Accelerated ultrashort echo time quantitative magnetization transfer (UTE-qMT) imaging of macromolecular fraction (MMF) in cortical bone based on a self-attention convolutional neural network

To combine ultrashort echo time quantitative magnetization transfer (UTE-qMT) imaging with a self-attention convolutional neural network (SAT-Net) for accelerated mapping of macromolecular fraction (MMF) in cortical bone. This institutional review board-approved study involved 31 young female subjec...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 121; p. 110405
Main Authors Du, Kevin, Tang, Harry, Athertya, Jiyo, Wang, Yidan, Hu, Megan, Wang, Avery, Jerban, Saeed, Shin, Soo Hyun, Ma, Yajun, Chung, Christine B., Chang, Eric Y.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.09.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To combine ultrashort echo time quantitative magnetization transfer (UTE-qMT) imaging with a self-attention convolutional neural network (SAT-Net) for accelerated mapping of macromolecular fraction (MMF) in cortical bone. This institutional review board-approved study involved 31 young female subjects (young control, <45 years) and 50 postmenopausal subjects (6 normal (old control), 14 with osteopenia (osteopenia group), and 30 with osteoporosis (OP group)). After written informed consent was obtained from each subject, 15 UTE-qMT images of the tibial midshaft were acquired with three saturation powers (500°, 1000°, and 1500°) and five frequency offsets (2, 5, 10, 20, and 50 kHz) for each power to estimate the baseline MMF using a two-pool model. The densely connected SAT-Net model was used to predict bone MMF maps based on seven evenly distributed UTE-qMT images, which were well separated in terms of MT powers and frequency offsets (namely 5 and 20 kHz for 500° and 1500°, and 2, 10, 50 kHz for 1000°). Errors relative to the baseline MMF were calculated. Linear regression was used to assess the performance of the SAT-Net model. The mean MMF values for different groups were calculated. Conventional two-pool modeling of seven evenly distributed UTE-qMT input images shows a significant relative error of ∼34 %. In comparison, the SAT-Net model accurately predicted MMF values for the tibial midshafts of 81 human subjects with a high correlation (R2 = 0.97, P < 0.0001) between the baseline and predicted values. The SAT-Net model accelerated UTE-qMT data acquisition by 2.1-fold, with relative errors in MMF mapping less than 2.4 %. The average MMF values were 46.10 ± 13.25 % for the young control group, 40.03 ± 2.56 % for the old control group, 31.22 ± 13.18 % for the osteopenia group, and 22.53 ± 8.12 % for the OP group. While it is difficult to accelerate MMF mapping in bone using conventional two-pool modeling, the SAT-Net model allows accurate MMF mapping with a substantial reduction in the number of UTE-qMT input images. UTE-qMT with SAT-Net makes clinical evaluation of bone matrix possible.
AbstractList To combine ultrashort echo time quantitative magnetization transfer (UTE-qMT) imaging with a self-attention convolutional neural network (SAT-Net) for accelerated mapping of macromolecular fraction (MMF) in cortical bone. This institutional review board-approved study involved 31 young female subjects (young control, <45 years) and 50 postmenopausal subjects (6 normal (old control), 14 with osteopenia (osteopenia group), and 30 with osteoporosis (OP group)). After written informed consent was obtained from each subject, 15 UTE-qMT images of the tibial midshaft were acquired with three saturation powers (500°, 1000°, and 1500°) and five frequency offsets (2, 5, 10, 20, and 50 kHz) for each power to estimate the baseline MMF using a two-pool model. The densely connected SAT-Net model was used to predict bone MMF maps based on seven evenly distributed UTE-qMT images, which were well separated in terms of MT powers and frequency offsets (namely 5 and 20 kHz for 500° and 1500°, and 2, 10, 50 kHz for 1000°). Errors relative to the baseline MMF were calculated. Linear regression was used to assess the performance of the SAT-Net model. The mean MMF values for different groups were calculated. Conventional two-pool modeling of seven evenly distributed UTE-qMT input images shows a significant relative error of ∼34 %. In comparison, the SAT-Net model accurately predicted MMF values for the tibial midshafts of 81 human subjects with a high correlation (R  = 0.97, P < 0.0001) between the baseline and predicted values. The SAT-Net model accelerated UTE-qMT data acquisition by 2.1-fold, with relative errors in MMF mapping less than 2.4 %. The average MMF values were 46.10 ± 13.25 % for the young control group, 40.03 ± 2.56 % for the old control group, 31.22 ± 13.18 % for the osteopenia group, and 22.53 ± 8.12 % for the OP group. While it is difficult to accelerate MMF mapping in bone using conventional two-pool modeling, the SAT-Net model allows accurate MMF mapping with a substantial reduction in the number of UTE-qMT input images. UTE-qMT with SAT-Net makes clinical evaluation of bone matrix possible.
To combine ultrashort echo time quantitative magnetization transfer (UTE-qMT) imaging with a self-attention convolutional neural network (SAT-Net) for accelerated mapping of macromolecular fraction (MMF) in cortical bone.PURPOSETo combine ultrashort echo time quantitative magnetization transfer (UTE-qMT) imaging with a self-attention convolutional neural network (SAT-Net) for accelerated mapping of macromolecular fraction (MMF) in cortical bone.This institutional review board-approved study involved 31 young female subjects (young control, <45 years) and 50 postmenopausal subjects (6 normal (old control), 14 with osteopenia (osteopenia group), and 30 with osteoporosis (OP group)). After written informed consent was obtained from each subject, 15 UTE-qMT images of the tibial midshaft were acquired with three saturation powers (500°, 1000°, and 1500°) and five frequency offsets (2, 5, 10, 20, and 50 kHz) for each power to estimate the baseline MMF using a two-pool model. The densely connected SAT-Net model was used to predict bone MMF maps based on seven evenly distributed UTE-qMT images, which were well separated in terms of MT powers and frequency offsets (namely 5 and 20 kHz for 500° and 1500°, and 2, 10, 50 kHz for 1000°). Errors relative to the baseline MMF were calculated. Linear regression was used to assess the performance of the SAT-Net model. The mean MMF values for different groups were calculated.MATERIALS AND METHODSThis institutional review board-approved study involved 31 young female subjects (young control, <45 years) and 50 postmenopausal subjects (6 normal (old control), 14 with osteopenia (osteopenia group), and 30 with osteoporosis (OP group)). After written informed consent was obtained from each subject, 15 UTE-qMT images of the tibial midshaft were acquired with three saturation powers (500°, 1000°, and 1500°) and five frequency offsets (2, 5, 10, 20, and 50 kHz) for each power to estimate the baseline MMF using a two-pool model. The densely connected SAT-Net model was used to predict bone MMF maps based on seven evenly distributed UTE-qMT images, which were well separated in terms of MT powers and frequency offsets (namely 5 and 20 kHz for 500° and 1500°, and 2, 10, 50 kHz for 1000°). Errors relative to the baseline MMF were calculated. Linear regression was used to assess the performance of the SAT-Net model. The mean MMF values for different groups were calculated.Conventional two-pool modeling of seven evenly distributed UTE-qMT input images shows a significant relative error of ~34 %. In comparison, the SAT-Net model accurately predicted MMF values for the tibial midshafts of 81 human subjects with a high correlation (R2 = 0.97, P < 0.0001) between the baseline and predicted values. The SAT-Net model accelerated UTE-qMT data acquisition by 2.1-fold, with relative errors in MMF mapping less than 2.4 %. The average MMF values were 46.10 ± 13.25 % for the young control group, 40.03 ± 2.56 % for the old control group, 31.22 ± 13.18 % for the osteopenia group, and 22.53 ± 8.12 % for the OP group.RESULTSConventional two-pool modeling of seven evenly distributed UTE-qMT input images shows a significant relative error of ~34 %. In comparison, the SAT-Net model accurately predicted MMF values for the tibial midshafts of 81 human subjects with a high correlation (R2 = 0.97, P < 0.0001) between the baseline and predicted values. The SAT-Net model accelerated UTE-qMT data acquisition by 2.1-fold, with relative errors in MMF mapping less than 2.4 %. The average MMF values were 46.10 ± 13.25 % for the young control group, 40.03 ± 2.56 % for the old control group, 31.22 ± 13.18 % for the osteopenia group, and 22.53 ± 8.12 % for the OP group.While it is difficult to accelerate MMF mapping in bone using conventional two-pool modeling, the SAT-Net model allows accurate MMF mapping with a substantial reduction in the number of UTE-qMT input images. UTE-qMT with SAT-Net makes clinical evaluation of bone matrix possible.CONCLUSIONWhile it is difficult to accelerate MMF mapping in bone using conventional two-pool modeling, the SAT-Net model allows accurate MMF mapping with a substantial reduction in the number of UTE-qMT input images. UTE-qMT with SAT-Net makes clinical evaluation of bone matrix possible.
To combine ultrashort echo time quantitative magnetization transfer (UTE-qMT) imaging with a self-attention convolutional neural network (SAT-Net) for accelerated mapping of macromolecular fraction (MMF) in cortical bone. This institutional review board-approved study involved 31 young female subjects (young control, <45 years) and 50 postmenopausal subjects (6 normal (old control), 14 with osteopenia (osteopenia group), and 30 with osteoporosis (OP group)). After written informed consent was obtained from each subject, 15 UTE-qMT images of the tibial midshaft were acquired with three saturation powers (500°, 1000°, and 1500°) and five frequency offsets (2, 5, 10, 20, and 50 kHz) for each power to estimate the baseline MMF using a two-pool model. The densely connected SAT-Net model was used to predict bone MMF maps based on seven evenly distributed UTE-qMT images, which were well separated in terms of MT powers and frequency offsets (namely 5 and 20 kHz for 500° and 1500°, and 2, 10, 50 kHz for 1000°). Errors relative to the baseline MMF were calculated. Linear regression was used to assess the performance of the SAT-Net model. The mean MMF values for different groups were calculated. Conventional two-pool modeling of seven evenly distributed UTE-qMT input images shows a significant relative error of ∼34 %. In comparison, the SAT-Net model accurately predicted MMF values for the tibial midshafts of 81 human subjects with a high correlation (R2 = 0.97, P < 0.0001) between the baseline and predicted values. The SAT-Net model accelerated UTE-qMT data acquisition by 2.1-fold, with relative errors in MMF mapping less than 2.4 %. The average MMF values were 46.10 ± 13.25 % for the young control group, 40.03 ± 2.56 % for the old control group, 31.22 ± 13.18 % for the osteopenia group, and 22.53 ± 8.12 % for the OP group. While it is difficult to accelerate MMF mapping in bone using conventional two-pool modeling, the SAT-Net model allows accurate MMF mapping with a substantial reduction in the number of UTE-qMT input images. UTE-qMT with SAT-Net makes clinical evaluation of bone matrix possible.
ArticleNumber 110405
Author Athertya, Jiyo
Shin, Soo Hyun
Chung, Christine B.
Wang, Avery
Tang, Harry
Du, Kevin
Wang, Yidan
Hu, Megan
Ma, Yajun
Jerban, Saeed
Chang, Eric Y.
Author_xml – sequence: 1
  givenname: Kevin
  surname: Du
  fullname: Du, Kevin
  organization: Department of Radiology, University of California, San Diego, CA, USA
– sequence: 2
  givenname: Harry
  surname: Tang
  fullname: Tang, Harry
  organization: Department of Radiology, University of California, San Diego, CA, USA
– sequence: 3
  givenname: Jiyo
  surname: Athertya
  fullname: Athertya, Jiyo
  organization: Department of Radiology, University of California, San Diego, CA, USA
– sequence: 4
  givenname: Yidan
  surname: Wang
  fullname: Wang, Yidan
  organization: Department of Radiology, University of California, San Diego, CA, USA
– sequence: 5
  givenname: Megan
  surname: Hu
  fullname: Hu, Megan
  organization: Department of Radiology, University of California, San Diego, CA, USA
– sequence: 6
  givenname: Avery
  surname: Wang
  fullname: Wang, Avery
  organization: Department of Radiology, University of California, San Diego, CA, USA
– sequence: 7
  givenname: Saeed
  surname: Jerban
  fullname: Jerban, Saeed
  organization: Department of Radiology, University of California, San Diego, CA, USA
– sequence: 8
  givenname: Soo Hyun
  surname: Shin
  fullname: Shin, Soo Hyun
  organization: Department of Radiology, University of California, San Diego, CA, USA
– sequence: 9
  givenname: Yajun
  surname: Ma
  fullname: Ma, Yajun
  organization: Department of Radiology, University of California, San Diego, CA, USA
– sequence: 10
  givenname: Christine B.
  surname: Chung
  fullname: Chung, Christine B.
  organization: Department of Radiology, University of California, San Diego, CA, USA
– sequence: 11
  givenname: Eric Y.
  surname: Chang
  fullname: Chang, Eric Y.
  email: e8chang@health.ucsd.edu
  organization: Department of Radiology, University of California, San Diego, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40328420$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFuEzEQhi1URNPCA3BBPobDhvF6vZsVp6pqAakRl1TiZnm949bprt3Y3qDycrwaTlI4cIDT2PL32Z5_zsiJ8w4JectgwYDVHzaLMdhFCaVYMAYViBdkxpYNL8SyrU7IDBoORVOKb6fkLMYNAIiSi1fktAJeLqsSZuTnhdY4YFAJezoNKah470OiqO89TXZEup2USzapZHdIR3XnMNkfeecdzbSLBgOd366viu1q_Z7aTFh3R73JrA5-9APqaVCBmqD0wZqvVtcZdFTnh6xWA-1yW7RTMX8hnysacTCFSgndQdDe7fww7dcZdjiFQ0nffXh4TV4aNUR881zPye311fryc3Hz9dOXy4ubQnPRpKKGpmk6YG2zVAhdD9pgzWrDUBjgtdC96VpoG6yF0GqJYDTnXc2MYbWoS83Pyfx472Pw2wljkqONOblBOfRTlLwExljVtjyj757RqRuxl48hhxKe5O_QM8COQM4nxoDmD8JA7gcrNzIPVu4HK4-Dzc7Ho4O5yZ3FIKO26DT2NqBOsvf2n3b7l60H6_bZP-DTf9xfYj3Bqg
Cites_doi 10.1063/1.3156332
10.1002/nbm.1066
10.1002/mrm.27066
10.1016/j.bone.2019.03.013
10.1002/nbm.3609
10.1007/s10278-024-01089-8
10.1002/(SICI)1097-4636(199905)45:2<108::AID-JBM5>3.0.CO;2-A
10.1148/radiol.15141850
10.1016/j.bone.2016.03.007
10.1063/5.0086459
10.1007/s00198-005-2035-9
10.1002/mrm.21866
10.1038/s41598-019-54559-3
10.1002/nbm.2906
10.1002/mrm.24870
10.1016/j.jmr.2010.09.013
10.1002/mrm.22459
10.1002/mrm.26716
10.1016/j.neuroimage.2024.120800
10.1002/jbmr.1535
10.1002/nbm.3547
10.1002/mrm.26846
10.1016/j.mri.2019.03.012
10.1359/jbmr.061113
10.1109/TMI.2009.2035616
10.1016/j.mri.2020.09.014
10.1006/jmre.2000.2059
10.1002/nbm.3994
10.1093/jbmr/zjae053
10.1016/S8756-3282(02)00815-3
10.1016/j.bone.2019.05.038
10.1002/mrm.1910290607
10.1002/nbm.4214
10.1016/j.mri.2020.06.011
10.1016/j.ins.2019.03.080
10.1056/NEJM199208273270908
10.1056/NEJMra053077
10.1196/annals.1346.039
10.1002/nbm.4045
10.1146/annurev-bioeng-071516-044442
ContentType Journal Article
Copyright 2024
Copyright © 2024. Published by Elsevier Inc.
Copyright © 2025. Published by Elsevier Inc.
Copyright_xml – notice: 2024
– notice: Copyright © 2024. Published by Elsevier Inc.
– notice: Copyright © 2025. Published by Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.mri.2025.110405
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
ExternalDocumentID 40328420
10_1016_j_mri_2025_110405
S0730725X2500089X
Genre Journal Article
GrantInformation_xml – fundername: CSRD VA
  grantid: I01 CX000625
– fundername: BLRD VA
  grantid: I01 BX005952
– fundername: NIAMS NIH HHS
  grantid: R01 AR075825
– fundername: NIAMS NIH HHS
  grantid: P30 AR073761
– fundername: NIAMS NIH HHS
  grantid: K01 AR080257
– fundername: NIAMS NIH HHS
  grantid: R01 AR079484
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~S-
AFCTW
AGRNS
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c357t-60777b01978ae0bd0cfe616f1e5f0365cdfb9097e655ca8e0fc33b61ff16562c3
IEDL.DBID .~1
ISSN 0730-725X
1873-5894
IngestDate Wed Jul 02 04:37:43 EDT 2025
Sun Jun 08 01:33:15 EDT 2025
Tue Aug 05 12:07:28 EDT 2025
Sat Jul 05 17:12:01 EDT 2025
Tue Aug 26 18:33:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords SAT-net
OP
UTE-qMT
Bone
MRI
MMF
Language English
License Copyright © 2024. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-60777b01978ae0bd0cfe616f1e5f0365cdfb9097e655ca8e0fc33b61ff16562c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 40328420
PQID 3201114993
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3201114993
pubmed_primary_40328420
crossref_primary_10_1016_j_mri_2025_110405
elsevier_sciencedirect_doi_10_1016_j_mri_2025_110405
elsevier_clinicalkey_doi_10_1016_j_mri_2025_110405
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Du, Bydder (bb0050) 2013; 26
Lu, Ma, Chang, Athertya, Jang, Jerban (bb0245) 2024; 37
Sled, Pike (bb0130) 2000; 145
Manhard, Horch, Harkins, Gochberg, Nyman, Does (bb0060) 2014; 71
Wu, Ma, Kee, Kovalchuk, Capaldi, Ren (bb0200) 2021
Ritchie, Buehler, Hansma (bb0030) 2009; 62
Tai, Yang, Liu (bb0230) 2017
Henkelman, Huang, Xiang, Stanisz, Swanson, Bronskill (bb0170) 1993; 29
Klein, Staring, Murphy, Viergever, Pluim (bb0180) 2010; 29
Manhard, Uppuganti, Granke, Gochberg, Nyman, Does (bb0065) 2016; 87
Milletari, Navab, Ahmadi (bb0220) 2016
Springenberg, Dosovitskiy, Brox, Riedmiller (bb0235) 2014
Ma, Shao, Du, Chang (bb0145) 2016; 29
Seeman, Delmas (bb0015) 2006; 354
Ma, Chang, Carl, Du (bb0100) 2018; 79
Jerban, Ma, Nazaran, Dorthe, Cory, Carl (bb0115) 2018; 31
Lo, Du, Lee, Zeng, Athertya, Silva (bb0240) 2024; 298
Viguet-Carrin, Garnero, Delmas (bb0025) 2006; 17
Wu, Ma, Du, Xing (bb0195) 2020; 11314
Wu, Alley, Li, Datta, Wen, Sandino (bb0210) 2022; 9
Huang, Liu, Van Der Maaten, Weinberger (bb0225) 2017
Jerban, Ma, Dorthe, Kakos, Le, Alenezi (bb0120) 2019; 11
Zioupos, Currey, Hamer (bb0035) 1999; 45
Ma, Jang, Jerban, Chang, Chung, Bydder (bb0085) 2022; 9
Horch, Nyman, Gochberg, Dortch, Does (bb0090) 2010; 64
Ma, Tadros, Du, Chang (bb0150) 2018; 79
Wu, Ma, Du, Xing (bb0165) 2020; 72
Jerban, Ma, Wong, Nazaran, Searleman, Wan (bb0110) 2019; 123
Burge, Dawson-Hughes, Solomon, Wong, King, Tosteson (bb0005) 2007; 22
Jerban, Ma, Wan, Searleman, Jang, Sah (bb0105) 2019; 32
Ma, Chang, Bydder, Du (bb0095) 2016; 29
Wu, Li, Xing, Gold (bb0205) 2020; 74
Du, Carl, Bydder, Takahashi, Chung, Bydder (bb0075) 2010; 207
Wu, Ma, Liu, Du, Xing (bb0160) 2019; 490
Jerban, Ma, Namiranian, Ashir, Shirazian, Wei (bb0135) 2019; 9
Springer, Martirosian, Machann, Schwenzer, Claussen, Schick (bb0055) 2009; 61
Ronneberger, Fischer, Brox (bb0215) 2015
Wehrli, Song, Saha, Wright (bb0045) 2006; 19
Wu, Zhao, Wan, Kakos, Li, Jerban (bb0185) 2020; 33
Rajapakse, Bashoor-Zadeh, Li, Sun, Wright, Wehrli (bb0070) 2015; 276
Wu, Ma, Capaldi, Liu, Zhao, Du (bb0190) 2020; 66
Ma, Lu, Carl, Zhu, Szeverenyi, Bydder (bb0175) 2018; 80
Riggs, Melton (bb0010) 1992; 327
Jerban, Ma, Li, Jang, Wan, Guo (bb0140) 2019; 127
Turner (bb0020) 2006; 1068
Jerban, Ma, Wei, Shen, Ibrahim, Jang (bb0125) 2024; 39
Burr (bb0040) 2002; 31
Shen, Wu, Suk (bb0155) 2017; 19
Bae, Chen, Chung, Masuda, D’Lima, Du (bb0080) 2012; 27
Wu (10.1016/j.mri.2025.110405_bb0210) 2022; 9
Lu (10.1016/j.mri.2025.110405_bb0245) 2024; 37
Ma (10.1016/j.mri.2025.110405_bb0100) 2018; 79
Ma (10.1016/j.mri.2025.110405_bb0145) 2016; 29
Manhard (10.1016/j.mri.2025.110405_bb0065) 2016; 87
Jerban (10.1016/j.mri.2025.110405_bb0125) 2024; 39
Bae (10.1016/j.mri.2025.110405_bb0080) 2012; 27
Shen (10.1016/j.mri.2025.110405_bb0155) 2017; 19
Riggs (10.1016/j.mri.2025.110405_bb0010) 1992; 327
Tai (10.1016/j.mri.2025.110405_bb0230) 2017
Sled (10.1016/j.mri.2025.110405_bb0130) 2000; 145
Wehrli (10.1016/j.mri.2025.110405_bb0045) 2006; 19
Turner (10.1016/j.mri.2025.110405_bb0020) 2006; 1068
Ma (10.1016/j.mri.2025.110405_bb0175) 2018; 80
Ma (10.1016/j.mri.2025.110405_bb0150) 2018; 79
Wu (10.1016/j.mri.2025.110405_bb0190) 2020; 66
Zioupos (10.1016/j.mri.2025.110405_bb0035) 1999; 45
Wu (10.1016/j.mri.2025.110405_bb0200) 2021
Burr (10.1016/j.mri.2025.110405_bb0040) 2002; 31
Milletari (10.1016/j.mri.2025.110405_bb0220) 2016
Ronneberger (10.1016/j.mri.2025.110405_bb0215) 2015
Ritchie (10.1016/j.mri.2025.110405_bb0030) 2009; 62
Henkelman (10.1016/j.mri.2025.110405_bb0170) 1993; 29
Jerban (10.1016/j.mri.2025.110405_bb0120) 2019; 11
Jerban (10.1016/j.mri.2025.110405_bb0110) 2019; 123
Jerban (10.1016/j.mri.2025.110405_bb0140) 2019; 127
Springenberg (10.1016/j.mri.2025.110405_bb0235) 2014
Jerban (10.1016/j.mri.2025.110405_bb0135) 2019; 9
Du (10.1016/j.mri.2025.110405_bb0075) 2010; 207
Springer (10.1016/j.mri.2025.110405_bb0055) 2009; 61
Wu (10.1016/j.mri.2025.110405_bb0195) 2020; 11314
Rajapakse (10.1016/j.mri.2025.110405_bb0070) 2015; 276
Wu (10.1016/j.mri.2025.110405_bb0160) 2019; 490
Du (10.1016/j.mri.2025.110405_bb0050) 2013; 26
Wu (10.1016/j.mri.2025.110405_bb0165) 2020; 72
Viguet-Carrin (10.1016/j.mri.2025.110405_bb0025) 2006; 17
Ma (10.1016/j.mri.2025.110405_bb0085) 2022; 9
Horch (10.1016/j.mri.2025.110405_bb0090) 2010; 64
Huang (10.1016/j.mri.2025.110405_bb0225) 2017
Lo (10.1016/j.mri.2025.110405_bb0240) 2024; 298
Jerban (10.1016/j.mri.2025.110405_bb0105) 2019; 32
Klein (10.1016/j.mri.2025.110405_bb0180) 2010; 29
Manhard (10.1016/j.mri.2025.110405_bb0060) 2014; 71
Ma (10.1016/j.mri.2025.110405_bb0095) 2016; 29
Jerban (10.1016/j.mri.2025.110405_bb0115) 2018; 31
Wu (10.1016/j.mri.2025.110405_bb0185) 2020; 33
Burge (10.1016/j.mri.2025.110405_bb0005) 2007; 22
Seeman (10.1016/j.mri.2025.110405_bb0015) 2006; 354
Wu (10.1016/j.mri.2025.110405_bb0205) 2020; 74
References_xml – volume: 29
  start-page: 196
  year: 2010
  end-page: 205
  ident: bb0180
  article-title: Elastix: a toolbox for intensity-based medical image registration
  publication-title: IEEE Trans Med Imaging
– volume: 64
  start-page: 680
  year: 2010
  end-page: 687
  ident: bb0090
  article-title: Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 27
  start-page: 848
  year: 2012
  end-page: 857
  ident: bb0080
  article-title: Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties
  publication-title: J Bone Miner Res
– volume: 79
  start-page: 1941
  year: 2018
  end-page: 1949
  ident: bb0150
  article-title: Quantitative two-dimensional ultrashort echo time magnetization transfer (2D UTE-MT) imaging of cortical bone
  publication-title: Magn Reson Med
– volume: 327
  start-page: 620
  year: 1992
  end-page: 627
  ident: bb0010
  article-title: The prevention and treatment of osteoporosis
  publication-title: N Engl J Med
– volume: 61
  start-page: 1040
  year: 2009
  end-page: 1048
  ident: bb0055
  article-title: Magnetization transfer contrast imaging in bovine and human cortical bone applying an ultrashort echo time sequence at 3 tesla
  publication-title: Magn Reson Med
– volume: 31
  year: 2018
  ident: bb0115
  article-title: Detecting stress injury (fatigue fracture) in fibular cortical bone using quantitative ultrashort echo time-magnetization transfer (UTE-MT): an ex vivo study
  publication-title: NMR Biomed
– volume: 26
  start-page: 489
  year: 2013
  end-page: 506
  ident: bb0050
  article-title: Qualitative and quantitative ultrashort-TE MRI of cortical bone
  publication-title: NMR Biomed
– volume: 17
  start-page: 319
  year: 2006
  end-page: 336
  ident: bb0025
  article-title: The role of collagen in bone strength
  publication-title: Osteoporos Int
– volume: 72
  start-page: 78
  year: 2020
  end-page: 86
  ident: bb0165
  article-title: Accelerating quantitative MR imaging with the incorporation of B(1) compensation using deep learning
  publication-title: Magn Reson Imaging
– start-page: 565
  year: 2016
  end-page: 571
  ident: bb0220
  article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation
  publication-title: 2016 Fourth international conference on 3D vision (3DV)
– volume: 11314
  start-page: 162
  year: 2020
  end-page: 167
  ident: bb0195
  article-title: Deciphering tissue relaxation parameters from a single MR image using deep learning
  publication-title: Medical Imaging 2020: Computer-aided diagnosis
– volume: 45
  start-page: 108
  year: 1999
  end-page: 116
  ident: bb0035
  article-title: The role of collagen in the declining mechanical properties of aging human cortical bone
  publication-title: J Biomed Mater Res
– volume: 66
  start-page: 93
  year: 2020
  end-page: 103
  ident: bb0190
  article-title: Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled MRI
  publication-title: Magn Reson Imaging
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: bb0225
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 11
  year: 2019
  ident: bb0120
  article-title: Assessing cortical bone mechanical properties using collagen proton fraction from ultrashort echo time magnetization transfer (UTE-MT) MRI modeling
  publication-title: Bone Rep
– volume: 19
  start-page: 221
  year: 2017
  end-page: 248
  ident: bb0155
  article-title: Deep learning in medical image analysis
  publication-title: Annu Rev Biomed Eng
– volume: 354
  start-page: 2250
  year: 2006
  end-page: 2261
  ident: bb0015
  article-title: Bone quality--the material and structural basis of bone strength and fragility
  publication-title: N Engl J Med
– volume: 207
  start-page: 304
  year: 2010
  end-page: 311
  ident: bb0075
  article-title: Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone
  publication-title: J Magn Reson
– volume: 80
  start-page: 598
  year: 2018
  end-page: 608
  ident: bb0175
  article-title: Accurate T(1) mapping of short T(2) tissues using a three-dimensional ultrashort echo time cones actual flip angle imaging-variable repetition time (3D UTE-cones AFI-VTR) method
  publication-title: Magn Reson Med
– volume: 276
  start-page: 526
  year: 2015
  end-page: 535
  ident: bb0070
  article-title: Volumetric cortical bone porosity assessment with MR imaging: validation and clinical feasibility
  publication-title: Radiology
– volume: 145
  start-page: 24
  year: 2000
  end-page: 36
  ident: bb0130
  article-title: Quantitative interpretation of magnetization transfer in spoiled gradient echo MRI sequences
  publication-title: J Magn Reson
– volume: 29
  start-page: 912
  year: 2016
  end-page: 917
  ident: bb0095
  article-title: Can ultrashort-TE (UTE) MRI sequences on a 3-T clinical scanner detect signal directly from collagen protons: freeze-dry and D2 O exchange studies of cortical bone and Achilles tendon specimens
  publication-title: NMR Biomed
– volume: 39
  start-page: 707
  year: 2024
  end-page: 716
  ident: bb0125
  article-title: Ultrashort echo time MRI detects significantly lower collagen but higher pore water in the tibial cortex of female patients with osteopenia and osteoporosis
  publication-title: J Bone Miner Res
– volume: 127
  start-page: 120
  year: 2019
  end-page: 128
  ident: bb0140
  article-title: Volumetric mapping of bound and pore water as well as collagen protons in cortical bone using 3D ultrashort echo time cones MR imaging techniques
  publication-title: Bone
– start-page: 3147
  year: 2017
  end-page: 3155
  ident: bb0230
  article-title: Image super-resolution via deep recursive residual network
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 123
  start-page: 8
  year: 2019
  end-page: 17
  ident: bb0110
  article-title: Ultrashort echo time magnetic resonance imaging (UTE-MRI) of cortical bone correlates well with histomorphometric assessment of bone microstructure
  publication-title: Bone
– volume: 37
  start-page: 2126
  year: 2024
  end-page: 2134
  ident: bb0245
  article-title: Deep convolutional neural network for dedicated regions-of-interest based multi-parameter quantitative ultrashort Echo time (UTE) magnetic resonance imaging of the knee joint
  publication-title: J Imaging Inform Med
– volume: 71
  start-page: 2166
  year: 2014
  end-page: 2171
  ident: bb0060
  article-title: Validation of quantitative bound- and pore-water imaging in cortical bone
  publication-title: Magn Reson Med
– volume: 33
  year: 2020
  ident: bb0185
  article-title: Quantitative three-dimensional ultrashort echo time cones imaging of the knee joint with motion correction
  publication-title: NMR Biomed
– year: 2014
  ident: bb0235
  article-title: Striving for simplicity: the all convolutional net
  publication-title: arXiv
– volume: 62
  start-page: 41
  year: 2009
  end-page: 47
  ident: bb0030
  article-title: Plasticity and toughness in bone
  publication-title: Phys Today
– volume: 490
  start-page: 317
  year: 2019
  end-page: 328
  ident: bb0160
  article-title: Self-attention convolutional neural network for improved MR image reconstruction
  publication-title: Inf Sci (N Y)
– volume: 32
  year: 2019
  ident: bb0105
  article-title: Collagen proton fraction from ultrashort echo time magnetization transfer (UTE-MT) MRI modelling correlates significantly with cortical bone porosity measured with micro-computed tomography (muCT)
  publication-title: NMR Biomed
– volume: 87
  start-page: 1
  year: 2016
  end-page: 10
  ident: bb0065
  article-title: MRI-derived bound and pore water concentrations as predictors of fracture resistance
  publication-title: Bone
– volume: 9
  start-page: 17974
  year: 2019
  ident: bb0135
  article-title: Age-related decrease in collagen proton fraction in tibial tendons estimated by magnetization transfer modeling of ultrashort echo time magnetic resonance imaging (UTE-MRI)
  publication-title: Sci Rep
– start-page: 234
  year: 2015
  end-page: 241
  ident: bb0215
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18
– volume: 79
  start-page: 692
  year: 2018
  end-page: 700
  ident: bb0100
  article-title: Quantitative magnetization transfer ultrashort echo time imaging using a time-efficient 3D multispoke cones sequence
  publication-title: Magn Reson Med
– year: 2021
  ident: bb0200
  article-title: Quantitative parametric mapping of tissues properties from standard magnetic resonance imaging enabled by deep learning
  publication-title: arXiv
– volume: 1068
  start-page: 429
  year: 2006
  end-page: 446
  ident: bb0020
  article-title: Bone strength: current concepts
  publication-title: Ann N Y Acad Sci
– volume: 9
  year: 2022
  ident: bb0210
  article-title: Deep learning-based water-fat separation from dual-Echo chemical shift-encoded imaging
  publication-title: Bioengineering (Basel)
– volume: 31
  start-page: 8
  year: 2002
  end-page: 11
  ident: bb0040
  article-title: The contribution of the organic matrix to bone’s material properties
  publication-title: Bone
– volume: 29
  start-page: 759
  year: 1993
  end-page: 766
  ident: bb0170
  article-title: Quantitative interpretation of magnetization transfer
  publication-title: Magn Reson Med
– volume: 74
  start-page: 121
  year: 2020
  end-page: 127
  ident: bb0205
  article-title: Deriving new soft tissue contrasts from conventional MR images using deep learning
  publication-title: Magn Reson Imaging
– volume: 298
  year: 2024
  ident: bb0240
  article-title: Multicompartment imaging of the brain using a comprehensive MR imaging protocol
  publication-title: Neuroimage
– volume: 9
  year: 2022
  ident: bb0085
  article-title: Making the invisible visible-ultrashort echo time magnetic resonance imaging: technical developments and applications
  publication-title: Appl Phys Rev
– volume: 22
  start-page: 465
  year: 2007
  end-page: 475
  ident: bb0005
  article-title: Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025
  publication-title: J Bone Miner Res
– volume: 19
  start-page: 731
  year: 2006
  end-page: 764
  ident: bb0045
  article-title: Quantitative MRI for the assessment of bone structure and function
  publication-title: NMR Biomed
– volume: 29
  start-page: 1546
  year: 2016
  end-page: 1552
  ident: bb0145
  article-title: Ultrashort echo time magnetization transfer (UTE-MT) imaging and modeling: magic angle independent biomarkers of tissue properties
  publication-title: NMR Biomed
– volume: 62
  start-page: 41
  issue: 6
  year: 2009
  ident: 10.1016/j.mri.2025.110405_bb0030
  article-title: Plasticity and toughness in bone
  publication-title: Phys Today
  doi: 10.1063/1.3156332
– volume: 19
  start-page: 731
  issue: 7
  year: 2006
  ident: 10.1016/j.mri.2025.110405_bb0045
  article-title: Quantitative MRI for the assessment of bone structure and function
  publication-title: NMR Biomed
  doi: 10.1002/nbm.1066
– volume: 11314
  start-page: 162
  year: 2020
  ident: 10.1016/j.mri.2025.110405_bb0195
  article-title: Deciphering tissue relaxation parameters from a single MR image using deep learning
– year: 2014
  ident: 10.1016/j.mri.2025.110405_bb0235
  article-title: Striving for simplicity: the all convolutional net
  publication-title: arXiv
– volume: 80
  start-page: 598
  issue: 2
  year: 2018
  ident: 10.1016/j.mri.2025.110405_bb0175
  article-title: Accurate T(1) mapping of short T(2) tissues using a three-dimensional ultrashort echo time cones actual flip angle imaging-variable repetition time (3D UTE-cones AFI-VTR) method
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27066
– volume: 123
  start-page: 8
  year: 2019
  ident: 10.1016/j.mri.2025.110405_bb0110
  article-title: Ultrashort echo time magnetic resonance imaging (UTE-MRI) of cortical bone correlates well with histomorphometric assessment of bone microstructure
  publication-title: Bone
  doi: 10.1016/j.bone.2019.03.013
– volume: 29
  start-page: 1546
  issue: 11
  year: 2016
  ident: 10.1016/j.mri.2025.110405_bb0145
  article-title: Ultrashort echo time magnetization transfer (UTE-MT) imaging and modeling: magic angle independent biomarkers of tissue properties
  publication-title: NMR Biomed
  doi: 10.1002/nbm.3609
– year: 2021
  ident: 10.1016/j.mri.2025.110405_bb0200
  article-title: Quantitative parametric mapping of tissues properties from standard magnetic resonance imaging enabled by deep learning
  publication-title: arXiv
– volume: 37
  start-page: 2126
  issue: 5
  year: 2024
  ident: 10.1016/j.mri.2025.110405_bb0245
  article-title: Deep convolutional neural network for dedicated regions-of-interest based multi-parameter quantitative ultrashort Echo time (UTE) magnetic resonance imaging of the knee joint
  publication-title: J Imaging Inform Med
  doi: 10.1007/s10278-024-01089-8
– volume: 45
  start-page: 108
  issue: 2
  year: 1999
  ident: 10.1016/j.mri.2025.110405_bb0035
  article-title: The role of collagen in the declining mechanical properties of aging human cortical bone
  publication-title: J Biomed Mater Res
  doi: 10.1002/(SICI)1097-4636(199905)45:2<108::AID-JBM5>3.0.CO;2-A
– volume: 276
  start-page: 526
  issue: 2
  year: 2015
  ident: 10.1016/j.mri.2025.110405_bb0070
  article-title: Volumetric cortical bone porosity assessment with MR imaging: validation and clinical feasibility
  publication-title: Radiology
  doi: 10.1148/radiol.15141850
– volume: 87
  start-page: 1
  year: 2016
  ident: 10.1016/j.mri.2025.110405_bb0065
  article-title: MRI-derived bound and pore water concentrations as predictors of fracture resistance
  publication-title: Bone
  doi: 10.1016/j.bone.2016.03.007
– volume: 9
  issue: 4
  year: 2022
  ident: 10.1016/j.mri.2025.110405_bb0085
  article-title: Making the invisible visible-ultrashort echo time magnetic resonance imaging: technical developments and applications
  publication-title: Appl Phys Rev
  doi: 10.1063/5.0086459
– volume: 17
  start-page: 319
  issue: 3
  year: 2006
  ident: 10.1016/j.mri.2025.110405_bb0025
  article-title: The role of collagen in bone strength
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-005-2035-9
– volume: 61
  start-page: 1040
  issue: 5
  year: 2009
  ident: 10.1016/j.mri.2025.110405_bb0055
  article-title: Magnetization transfer contrast imaging in bovine and human cortical bone applying an ultrashort echo time sequence at 3 tesla
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21866
– volume: 9
  start-page: 17974
  issue: 1
  year: 2019
  ident: 10.1016/j.mri.2025.110405_bb0135
  article-title: Age-related decrease in collagen proton fraction in tibial tendons estimated by magnetization transfer modeling of ultrashort echo time magnetic resonance imaging (UTE-MRI)
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-54559-3
– volume: 26
  start-page: 489
  issue: 5
  year: 2013
  ident: 10.1016/j.mri.2025.110405_bb0050
  article-title: Qualitative and quantitative ultrashort-TE MRI of cortical bone
  publication-title: NMR Biomed
  doi: 10.1002/nbm.2906
– volume: 71
  start-page: 2166
  issue: 6
  year: 2014
  ident: 10.1016/j.mri.2025.110405_bb0060
  article-title: Validation of quantitative bound- and pore-water imaging in cortical bone
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24870
– volume: 207
  start-page: 304
  issue: 2
  year: 2010
  ident: 10.1016/j.mri.2025.110405_bb0075
  article-title: Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone
  publication-title: J Magn Reson
  doi: 10.1016/j.jmr.2010.09.013
– volume: 64
  start-page: 680
  issue: 3
  year: 2010
  ident: 10.1016/j.mri.2025.110405_bb0090
  article-title: Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22459
– volume: 79
  start-page: 692
  issue: 2
  year: 2018
  ident: 10.1016/j.mri.2025.110405_bb0100
  article-title: Quantitative magnetization transfer ultrashort echo time imaging using a time-efficient 3D multispoke cones sequence
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26716
– volume: 298
  year: 2024
  ident: 10.1016/j.mri.2025.110405_bb0240
  article-title: Multicompartment imaging of the brain using a comprehensive MR imaging protocol
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2024.120800
– volume: 27
  start-page: 848
  issue: 4
  year: 2012
  ident: 10.1016/j.mri.2025.110405_bb0080
  article-title: Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.1535
– start-page: 565
  year: 2016
  ident: 10.1016/j.mri.2025.110405_bb0220
  article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation
– volume: 29
  start-page: 912
  issue: 7
  year: 2016
  ident: 10.1016/j.mri.2025.110405_bb0095
  article-title: Can ultrashort-TE (UTE) MRI sequences on a 3-T clinical scanner detect signal directly from collagen protons: freeze-dry and D2 O exchange studies of cortical bone and Achilles tendon specimens
  publication-title: NMR Biomed
  doi: 10.1002/nbm.3547
– volume: 79
  start-page: 1941
  issue: 4
  year: 2018
  ident: 10.1016/j.mri.2025.110405_bb0150
  article-title: Quantitative two-dimensional ultrashort echo time magnetization transfer (2D UTE-MT) imaging of cortical bone
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26846
– volume: 66
  start-page: 93
  year: 2020
  ident: 10.1016/j.mri.2025.110405_bb0190
  article-title: Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled MRI
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2019.03.012
– volume: 22
  start-page: 465
  issue: 3
  year: 2007
  ident: 10.1016/j.mri.2025.110405_bb0005
  article-title: Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025
  publication-title: J Bone Miner Res
  doi: 10.1359/jbmr.061113
– volume: 29
  start-page: 196
  issue: 1
  year: 2010
  ident: 10.1016/j.mri.2025.110405_bb0180
  article-title: Elastix: a toolbox for intensity-based medical image registration
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2009.2035616
– volume: 74
  start-page: 121
  year: 2020
  ident: 10.1016/j.mri.2025.110405_bb0205
  article-title: Deriving new soft tissue contrasts from conventional MR images using deep learning
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2020.09.014
– volume: 145
  start-page: 24
  issue: 1
  year: 2000
  ident: 10.1016/j.mri.2025.110405_bb0130
  article-title: Quantitative interpretation of magnetization transfer in spoiled gradient echo MRI sequences
  publication-title: J Magn Reson
  doi: 10.1006/jmre.2000.2059
– volume: 31
  issue: 11
  year: 2018
  ident: 10.1016/j.mri.2025.110405_bb0115
  article-title: Detecting stress injury (fatigue fracture) in fibular cortical bone using quantitative ultrashort echo time-magnetization transfer (UTE-MT): an ex vivo study
  publication-title: NMR Biomed
  doi: 10.1002/nbm.3994
– volume: 39
  start-page: 707
  issue: 6
  year: 2024
  ident: 10.1016/j.mri.2025.110405_bb0125
  article-title: Ultrashort echo time MRI detects significantly lower collagen but higher pore water in the tibial cortex of female patients with osteopenia and osteoporosis
  publication-title: J Bone Miner Res
  doi: 10.1093/jbmr/zjae053
– volume: 31
  start-page: 8
  issue: 1
  year: 2002
  ident: 10.1016/j.mri.2025.110405_bb0040
  article-title: The contribution of the organic matrix to bone’s material properties
  publication-title: Bone
  doi: 10.1016/S8756-3282(02)00815-3
– volume: 11
  year: 2019
  ident: 10.1016/j.mri.2025.110405_bb0120
  article-title: Assessing cortical bone mechanical properties using collagen proton fraction from ultrashort echo time magnetization transfer (UTE-MT) MRI modeling
  publication-title: Bone Rep
– volume: 127
  start-page: 120
  year: 2019
  ident: 10.1016/j.mri.2025.110405_bb0140
  article-title: Volumetric mapping of bound and pore water as well as collagen protons in cortical bone using 3D ultrashort echo time cones MR imaging techniques
  publication-title: Bone
  doi: 10.1016/j.bone.2019.05.038
– volume: 29
  start-page: 759
  issue: 6
  year: 1993
  ident: 10.1016/j.mri.2025.110405_bb0170
  article-title: Quantitative interpretation of magnetization transfer
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910290607
– volume: 33
  issue: 1
  year: 2020
  ident: 10.1016/j.mri.2025.110405_bb0185
  article-title: Quantitative three-dimensional ultrashort echo time cones imaging of the knee joint with motion correction
  publication-title: NMR Biomed
  doi: 10.1002/nbm.4214
– volume: 72
  start-page: 78
  year: 2020
  ident: 10.1016/j.mri.2025.110405_bb0165
  article-title: Accelerating quantitative MR imaging with the incorporation of B(1) compensation using deep learning
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2020.06.011
– volume: 9
  issue: 10
  year: 2022
  ident: 10.1016/j.mri.2025.110405_bb0210
  article-title: Deep learning-based water-fat separation from dual-Echo chemical shift-encoded imaging
  publication-title: Bioengineering (Basel)
– volume: 490
  start-page: 317
  year: 2019
  ident: 10.1016/j.mri.2025.110405_bb0160
  article-title: Self-attention convolutional neural network for improved MR image reconstruction
  publication-title: Inf Sci (N Y)
  doi: 10.1016/j.ins.2019.03.080
– volume: 327
  start-page: 620
  issue: 9
  year: 1992
  ident: 10.1016/j.mri.2025.110405_bb0010
  article-title: The prevention and treatment of osteoporosis
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199208273270908
– volume: 354
  start-page: 2250
  issue: 21
  year: 2006
  ident: 10.1016/j.mri.2025.110405_bb0015
  article-title: Bone quality--the material and structural basis of bone strength and fragility
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra053077
– start-page: 234
  year: 2015
  ident: 10.1016/j.mri.2025.110405_bb0215
  article-title: U-net: Convolutional networks for biomedical image segmentation
– start-page: 3147
  year: 2017
  ident: 10.1016/j.mri.2025.110405_bb0230
  article-title: Image super-resolution via deep recursive residual network
– volume: 1068
  start-page: 429
  year: 2006
  ident: 10.1016/j.mri.2025.110405_bb0020
  article-title: Bone strength: current concepts
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1346.039
– start-page: 4700
  year: 2017
  ident: 10.1016/j.mri.2025.110405_bb0225
  article-title: Densely connected convolutional networks
– volume: 32
  issue: 2
  year: 2019
  ident: 10.1016/j.mri.2025.110405_bb0105
  article-title: Collagen proton fraction from ultrashort echo time magnetization transfer (UTE-MT) MRI modelling correlates significantly with cortical bone porosity measured with micro-computed tomography (muCT)
  publication-title: NMR Biomed
  doi: 10.1002/nbm.4045
– volume: 19
  start-page: 221
  year: 2017
  ident: 10.1016/j.mri.2025.110405_bb0155
  article-title: Deep learning in medical image analysis
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev-bioeng-071516-044442
SSID ssj0005235
Score 2.4503632
Snippet To combine ultrashort echo time quantitative magnetization transfer (UTE-qMT) imaging with a self-attention convolutional neural network (SAT-Net) for...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 110405
SubjectTerms Adult
Algorithms
Bone
Bone Diseases, Metabolic - diagnostic imaging
Convolutional Neural Networks
Cortical Bone - diagnostic imaging
Female
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Middle Aged
MMF
MRI
Neural Networks, Computer
Osteoporosis - diagnostic imaging
SAT-net
Tibia - diagnostic imaging
UTE-qMT
Young Adult
Title Accelerated ultrashort echo time quantitative magnetization transfer (UTE-qMT) imaging of macromolecular fraction (MMF) in cortical bone based on a self-attention convolutional neural network
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X2500089X
https://dx.doi.org/10.1016/j.mri.2025.110405
https://www.ncbi.nlm.nih.gov/pubmed/40328420
https://www.proquest.com/docview/3201114993
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbLFkovpe-mj2UKPWwLbmxLlu1jWDakLd5LE8jNSLLUpmycXce59q_1r3VGlpcW-oCejO0RFp7xzMj6vhnGXidE7WnSJpIujyNK2CPFM4e27JKyKUqVaGIjVxdysRIf1tn6iJ2NXBiCVQbfP_h0763DlWl4m9OrzWb6iYwzT3GxRTX9i3JNDHaRk5W_-_YzzGNosonCEUmPO5se47XtNrhETDMCwwvqYPf72PSn3NPHoPk9djckjzAb5nefHdn2Abtdhe3xh-z7zBgMI1T9oYHDZd-p_RdMr8GijwPqIg_XB9V6Whk6Odiqz63tAxETep_C2g5OV8vz6LpavoHN1vcwgp1DWQ_cC710wXUDIQJOq2qOgi3gKtb_Fge9ay1QcGwA7yvY20sXURVPj6sEgrkHc0dhKqfpDx6M_oit5ufLs0UUOjREhmd5H8k4z3ONWWJeKBvrJjbOykS6xGYOQ2NmGqfLuMytzDKjChs7w7mWiXNU9Cc1_DE7bnFWTxmgsCitVbYsjJDOaOm05o2xXAvR8HLC3o66qa-GQhz1iFD7WqMia1JkPShywtJRe_XIMEWfWGOY-NsgcTPoFxP817BXo3nU-GnSfotq7e6wrzklV7gCLfmEPRns5mbqguoYijR-9n8Pfc7u0NkAdnvBjvvuYF9idtTrE2_-J-zW7P3HxcUPHpYSRA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRQIuiDflOUggLUiheTivA4cVbNVlN3uhlXoztmND0TbdbVMhLvwpfgB_jRnHWYHEQ0LaU6XETq3M-JuZ-JsZxp5GlNpTx3WQ2TwMyGEPZJJa1GUblXVRykhRNnJ1lI2n_O0snW2xb30uDNEqPfZ3mO7Q2l8Z-rc5PJnPh-9IOfMYgy2q6V-UM8-sPDBfPmPctn61_waF_CyOR3uT1-PAtxYIdJLmbZCFeZ4rdG_yQppQ1aG2JosyG5nUIqanuraqDMvcZGmqZWFCq5NEZZG1VK0m1gk-9wK7yBEuqG3Cy68_80q6rp64uoCW1x-lOlLZYjXHmDROiX3PqWXe743hn5xdZ_RG19hV763CbvdCrrMt09xglyp_Hn-Tfd_VGu0WlZuoYXPcruT6I_rzYBBUgdrWw-lGNi6PDVEVFvJDY1qf-Qmt85nNCnamk73gtJo8h_nCNU2CpcWxjinom_eCXXUZGLBTVSMc2ACGze47PKhlY4CscQ14X8LaHNuAyoY6IicQr97vLxxM9Tvdj2O_32LTc5Hbbbbd4KruMsDBvDRGmrLQPLNaZVappNYmUZzXSTlgL3rZiJOu8ofoKXGfBApSkCBFJ8gBi3vpiT6lFUFYoF362yR-NukXnf_XtCe9egjEAjrgkY1ZbtYiIW8OQ94yGbA7nd6cLZ1T4UQeh_f-708fs8vjSXUoDvePDu6zK3SnY9o9YNvtamMeomvWqkduKwB7f9577wdvd04c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+ultrashort+echo+time+quantitative+magnetization+transfer+%28UTE-qMT%29+imaging+of+macromolecular+fraction+%28MMF%29+in+cortical+bone+based+on+a+self-attention+convolutional+neural+network&rft.jtitle=Magnetic+resonance+imaging&rft.au=Du%2C+Kevin&rft.au=Tang%2C+Harry&rft.au=Athertya%2C+Jiyo&rft.au=Wang%2C+Yidan&rft.date=2025-09-01&rft.issn=1873-5894&rft.eissn=1873-5894&rft.spage=110405&rft_id=info:doi/10.1016%2Fj.mri.2025.110405&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon