR image using deep learning – year: 2014 ident: 10.1016/j.mri.2025.110405_bb0235 article-title: Striving for simplicity: the all convolutional net publication-title: arXiv – volume: 80 start-page: 598 issue: 2 year: 2018 ident: 10.1016/j.mri.2025.110405_bb0175 article-title: Accurate T(1) mapping of short T(2) tissues using a three-dimensional ultrashort echo time cones actual flip angle imaging-variable repetition time (3D UTE-cones AFI-VTR) method publication-title: Magn Reson Med doi: 10.1002/mrm.27066 – volume: 123 start-page: 8 year: 2019 ident: 10.1016/j.mri.2025.110405_bb0110 article-title: Ultrashort echo time magnetic resonance imaging (UTE-MRI) of cortical bone correlates well with histomorphometric assessment of bone microstructure publication-title: Bone doi: 10.1016/j.bone.2019.03.013 – volume: 29 start-page: 1546 issue: 11 year: 2016 ident: 10.1016/j.mri.2025.110405_bb0145 article-title: Ultrashort echo time magnetization transfer (UTE-MT) imaging and modeling: magic angle independent biomarkers of tissue properties publication-title: NMR Biomed doi: 10.1002/nbm.3609 – year: 2021 ident: 10.1016/j.mri.2025.110405_bb0200 article-title: Quantitative parametric mapping of tissues properties from standard magnetic resonance imaging enabled by deep learning publication-title: arXiv – volume: 37 start-page: 2126 issue: 5 year: 2024 ident: 10.1016/j.mri.2025.110405_bb0245 article-title: Deep convolutional neural network for dedicated regions-of-interest based multi-parameter quantitative ultrashort Echo time (UTE) magnetic resonance imaging of the knee joint publication-title: J Imaging Inform Med doi: 10.1007/s10278-024-01089-8 – volume: 45 start-page: 108 issue: 2 year: 1999 ident: 10.1016/j.mri.2025.110405_bb0035 article-title: The role of collagen in the declining mechanical properties of aging human cortical bone publication-title: J Biomed Mater Res doi: 10.1002/(SICI)1097-4636(199905)45:2<108::AID-JBM5>3.0.CO;2-A – volume: 276 start-page: 526 issue: 2 year: 2015 ident: 10.1016/j.mri.2025.110405_bb0070 article-title: Volumetric cortical bone porosity assessment with MR imaging: validation and clinical feasibility publication-title: Radiology doi: 10.1148/radiol.15141850 – volume: 87 start-page: 1 year: 2016 ident: 10.1016/j.mri.2025.110405_bb0065 article-title: MRI-derived bound and pore water concentrations as predictors of fracture resistance publication-title: Bone doi: 10.1016/j.bone.2016.03.007 – volume: 9 issue: 4 year: 2022 ident: 10.1016/j.mri.2025.110405_bb0085 article-title: Making the invisible visible-ultrashort echo time magnetic resonance imaging: technical developments and applications publication-title: Appl Phys Rev doi: 10.1063/5.0086459 – volume: 17 start-page: 319 issue: 3 year: 2006 ident: 10.1016/j.mri.2025.110405_bb0025 article-title: The role of collagen in bone strength publication-title: Osteoporos Int doi: 10.1007/s00198-005-2035-9 – volume: 61 start-page: 1040 issue: 5 year: 2009 ident: 10.1016/j.mri.2025.110405_bb0055 article-title: Magnetization transfer contrast imaging in bovine and human cortical bone applying an ultrashort echo time sequence at 3 tesla publication-title: Magn Reson Med doi: 10.1002/mrm.21866 – volume: 9 start-page: 17974 issue: 1 year: 2019 ident: 10.1016/j.mri.2025.110405_bb0135 article-title: Age-related decrease in collagen proton fraction in tibial tendons estimated by magnetization transfer modeling of ultrashort echo time magnetic resonance imaging (UTE-MRI) publication-title: Sci Rep doi: 10.1038/s41598-019-54559-3 – volume: 26 start-page: 489 issue: 5 year: 2013 ident: 10.1016/j.mri.2025.110405_bb0050 article-title: Qualitative and quantitative ultrashort-TE MRI of cortical bone publication-title: NMR Biomed doi: 10.1002/nbm.2906 – volume: 71 start-page: 2166 issue: 6 year: 2014 ident: 10.1016/j.mri.2025.110405_bb0060 article-title: Validation of quantitative bound- and pore-water imaging in cortical bone publication-title: Magn Reson Med doi: 10.1002/mrm.24870 – volume: 207 start-page: 304 issue: 2 year: 2010 ident: 10.1016/j.mri.2025.110405_bb0075 article-title: Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone publication-title: J Magn Reson doi: 10.1016/j.jmr.2010.09.013 – volume: 64 start-page: 680 issue: 3 year: 2010 ident: 10.1016/j.mri.2025.110405_bb0090 article-title: Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging publication-title: Magn Reson Med doi: 10.1002/mrm.22459 – volume: 79 start-page: 692 issue: 2 year: 2018 ident: 10.1016/j.mri.2025.110405_bb0100 article-title: Quantitative magnetization transfer ultrashort echo time imaging using a time-efficient 3D multispoke cones sequence publication-title: Magn Reson Med doi: 10.1002/mrm.26716 – volume: 298 year: 2024 ident: 10.1016/j.mri.2025.110405_bb0240 article-title: Multicompartment imaging of the brain using a comprehensive MR imaging protocol publication-title: Neuroimage doi: 10.1016/j.neuroimage.2024.120800 – volume: 27 start-page: 848 issue: 4 year: 2012 ident: 10.1016/j.mri.2025.110405_bb0080 article-title: Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties publication-title: J Bone Miner Res doi: 10.1002/jbmr.1535 – start-page: 565 year: 2016 ident: 10.1016/j.mri.2025.110405_bb0220 article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation – volume: 29 start-page: 912 issue: 7 year: 2016 ident: 10.1016/j.mri.2025.110405_bb0095 article-title: Can ultrashort-TE (UTE) MRI sequences on a 3-T clinical scanner detect signal directly from collagen protons: freeze-dry and D2 O exchange studies of cortical bone and Achilles tendon specimens publication-title: NMR Biomed doi: 10.1002/nbm.3547 – volume: 79 start-page: 1941 issue: 4 year: 2018 ident: 10.1016/j.mri.2025.110405_bb0150 article-title: Quantitative two-dimensional ultrashort echo time magnetization transfer (2D UTE-MT) imaging of cortical bone publication-title: Magn Reson Med doi: 10.1002/mrm.26846 – volume: 66 start-page: 93 year: 2020 ident: 10.1016/j.mri.2025.110405_bb0190 article-title: Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled MRI publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2019.03.012 – volume: 22 start-page: 465 issue: 3 year: 2007 ident: 10.1016/j.mri.2025.110405_bb0005 article-title: Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025 publication-title: J Bone Miner Res doi: 10.1359/jbmr.061113 – volume: 29 start-page: 196 issue: 1 year: 2010 ident: 10.1016/j.mri.2025.110405_bb0180 article-title: Elastix: a toolbox for intensity-based medical image registration publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2009.2035616 – volume: 74 start-page: 121 year: 2020 ident: 10.1016/j.mri.2025.110405_bb0205 article-title: Deriving new soft tissue contrasts from conventional MR images using deep learning publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2020.09.014 – volume: 145 start-page: 24 issue: 1 year: 2000 ident: 10.1016/j.mri.2025.110405_bb0130 article-title: Quantitative interpretation of magnetization transfer in spoiled gradient echo MRI sequences publication-title: J Magn Reson doi: 10.1006/jmre.2000.2059 – volume: 31 issue: 11 year: 2018 ident: 10.1016/j.mri.2025.110405_bb0115 article-title: Detecting stress injury (fatigue fracture) in fibular cortical bone using quantitative ultrashort echo time-magnetization transfer (UTE-MT): an ex vivo study publication-title: NMR Biomed doi: 10.1002/nbm.3994 – volume: 39 start-page: 707 issue: 6 year: 2024 ident: 10.1016/j.mri.2025.110405_bb0125 article-title: Ultrashort echo time MRI detects significantly lower collagen but higher pore water in the tibial cortex of female patients with osteopenia and osteoporosis publication-title: J Bone Miner Res doi: 10.1093/jbmr/zjae053 – volume: 31 start-page: 8 issue: 1 year: 2002 ident: 10.1016/j.mri.2025.110405_bb0040 article-title: The contribution of the organic matrix to bone’s material properties publication-title: Bone doi: 10.1016/S8756-3282(02)00815-3 – volume: 11 year: 2019 ident: 10.1016/j.mri.2025.110405_bb0120 article-title: Assessing cortical bone mechanical properties using collagen proton fraction from ultrashort echo time magnetization transfer (UTE-MT) MRI modeling publication-title: Bone Rep – volume: 127 start-page: 120 year: 2019 ident: 10.1016/j.mri.2025.110405_bb0140 article-title: Volumetric mapping of bound and pore water as well as collagen protons in cortical bone using 3D ultrashort echo time cones MR imaging techniques publication-title: Bone doi: 10.1016/j.bone.2019.05.038 – volume: 29 start-page: 759 issue: 6 year: 1993 ident: 10.1016/j.mri.2025.110405_bb0170 article-title: Quantitative interpretation of magnetization transfer publication-title: Magn Reson Med doi: 10.1002/mrm.1910290607 – volume: 33 issue: 1 year: 2020 ident: 10.1016/j.mri.2025.110405_bb0185 article-title: Quantitative three-dimensional ultrashort echo time cones imaging of the knee joint with motion correction publication-title: NMR Biomed doi: 10.1002/nbm.4214 – volume: 72 start-page: 78 year: 2020 ident: 10.1016/j.mri.2025.110405_bb0165 article-title: Accelerating quantitative MR imaging with the incorporation of B(1) compensation using deep learning publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2020.06.011 – volume: 9 issue: 10 year: 2022 ident: 10.1016/j.mri.2025.110405_bb0210 article-title: Deep learning-based water-fat separation from dual-Echo chemical shift-encoded imaging publication-title: Bioengineering (Basel) – volume: 490 start-page: 317 year: 2019 ident: 10.1016/j.mri.2025.110405_bb0160 article-title: Self-attention convolutional neural network for improved MR image reconstruction publication-title: Inf Sci (N Y) doi: 10.1016/j.ins.2019.03.080 – volume: 327 start-page: 620 issue: 9 year: 1992 ident: 10.1016/j.mri.2025.110405_bb0010 article-title: The prevention and treatment of osteoporosis publication-title: N Engl J Med doi: 10.1056/NEJM199208273270908 – volume: 354 start-page: 2250 issue: 21 year: 2006 ident: 10.1016/j.mri.2025.110405_bb0015 article-title: Bone quality--the material and structural basis of bone strength and fragility publication-title: N Engl J Med doi: 10.1056/NEJMra053077 – start-page: 234 year: 2015 ident: 10.1016/j.mri.2025.110405_bb0215 article-title: U-net: Convolutional networks for biomedical image segmentation – start-page: 3147 year: 2017 ident: 10.1016/j.mri.2025.110405_bb0230 article-title: Image super-resolution via deep recursive residual network – volume: 1068 start-page: 429 year: 2006 ident: 10.1016/j.mri.2025.110405_bb0020 article-title: Bone strength: current concepts publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1346.039 – start-page: 4700 year: 2017 ident: 10.1016/j.mri.2025.110405_bb0225 article-title: Densely connected convolutional networks – volume: 32 issue: 2 year: 2019 ident: 10.1016/j.mri.2025.110405_bb0105 article-title: Collagen proton fraction from ultrashort echo time magnetization transfer (UTE-MT) MRI modelling correlates significantly with cortical bone porosity measured with micro-computed tomography (muCT) publication-title: NMR Biomed doi: 10.1002/nbm.4045 – volume: 19 start-page: 221 year: 2017 ident: 10.1016/j.mri.2025.110405_bb0155 article-title: Deep learning in medical image analysis publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev-bioeng-071516-044442 |
SSID | ssj0005235 |
Score | 2.4503632 |
Snippet | To combine ultrashort echo time quantitative magnetization transfer (UTE-qMT) imaging with a self-attention convolutional neural network (SAT-Net) for... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 110405 |
SubjectTerms | Adult Algorithms Bone Bone Diseases, Metabolic - diagnostic imaging Convolutional Neural Networks Cortical Bone - diagnostic imaging Female Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Middle Aged MMF MRI Neural Networks, Computer Osteoporosis - diagnostic imaging SAT-net Tibia - diagnostic imaging UTE-qMT Young Adult |
Title | Accelerated ultrashort echo time quantitative magnetization transfer (UTE-qMT) imaging of macromolecular fraction (MMF) in cortical bone based on a self-attention convolutional neural network |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X2500089X https://dx.doi.org/10.1016/j.mri.2025.110405 https://www.ncbi.nlm.nih.gov/pubmed/40328420 https://www.proquest.com/docview/3201114993 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbLFkovpe-mj2UKPWwLbmxLlu1jWDakLd5LE8jNSLLUpmycXce59q_1r3VGlpcW-oCejO0RFp7xzMj6vhnGXidE7WnSJpIujyNK2CPFM4e27JKyKUqVaGIjVxdysRIf1tn6iJ2NXBiCVQbfP_h0763DlWl4m9OrzWb6iYwzT3GxRTX9i3JNDHaRk5W_-_YzzGNosonCEUmPO5se47XtNrhETDMCwwvqYPf72PSn3NPHoPk9djckjzAb5nefHdn2Abtdhe3xh-z7zBgMI1T9oYHDZd-p_RdMr8GijwPqIg_XB9V6Whk6Odiqz63tAxETep_C2g5OV8vz6LpavoHN1vcwgp1DWQ_cC710wXUDIQJOq2qOgi3gKtb_Fge9ay1QcGwA7yvY20sXURVPj6sEgrkHc0dhKqfpDx6M_oit5ufLs0UUOjREhmd5H8k4z3ONWWJeKBvrJjbOykS6xGYOQ2NmGqfLuMytzDKjChs7w7mWiXNU9Cc1_DE7bnFWTxmgsCitVbYsjJDOaOm05o2xXAvR8HLC3o66qa-GQhz1iFD7WqMia1JkPShywtJRe_XIMEWfWGOY-NsgcTPoFxP817BXo3nU-GnSfotq7e6wrzklV7gCLfmEPRns5mbqguoYijR-9n8Pfc7u0NkAdnvBjvvuYF9idtTrE2_-J-zW7P3HxcUPHpYSRA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRQIuiDflOUggLUiheTivA4cVbNVlN3uhlXoztmND0TbdbVMhLvwpfgB_jRnHWYHEQ0LaU6XETq3M-JuZ-JsZxp5GlNpTx3WQ2TwMyGEPZJJa1GUblXVRykhRNnJ1lI2n_O0snW2xb30uDNEqPfZ3mO7Q2l8Z-rc5PJnPh-9IOfMYgy2q6V-UM8-sPDBfPmPctn61_waF_CyOR3uT1-PAtxYIdJLmbZCFeZ4rdG_yQppQ1aG2JosyG5nUIqanuraqDMvcZGmqZWFCq5NEZZG1VK0m1gk-9wK7yBEuqG3Cy68_80q6rp64uoCW1x-lOlLZYjXHmDROiX3PqWXe743hn5xdZ_RG19hV763CbvdCrrMt09xglyp_Hn-Tfd_VGu0WlZuoYXPcruT6I_rzYBBUgdrWw-lGNi6PDVEVFvJDY1qf-Qmt85nNCnamk73gtJo8h_nCNU2CpcWxjinom_eCXXUZGLBTVSMc2ACGze47PKhlY4CscQ14X8LaHNuAyoY6IicQr97vLxxM9Tvdj2O_32LTc5Hbbbbd4KruMsDBvDRGmrLQPLNaZVappNYmUZzXSTlgL3rZiJOu8ofoKXGfBApSkCBFJ8gBi3vpiT6lFUFYoF362yR-NukXnf_XtCe9egjEAjrgkY1ZbtYiIW8OQ94yGbA7nd6cLZ1T4UQeh_f-708fs8vjSXUoDvePDu6zK3SnY9o9YNvtamMeomvWqkduKwB7f9577wdvd04c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+ultrashort+echo+time+quantitative+magnetization+transfer+%28UTE-qMT%29+imaging+of+macromolecular+fraction+%28MMF%29+in+cortical+bone+based+on+a+self-attention+convolutional+neural+network&rft.jtitle=Magnetic+resonance+imaging&rft.au=Du%2C+Kevin&rft.au=Tang%2C+Harry&rft.au=Athertya%2C+Jiyo&rft.au=Wang%2C+Yidan&rft.date=2025-09-01&rft.issn=1873-5894&rft.eissn=1873-5894&rft.spage=110405&rft_id=info:doi/10.1016%2Fj.mri.2025.110405&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon |