Moiré physics in twisted van der Waals heterostructures of 2D materials

Artificial moiré superlattices are formed by vertically stacking two monolayers of two-dimensional (2D) materials and rotating one of the layers with a finite twist angle. The resultant moiré pattern in the twisted heterostructures exhibits periodic length scale larger than that of lattice atoms of...

Full description

Saved in:
Bibliographic Details
Published inEmergent materials (Online) Vol. 4; no. 4; pp. 813 - 826
Main Authors Behura, Sanjay K., Miranda, Alexis, Nayak, Sasmita, Johnson, Kayleigh, Das, Priyanka, Pradhan, Nihar R.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial moiré superlattices are formed by vertically stacking two monolayers of two-dimensional (2D) materials and rotating one of the layers with a finite twist angle. The resultant moiré pattern in the twisted heterostructures exhibits periodic length scale larger than that of lattice atoms of the individual layers. Furthermore, the moiré pattern is found to control the interlayer hybridization in a twisted bilayer heterostructure creating strongly correlated quantum states. Owing to the moiré pattern–introduced interlayer hybridization, several exotic quantum phenomena such as flat bands, moiré excitons, surface plasmon polaritons, surface phonon polaritons, surface exciton polaritons, interlayer magnetism, and 2D ferroelectricity are recently found in the engineered materials with additional twist degree of freedom. Here we review some notable advances in moiré physics associated with twisted bilayer heterostructures of 2D crystals including (A) flat bands in the twisted bilayer graphene, (B) exciton superlattices in the twisted transition metal dichalcogenides, (C) topological polaritons and photonic superlattices in the twisted 2D metal oxides, (D) interlayer magnetism in the stacked 2D magnetic semiconductors, and (E) ferroelectricity in moiré quantum materials. This story-of-twist begins with (1) an introduction to twisted heterostructures, (2) a correlation between van der Waals heterostructures and moiré superlattices, (3) how to design and fabricate moiré quantum materials, (4) discussion on five emergent quantum phenomena associated with twisted bilayer heterostructures as listed above, and finally (5) what are the challenges in fabrication, characterization, and applications of twisted heterostructures. This review concludes with an outlook pointing toward innovation in large-area design of twisted heterostructures for their potential applications in quantum nanoelectronics, quantum photonics, optoelectronics, quantum computing, nonvolatile memory, quantum emission, and quantum communication. Moiré physics of moiré quantum materials is a relatively new and extremely exciting area of research. This article provides a general overview of recent advances of moiré physics in twisted van der Waals heterostructures of 2D materials.
AbstractList Artificial moiré superlattices are formed by vertically stacking two monolayers of two-dimensional (2D) materials and rotating one of the layers with a finite twist angle. The resultant moiré pattern in the twisted heterostructures exhibits periodic length scale larger than that of lattice atoms of the individual layers. Furthermore, the moiré pattern is found to control the interlayer hybridization in a twisted bilayer heterostructure creating strongly correlated quantum states. Owing to the moiré pattern–introduced interlayer hybridization, several exotic quantum phenomena such as flat bands, moiré excitons, surface plasmon polaritons, surface phonon polaritons, surface exciton polaritons, interlayer magnetism, and 2D ferroelectricity are recently found in the engineered materials with additional twist degree of freedom. Here we review some notable advances in moiré physics associated with twisted bilayer heterostructures of 2D crystals including (A) flat bands in the twisted bilayer graphene, (B) exciton superlattices in the twisted transition metal dichalcogenides, (C) topological polaritons and photonic superlattices in the twisted 2D metal oxides, (D) interlayer magnetism in the stacked 2D magnetic semiconductors, and (E) ferroelectricity in moiré quantum materials. This story-of-twist begins with (1) an introduction to twisted heterostructures, (2) a correlation between van der Waals heterostructures and moiré superlattices, (3) how to design and fabricate moiré quantum materials, (4) discussion on five emergent quantum phenomena associated with twisted bilayer heterostructures as listed above, and finally (5) what are the challenges in fabrication, characterization, and applications of twisted heterostructures. This review concludes with an outlook pointing toward innovation in large-area design of twisted heterostructures for their potential applications in quantum nanoelectronics, quantum photonics, optoelectronics, quantum computing, nonvolatile memory, quantum emission, and quantum communication. Moiré physics of moiré quantum materials is a relatively new and extremely exciting area of research. This article provides a general overview of recent advances of moiré physics in twisted van der Waals heterostructures of 2D materials.
Author Das, Priyanka
Behura, Sanjay K.
Pradhan, Nihar R.
Miranda, Alexis
Johnson, Kayleigh
Nayak, Sasmita
Author_xml – sequence: 1
  givenname: Sanjay K.
  surname: Behura
  fullname: Behura, Sanjay K.
  email: behuras@uapb.edu
  organization: Department of Chemistry and Physics, University of Arkansas at Pine Bluff, Department of Mathematics and Computer Science, University of Arkansas at Pine Bluff
– sequence: 2
  givenname: Alexis
  surname: Miranda
  fullname: Miranda, Alexis
  organization: Department of Chemical Engineering, University of Illinois at Chicago
– sequence: 3
  givenname: Sasmita
  surname: Nayak
  fullname: Nayak, Sasmita
  organization: Department of Chemistry and Physics, University of Arkansas at Pine Bluff
– sequence: 4
  givenname: Kayleigh
  surname: Johnson
  fullname: Johnson, Kayleigh
  organization: Department of Chemistry and Physics, University of Arkansas at Pine Bluff
– sequence: 5
  givenname: Priyanka
  surname: Das
  fullname: Das, Priyanka
  organization: Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University
– sequence: 6
  givenname: Nihar R.
  surname: Pradhan
  fullname: Pradhan, Nihar R.
  organization: Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University
BookMark eNp9kE1OwzAQhS1UJErpBVj5AgbP2InVJSq_UhEbEOwsJx7TVDSp7BTaI3EOLoZLEUtW72n03ujpO2aDtmuJsVOQZyClOU8aURshEYSUaKTYHLAhFoiiMPpl8OcVHLFxSgu5S4HEEobs9r5r4tcnX823qakTb1refzSpJ8_fXcs9Rf7s3Fvic-opdqmP67pfR0q8Cxwv-dLlc5MDJ-wwZKHxr47Y0_XV4_RWzB5u7qYXM1GrwvSi8KglhqqUUCIE5aqy9qVXqABLr6swqbwPhirj1IQAQZPSXnsIfkJ1odWI4f5vndekSMGuYrN0cWtB2h0Ou8dhMw77g8NuckntSymH21eKdtGtY5t3_tf6Bq-DZmQ
CitedBy_id crossref_primary_10_1002_adma_202405065
crossref_primary_10_1088_2399_1984_acf0a9
crossref_primary_10_1002_admi_202202208
crossref_primary_10_1088_2053_1583_ad4044
crossref_primary_10_1103_PhysRevMaterials_8_014002
crossref_primary_10_1103_PhysRevB_107_L081402
crossref_primary_10_1021_acsami_4c04269
crossref_primary_10_1016_j_taml_2024_100518
crossref_primary_10_1038_s43586_022_00133_7
crossref_primary_10_1039_D2NH00226D
crossref_primary_10_1088_1674_1056_ad3b8a
crossref_primary_10_1021_acs_chemrev_1c00735
crossref_primary_10_1021_acsnano_3c04283
crossref_primary_10_1063_5_0081423
crossref_primary_10_1103_PhysRevB_109_205120
crossref_primary_10_1016_j_carbon_2023_118783
crossref_primary_10_1186_s40580_022_00319_5
crossref_primary_10_1021_acsanm_3c02512
crossref_primary_10_1002_idm2_12162
crossref_primary_10_1016_j_chaos_2024_115021
crossref_primary_10_1103_PhysRevB_109_075146
crossref_primary_10_1063_5_0106676
crossref_primary_10_1007_s10853_023_08273_1
crossref_primary_10_1007_s11467_023_1355_6
crossref_primary_10_1063_5_0205278
Cites_doi 10.1039/C8NR03194K
10.1038/s41586-018-0136-9
10.1103/PhysRevLett.116.126101
10.1038/s41467-020-20667-2
10.1103/PhysRevB.95.075420
10.1021/acsphotonics.5b00099
10.1038/nature26154
10.1103/PhysRevB.100.035448
10.1126/science.abe8177
10.1038/s41578-021-00284-1
10.1103/PhysRevB.82.121407
10.1038/s41565-019-0438-6
10.1038/s41467-018-04953-8
10.1007/BF02927508
10.1021/acs.nanolett.0c02098
10.1126/science.abd3230
10.1103/PhysRevB.92.075445
10.1126/science.1246833
10.1021/acs.nanolett.9b05117
10.1002/advs.202001722
10.1021/jacs.5b07739
10.1038/ncomms8507
10.1038/s41699-021-00221-4
10.1126/science.1237240
10.1126/science.aav1937
10.1038/s41467-018-07249-z
10.1038/s41567-020-0958-x
10.1126/science.aac9439
10.1063/1.5129447
10.1038/s41563-020-0732-6
10.1007/s40820-020-00464-8
10.1021/nl903868w
10.1038/NMAT5047
10.1038/s41467-020-19466-6
10.1038/natrevmats.2016.42
10.1038/nature12385
10.1038/s41565-018-0121-3
10.1103/PhysRevB.99.235417
10.1126/sciadv.abc5638
10.1021/nl3026357
10.1038/s41586-020-2359-9
10.1039/C7CS00828G
10.1039/C4EE03523B
10.1038/s41586-019-0976-y
10.1038/s41467-019-12327-x
10.1038/nmat4452
10.1088/2053-1583/abd3e7
10.1021/acs.nanolett.5b05263
10.1103/PhysRevLett.119.247402
10.1038/s41586-019-0975-z
10.1002/adom.201901003
10.1038/s41586-020-2970-9
10.1038/nmat4425
10.1038/nature12187
10.1038/s41565-018-0128-9
10.1038/s41586-019-0957-1
10.1038/s41467-020-18109-0
10.1038/s41586-019-0986-9
10.1002/adma.201806603
10.1038/nphys2272
10.1038/nphoton.2017.125
10.1038/nphys2942
10.1063/1.5108562
10.1038/s41563-020-00840-0
10.1103/PhysRevB.99.075127
10.1126/science.aau5144
10.1038/s41567-020-0906-9
10.1038/s42254-019-0110-y
10.1038/s41928-018-0087-z
10.1021/cm504242t
10.1126/science.aat6981
10.1038/ncomms10800
10.1073/pnas.1108174108
10.1073/pnas.1309394110
10.1038/s41567-020-01041-x
10.1002/aelm.201900818
10.1103/physics.12.12
10.1002/andp.201700025
10.1088/2053-1583/ab8dd4
10.1021/acsnano.7b01666
ContentType Journal Article
Copyright Qatar University and Springer Nature Switzerland AG 2021
Copyright_xml – notice: Qatar University and Springer Nature Switzerland AG 2021
DBID AAYXX
CITATION
DOI 10.1007/s42247-021-00270-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2522-574X
EndPage 826
ExternalDocumentID 10_1007_s42247_021_00270_x
GrantInformation_xml – fundername: National Science Foundation
  grantid: NSF DMR # 1826886
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -EM
406
AAFGU
AAHNG
AAPBV
AATNV
AAUYE
AAYFA
ABDZT
ABECU
ABFGW
ABFTV
ABJNI
ABKAS
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ABXPI
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ADKNI
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
AEFTE
AEJRE
AESKC
AESTI
AEVTX
AFNRJ
AFQWF
AGDGC
AGGBP
AGJBK
AGMZJ
AIAKS
AILAN
AIMYW
AITGF
AJDOV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AXYYD
BGNMA
DPUIP
EBLON
EBS
EJD
FINBP
FNLPD
FSGXE
GGCAI
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
OK1
PT4
RSV
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
0R~
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
FIGPU
H13
ROL
SJYHP
ID FETCH-LOGICAL-c357t-5d2402fb601621f3ab6cd6d323126d4bf9bddf7eb7a39e1214e34d4d1fd9ec543
ISSN 2522-5731
IngestDate Thu Sep 12 16:23:48 EDT 2024
Sat Dec 16 12:09:20 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Twisted bilayers
Van der Waals heterostructures
Moiré physics
2D materials
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c357t-5d2402fb601621f3ab6cd6d323126d4bf9bddf7eb7a39e1214e34d4d1fd9ec543
PageCount 14
ParticipantIDs crossref_primary_10_1007_s42247_021_00270_x
springer_journals_10_1007_s42247_021_00270_x
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Emergent materials (Online)
PublicationTitleAbbrev emergent mater
PublicationYear 2021
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Balents, L.; Dean, C. R.; Efetov, D. K.; Young, A. F. Superconductivity and Strong Correlations in Moiré Flat Bands. Nature Physics, 16, 725–733 (2020). https://doi.org/10.1038/s41567-020-0906-9
A. Tartakovskii, Nat. Rev. Phys. (2020).
Editorial: 2D Magnetism Gets Hot. Nature Nanotechnology, 13, 269 (2018). https://doi.org/10.1038/s41565-018-0128-9
Li, P.; Lewin, M.; Kretinin, A. V.; Caldwell, J. D.; Novoselov, K. S.; Taniguchi, T.; Watanabe, K.; Gaussmann, F.; Taubner, T. Hyperbolic Phonon-Polaritons in Boron Nitride for near-Field Optical Imaging and Focusing. Nature Communications, 6, Article number: 7507 (2015). https://doi.org/10.1038/ncomms8507
M. Kang, S. Fang, L. Ye, H. C. Po, J. Denlinger, C. Jozwiak, A. Bostwick, E. Rotenberg, E. Kaxiras, J. G. Checkelsky, and R. Comin, Nat. Commun. (2020).
SeylerKLRiveraPYuHWilsonNPRayELMandrusDGYanJYaoWXuXNature2019567661:CAS:528:DC%2BC1MXmsVyrtb0%3D10.1038/s41586-019-0957-1
Y. H. Zhang, D. Mao, Y. Cao, P. Jarillo-Herrero, and T. Senthil, Nearly flat Chern bands in moiré superlattices, Phys. Rev. B, 99, 075127 (2019). https://doi.org/10.1103/PhysRevB.99.075127
Sunku, S. S.; Ni, G. X.; Jiang, B. Y.; Yoo, H.; Sternbach, A.; McLeod, A. S.; Stauber, T.; Xiong, L.; Taniguchi, T.; Watanabe, K.; Kim, P.; Fogler, M. M.; Basov, D. N. Photonic Crystals for Nano-Light in Moiré Graphene Superlattices. Science, 362(6419), 1153–1156 (2018). https://doi.org/10.1126/science.aau5144
Yasuda, K.; Wang, X.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Stacking-Engineered Ferroelectricity in Bilayer Boron Nitride. Science, 372(6549), 1458-1462 (2021). https://doi.org/10.1126/science.abd3230
L. Yuan, B. Zheng, J. Kunstmann, T. Brumme, A. B. Kuc, C. Ma, S. Deng, D. Blach, A. Pan, and L. Huang, Nat. Mater. (2020).
Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature (2018).
Haddadi, F.; Wu, Q. S.; Kruchkov, A. J.; Yazyev, O. V. Moiré Flat Bands in Twisted Double Bilayer Graphene. Nano Lett, 20, 2410–2415 (2020). https://doi.org/10.1021/acs.nanolett.9b05117
E. Laksono, J. N. Leaw, A. Reaves, M. Singh, X. Wang, S. Adam, and X. Gu, Solid State Commun. (2018).
Z. Liu, F. Liu, and Y. S. Wu, Chinese Phys. B (2014).
W. Wang, B. Wang, Z. Gao, G. Tang, W. Lei, X. Zheng, H. Li, X. Ming, and C. Autieri, Phys. Rev. B (2020).
Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora, R. Polski, Y. Zhang, H. Ren, J. Alicea, G. Refael, F. von Oppen, K. Watanabe, T. Taniguchi, and S. Nadj-Perge, Nat. Phys. (2019).
Ghazaryan, D.; Greenaway, M. T.; Wang, Z.; Guarochico-Moreira, V. H.; Vera-Marun, I. J.; Yin, J.; Liao, Y.; Morozov, S. V.; Kristanovski, O.; Lichtenstein, A. I.; Katsnelson, M. I.; Withers, F.; Mishchenko, A.; Eaves, L.; Geim, A. K.; Novoselov, K. S.; Misra, A. Magnon- Assisted Tunnelling in van Der Waals Heterostructures Based on CrBr3. Nature Electronics, 1, 344–349 (2018). https://doi.org/10.1038/s41928-018-0087-z
SchulmanDSArnoldAJDasSChem. Soc. Rev.20184730371:CAS:528:DC%2BC1cXjs1Ojtb0%3D10.1039/C7CS00828G
K. Tran, J. Choi, and A. Singh, ArXiv (2020).
Stern, M. V.; Waschitz, Y.; Cao, W.; Nevo, I.; Watanabe, K.; Taniguchi, T.; Sela, E.; Urbakh, M.; Hod, O.; Shalom, M. Ben. Interfacial Ferroelectricity by van Der Waals Sliding. Science, 372(6549), 1462–1466 (2021). https://doi.org/10.1126/science.abe8177
SuJWangMLiuGLiHHanJZhaiTAdv. Sci.2020720017221:CAS:528:DC%2BB3MXovVyqt7s%3D10.1002/advs.202001722
Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero. Nature, 556, 80–84 (2018). https://doi.org/10.1038/nature26154
Dufferwiel, S.; Lyons, T. P.; Solnyshkov, D. D.; Trichet, A. A. P.; Catanzaro, A.; Withers, F.; Malpuech, G.; Smith, J. M.; Novoselov, K. S.; Skolnick, M. S.; Krizhanovskii, D. N.; Tartakovskii, A. I. Valley Coherent Exciton-Polaritons in a Monolayer Semiconductor. Nature Communications, 9, Article number: 4797 (2018). https://doi.org/10.1038/s41467-018-07249-z
OhSHwangHYooIKAPL Mater.201979110910.1063/1.5108562
McGuire, M. A.; Dixit, H.; Cooper, V. R.; Sales, B. C. Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator Cri3. Chem. Mater., 27(2), 612–620 (2015). https://doi.org/10.1021/cm504242t
S. Deng, A. Simon, and J. Köhler, J. Solid State Chem. (2003).
Luo, Y.; Engelke, R.; Mattheakis, M.; Tamagnone, M.; Carr, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Kim, P.; Wilson, W. L. In Situ Nanoscale Imaging of Moiré Superlattices in Twisted van Der Waals Heterostructures. Nature Communications, 11, Article number: 4209 (2020). https://doi.org/10.1038/s41467-020-18109-0
Carr, S.; Massatt, D.; Fang, S.; Cazeaux, P.; Luskin, M.; Kaxiras, E. Twistronics: Manipulating the Electronic Properties of Two-Dimensional Layered Structures through Their Twist Angle. Phys. Rev. B, 95, 075420 (2017). https://doi.org/10.1103/PhysRevB.95.075420
AlexeevEMRuiz-TijerinaDADanovichMHamerMJTerryDJNayakPKAhnSPakSLeeJSohnJIMolasMRKoperskiMWatanabeKTaniguchiTNovoselovKSGorbachevRVShinHSFal’koVITartakovskiiAINature2019567811:CAS:528:DC%2BC1MXnvFGhs7o%3D10.1038/s41586-019-0986-9
P. Zhao, C. Xiao, and Wang Yao, Universal superlattice potential for 2D materials from twisted interface inside h-BN substrate, npj 2D Materials and Applications, 5, Article number: 38 (2021). https://doi.org/10.1038/s41699-021-00221-4
Dai, S.; Fang, W.; Rivera, N.; Stehle, Y.; Jiang, B. Y.; Shen, J.; Tay, R. Y.; Ciccarino, C. J.; Ma, Q.; Rodan-Legrain, D.; Jarillo-Herrero, P.; Teo, E. H. T.; Fogler, M. M.; Narang, P.; Kong, J.; Basov, D. N. Phonon Polaritons in Monolayers of Hexagonal Boron Nitride. Adv. Mater., 31(37) (2019). https://doi.org/10.1002/adma.201806603
Chebrolu, N. R.; Chittari, B. L.; Jung, J. Flat Bands in Twisted Double Bilayer Graphene. Phys. Rev. B, 99, 235417 (2019). https://doi.org/10.1103/PhysRevB.99.235417
J. Choi, M. Florian, A. Steinhoff, D. Erben, K. Tran, L. Sun, J. Quan, R. Claassen, S. Majumder, J. A. Hollingsworth, T. Taniguchi, K. Watanabe, K. Ueno, A. Singh, G. Moody, F. Jahnke, and X. Li, ArXiv (2020).
BehuraSChangKCWenYDebbarmaRNguyenPCheSDengSSeacristMRBerryVNanotechnolIEEEMag.20171133
Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D Materials and van Der Waals Heterostructures. Science, 353(6298), aac9439 (2016). https://doi.org/10.1126/science.aac9439
Dufferwiel, S.; Lyons, T. P.; Solnyshkov, D. D.; Trichet, A. A. P.; Withers, F.; Schwarz, S.; Malpuech, G.; Smith, J. M.; Novoselov, K. S.; Skolnick, M. S.; Krizhanovskii, D. N.; Tartakovskii, A. I. Valley-Addressable Polaritons in Atomically Thin Semiconductors. Nature Photonics, 11, 497–501 (2017). https://doi.org/10.1038/nphoton.2017.125
TranKMoodyGWuFLuXChoiJKimKRaiASanchezDAQuanJSinghAEmbleyJZepedaACampbellMAutryTTaniguchiTWatanabeKLuNBanerjeeSKSilvermanKLKimSTutucEYangLMacDonaldAHLiXNature2019567711:CAS:528:DC%2BC1MXmsVyrtLg%3D10.1038/s41586-019-0975-z
Z. Bi, N. F. Q. Yuan, and L. Fu, Designing flat bands by strain, Phys. Rev. B, 100, 035448 (2019). https://doi.org/10.1103/PhysRevB.100.035448
Hu, F.; Fei, Z. Recent Progress on Exciton Polaritons in Layered Transition-Metal Dichalcogenides. Advanced Optical Materials, 8(5) (2020). https://doi.org/10.1002/adom.201901003
AndreiEYEfetovDKJarillo-HerreroPMacDonaldAHMakKFSenthilTTutucEYazdaniAYoungAFNat. Rev. Mater.202162011:CAS:528:DC%2BB3MXhsFegurrK10.1038/s41578-021-00284-1
SreenivasKBull. Mater. Sci.19921528710.1007/BF02927508
E. Y. Andrei and A. H. MacDonald. Graphene bilayers with a twist. Nature Materials 19, 1265–1275 (2020). https://doi.org/10.1038/s41563-020-00840-0
W. H. Han, S. Kim, I. H. Lee, and K. J. Chang, ArXiv (2019).
Tran, K.; Choi, J.; Singh, A. Moiré and beyond in Transition Metal Dichalcogenide Twisted Bilayers. 2D Materials, 8(2), 022002 (2021).  https://doi.org/10.1088/2053-1583/abd3e7
S. Zhang, H. H. Hung, and C. Wu, Phys. Rev. A - At. Mol. Opt. Phys. (2010).
GutierrezHRPerea-LopezNEliasALBerkdemirAWangBLvRLopez-UriasFCrespiVHTerronesHTerronesMNano Lett.201213344710.1021/nl3026357
Hu, F.; Das, S. R.; Luan, Y.; Chung, T. F.; Chen, Y. P.; Fei, Z. Real-Space Imaging of the Tailored Plasmons in Twisted Bilayer Graphene. Phys. Rev. Lett., 119, 247402 (2017). https://doi.org/10.1103/PhysRevLett.119.247402
ButlerKTFrostJMWalshAEnergy Environ. Sci.201588381:CAS:528:DC%2BC2cXitFCrtLbI10.1039/C4EE03523B
GibertiniMKoperskiMMorpurgoAFNovoselovKSNat. Nanotechnol.2019144081:CAS:528:DC%2BC1MXptVCktb0%3D10.1038/s41565-019-0438-6
AllainAKangJBanerjeeKKisANat. Mater.20151411951:CAS:528:DC%2BC2MXhvVOlsr3K10.1038/nmat4452
GuanZHuHShenXXiangPZhongNChuJDuanCAdv. Electron. Mater.2020619008181:CAS:528:DC%2BC1MXit1alsrnN10.1002/aelm.201900818
Woods, C. R.; Ares, P.; Nevison-Andrews, H.; Holwill, M. J.; Fabregas, R.; Guinea, F.; Geim, A. K.; Novoselov, K. S.; Walet, N. R.; Fumagalli, L. Charge-Polarized Interfacial Superlattices in Marginally Twisted Hexagonal Boron Nitride. Nature Communications, 12, Article number: 347 (2021). https://doi.org/10.1038/s41467-020-20667-2
Giles, A. J.; Dai, S.; Vurgaftman, I.; Hoffman, T.; Liu, S.; Lindsay, L.; Ellis, C. T.; Assefa, N.; Chatzakis, I.; Reinecke, T. L.; Tischler, J. G.; Fogler, M. M.; Edgar, J. H.; Basov, D. N.; Caldwell, J. D. Ultralow-Loss Polaritons in Isotopically Pure Boron Nitride. Nature Materials, 17, 134–139 (2018). https://doi.org/10.1038/NMAT5047
Xu, X.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and Pseudospins in Layered Transition Metal Dichalcogenides. Nature Physics, 10, 343–350 (2014). https://doi.org/10.1038/nphys2942
Jin, C.; Regan, E. C.; Yan, A.; Iqbal Bakti Utama, M.; Wang, D.; Zhao, S.; Qin, Y.; Yang, S.; Zheng, Z.; Shi, S.; Watanabe, K.; Taniguchi, T.; Tongay, S.; Zettl, A.; Wang, F. Observation of Moiré Excitons in WSe2/WS2 Heterostructure Superlattices. Nature, 567, 76–80 (2019). https://doi.org/10.1038/s41586-019-0976-y
Chen, W.; Sun, Z.; Wang, Z.; Gu, L.; Xu, X.; Wu, S.; Gao, C. Direct Observation of van Der Waals Stacking–Dependent Interlayer Magnetism. Science, 366(6468), 983–987 (
M Galbiati (270_CR96) 2020; 2
S Behura (270_CR58) 2017; 11
270_CR70
270_CR71
270_CR72
270_CR73
270_CR68
270_CR69
270_CR63
270_CR66
EM Alexeev (270_CR67) 2019; 567
CR Woods (270_CR41) 2016; 7
270_CR60
270_CR61
Z Zheng (270_CR91) 2020; 588
270_CR62
270_CR59
270_CR52
270_CR53
270_CR54
270_CR92
C Cui (270_CR90) 2018; 2
270_CR93
270_CR1
270_CR2
270_CR5
270_CR6
270_CR3
270_CR4
270_CR9
270_CR7
270_CR8
KF Mak (270_CR95) 2019; 1
K Tran (270_CR64) 2019; 567
B Hunt (270_CR37) 2013; 340
KL Seyler (270_CR65) 2019; 567
270_CR81
270_CR82
270_CR83
270_CR84
270_CR80
270_CR78
270_CR79
270_CR74
270_CR75
270_CR76
M Yankowitz (270_CR36) 2012; 8
270_CR77
A Nimbalkar (270_CR98) 2020; 12
R Debbarma (270_CR57) 2018; 10
J Su (270_CR97) 2020; 7
A Splendiani (270_CR55) 2010; 10
M Osada (270_CR88) 2019; 7
KT Butler (270_CR87) 2015; 8
270_CR23
HR Gutierrez (270_CR56) 2012; 13
270_CR24
270_CR25
270_CR26
270_CR20
270_CR21
270_CR22
270_CR27
270_CR28
270_CR29
K Sreenivas (270_CR85) 1992; 15
Z Guan (270_CR89) 2020; 6
M Gibertini (270_CR94) 2019; 14
270_CR12
270_CR13
270_CR14
270_CR15
D Wang (270_CR40) 2016; 116
270_CR10
270_CR11
270_CR16
270_CR17
270_CR18
270_CR19
LA Ponomarenko (270_CR38) 2013; 497
270_CR50
270_CR51
EY Andrei (270_CR42) 2021; 6
S Oh (270_CR86) 2019; 7
270_CR45
270_CR46
270_CR47
270_CR48
270_CR43
270_CR44
S Behura (270_CR30) 2015; 137
270_CR49
A Allain (270_CR100) 2015; 14
270_CR34
270_CR35
270_CR31
270_CR32
270_CR33
K Kim (270_CR39) 2016; 16
DS Schulman (270_CR99) 2018; 47
References_xml – ident: 270_CR49
– volume: 10
  start-page: 20218
  year: 2018
  ident: 270_CR57
  publication-title: Nanoscale
  doi: 10.1039/C8NR03194K
  contributor:
    fullname: R Debbarma
– ident: 270_CR68
  doi: 10.1038/s41586-018-0136-9
– volume: 116
  start-page: 126101
  year: 2016
  ident: 270_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.126101
  contributor:
    fullname: D Wang
– ident: 270_CR24
  doi: 10.1038/s41467-020-20667-2
– ident: 270_CR61
– ident: 270_CR29
  doi: 10.1103/PhysRevB.95.075420
– ident: 270_CR73
  doi: 10.1021/acsphotonics.5b00099
– ident: 270_CR4
  doi: 10.1038/nature26154
– ident: 270_CR7
  doi: 10.1103/PhysRevB.100.035448
– ident: 270_CR25
  doi: 10.1126/science.abe8177
– volume: 6
  start-page: 201
  year: 2021
  ident: 270_CR42
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00284-1
  contributor:
    fullname: EY Andrei
– ident: 270_CR5
  doi: 10.1103/PhysRevB.82.121407
– ident: 270_CR44
– volume: 14
  start-page: 408
  year: 2019
  ident: 270_CR94
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0438-6
  contributor:
    fullname: M Gibertini
– ident: 270_CR82
  doi: 10.1038/s41467-018-04953-8
– volume: 15
  start-page: 287
  year: 1992
  ident: 270_CR85
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/BF02927508
  contributor:
    fullname: K Sreenivas
– ident: 270_CR27
  doi: 10.1021/acs.nanolett.0c02098
– ident: 270_CR92
  doi: 10.1126/science.abd3230
– ident: 270_CR75
  doi: 10.1103/PhysRevB.92.075445
– ident: 270_CR71
  doi: 10.1126/science.1246833
– ident: 270_CR10
  doi: 10.1021/acs.nanolett.9b05117
– ident: 270_CR50
– volume: 7
  start-page: 2001722
  year: 2020
  ident: 270_CR97
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202001722
  contributor:
    fullname: J Su
– volume: 137
  start-page: 13060
  year: 2015
  ident: 270_CR30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07739
  contributor:
    fullname: S Behura
– ident: 270_CR70
  doi: 10.1038/ncomms8507
– ident: 270_CR26
  doi: 10.1038/s41699-021-00221-4
– ident: 270_CR43
– volume: 340
  start-page: 1427
  issue: 80
  year: 2013
  ident: 270_CR37
  publication-title: Science
  doi: 10.1126/science.1237240
  contributor:
    fullname: B Hunt
– ident: 270_CR14
  doi: 10.1126/science.aav1937
– ident: 270_CR76
  doi: 10.1038/s41467-018-07249-z
– ident: 270_CR9
  doi: 10.1038/s41567-020-0958-x
– ident: 270_CR33
  doi: 10.1126/science.aac9439
– volume: 7
  start-page: 120902
  year: 2019
  ident: 270_CR88
  publication-title: APL Mater.
  doi: 10.1063/1.5129447
  contributor:
    fullname: M Osada
– ident: 270_CR20
  doi: 10.1038/s41563-020-0732-6
– volume: 12
  start-page: 126
  year: 2020
  ident: 270_CR98
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00464-8
  contributor:
    fullname: A Nimbalkar
– volume: 10
  start-page: 1271
  year: 2010
  ident: 270_CR55
  publication-title: Nano Lett.
  doi: 10.1021/nl903868w
  contributor:
    fullname: A Splendiani
– ident: 270_CR72
  doi: 10.1038/NMAT5047
– ident: 270_CR15
  doi: 10.1038/s41467-020-19466-6
– ident: 270_CR34
  doi: 10.1038/natrevmats.2016.42
– volume: 11
  start-page: 33
  year: 2017
  ident: 270_CR58
  publication-title: Mag.
  contributor:
    fullname: S Behura
– ident: 270_CR32
  doi: 10.1038/nature12385
– ident: 270_CR46
– ident: 270_CR63
– ident: 270_CR81
  doi: 10.1038/s41565-018-0121-3
– ident: 270_CR11
  doi: 10.1103/PhysRevB.99.235417
– ident: 270_CR16
  doi: 10.1126/sciadv.abc5638
– volume: 13
  start-page: 3447
  year: 2012
  ident: 270_CR56
  publication-title: Nano Lett.
  doi: 10.1021/nl3026357
  contributor:
    fullname: HR Gutierrez
– ident: 270_CR19
  doi: 10.1038/s41586-020-2359-9
– volume: 2
  start-page: 18
  year: 2018
  ident: 270_CR90
  publication-title: Appl.
  contributor:
    fullname: C Cui
– ident: 270_CR52
– volume: 2
  start-page: 3508
  year: 2020
  ident: 270_CR96
  publication-title: Electron. Mater.
  contributor:
    fullname: M Galbiati
– volume: 47
  start-page: 3037
  year: 2018
  ident: 270_CR99
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00828G
  contributor:
    fullname: DS Schulman
– volume: 8
  start-page: 838
  year: 2015
  ident: 270_CR87
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03523B
  contributor:
    fullname: KT Butler
– ident: 270_CR17
  doi: 10.1038/s41586-019-0976-y
– ident: 270_CR22
  doi: 10.1038/s41467-019-12327-x
– ident: 270_CR45
– ident: 270_CR59
– volume: 14
  start-page: 1195
  year: 2015
  ident: 270_CR100
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4452
  contributor:
    fullname: A Allain
– ident: 270_CR18
  doi: 10.1088/2053-1583/abd3e7
– volume: 16
  start-page: 1989
  year: 2016
  ident: 270_CR39
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b05263
  contributor:
    fullname: K Kim
– ident: 270_CR80
  doi: 10.1103/PhysRevLett.119.247402
– volume: 567
  start-page: 71
  year: 2019
  ident: 270_CR64
  publication-title: Nature
  doi: 10.1038/s41586-019-0975-z
  contributor:
    fullname: K Tran
– ident: 270_CR77
  doi: 10.1002/adom.201901003
– ident: 270_CR51
– ident: 270_CR48
– volume: 588
  start-page: 71
  year: 2020
  ident: 270_CR91
  publication-title: Nature
  doi: 10.1038/s41586-020-2970-9
  contributor:
    fullname: Z Zheng
– ident: 270_CR21
  doi: 10.1038/nmat4425
– volume: 497
  start-page: 594
  year: 2013
  ident: 270_CR38
  publication-title: Nature
  doi: 10.1038/nature12187
  contributor:
    fullname: LA Ponomarenko
– ident: 270_CR93
  doi: 10.1038/s41565-018-0128-9
– volume: 567
  start-page: 66
  year: 2019
  ident: 270_CR65
  publication-title: Nature
  doi: 10.1038/s41586-019-0957-1
  contributor:
    fullname: KL Seyler
– ident: 270_CR28
  doi: 10.1038/s41467-020-18109-0
– ident: 270_CR60
– volume: 567
  start-page: 81
  year: 2019
  ident: 270_CR67
  publication-title: Nature
  doi: 10.1038/s41586-019-0986-9
  contributor:
    fullname: EM Alexeev
– ident: 270_CR54
– ident: 270_CR69
  doi: 10.1002/adma.201806603
– volume: 8
  start-page: 382
  year: 2012
  ident: 270_CR36
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2272
  contributor:
    fullname: M Yankowitz
– ident: 270_CR74
  doi: 10.1038/nphoton.2017.125
– ident: 270_CR66
  doi: 10.1038/nphys2942
– ident: 270_CR47
– volume: 7
  start-page: 91109
  year: 2019
  ident: 270_CR86
  publication-title: APL Mater.
  doi: 10.1063/1.5108562
  contributor:
    fullname: S Oh
– ident: 270_CR62
– ident: 270_CR1
  doi: 10.1038/s41563-020-00840-0
– ident: 270_CR6
  doi: 10.1103/PhysRevB.99.075127
– ident: 270_CR79
  doi: 10.1126/science.aau5144
– ident: 270_CR8
  doi: 10.1038/s41567-020-0906-9
– volume: 1
  start-page: 646
  year: 2019
  ident: 270_CR95
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0110-y
  contributor:
    fullname: KF Mak
– ident: 270_CR53
– ident: 270_CR84
  doi: 10.1038/s41928-018-0087-z
– ident: 270_CR83
  doi: 10.1021/cm504242t
– ident: 270_CR3
  doi: 10.1126/science.aat6981
– volume: 7
  start-page: 10800
  year: 2016
  ident: 270_CR41
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10800
  contributor:
    fullname: CR Woods
– ident: 270_CR12
  doi: 10.1073/pnas.1108174108
– ident: 270_CR23
  doi: 10.1073/pnas.1309394110
– ident: 270_CR13
  doi: 10.1038/s41567-020-01041-x
– volume: 6
  start-page: 1900818
  year: 2020
  ident: 270_CR89
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201900818
  contributor:
    fullname: Z Guan
– ident: 270_CR2
  doi: 10.1103/physics.12.12
– ident: 270_CR35
  doi: 10.1002/andp.201700025
– ident: 270_CR78
  doi: 10.1088/2053-1583/ab8dd4
– ident: 270_CR31
  doi: 10.1021/acsnano.7b01666
SSID ssj0002710261
Score 2.3687427
SecondaryResourceType review_article
Snippet Artificial moiré superlattices are formed by vertically stacking two monolayers of two-dimensional (2D) materials and rotating one of the layers with a finite...
SourceID crossref
springer
SourceType Aggregation Database
Publisher
StartPage 813
SubjectTerms Chemistry and Materials Science
Energy Materials
Materials Engineering
Materials Science
Review
Title Moiré physics in twisted van der Waals heterostructures of 2D materials
URI https://link.springer.com/article/10.1007/s42247-021-00270-x
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5F7QUOiPIQ5aU9cAtbxeu1HR9b2ioCNRda0Zu1T9WgOqhxBOFH9H_0d_DHmH1446SAKJeVtXFGm50v89qZWYTeKHABhBwnRIyMICyXkggYiaYctCeTPDE2oH8yzSdn7P15dj4YXPeylhat2JM_fltX8j9chTngq62SvQNnI1GYgGfgL4zAYRj_iccnszqcdIcIhUtubb9Z1il3I6_tFPGJ2xbJFzbvZebbxS6ufKtZejgEg9WvdC1E72sy29Wnm11JQ23PxcJdUzT8yJvPfDn8sBf5V1_ZEEVXQlNHy33Kl_yL_8r8sm6jUgg3dfkEj6UL2PYDEjSJ6XBBbtHM-rdFEO66P-eTMTvBy3r4Yj0hOvbVqZ0-9hX1t0S9z-6YM7BBCuKWAR72iHxfKbbuMH9D38UsxNix2dGogEblaFifZJsWZQbO_Pb-8cHBNEbtqDXIXBPe-CtDJZarx7y1mHVrZ_2o3Vkwpw_Rg-B64H2Pox000M0jdL_XkPIxmlhE_bzBAU24bnBAEwY0YUATdmjCm2jCM4PpIY54eYLOjo9O301IuGuDyDQrWpIpe8xmhO3OQxOTcpFLlasUzH-aKyZMKZQyhRYFT0ud0ITplCmmEqNKLTOWPkVbzazRzxAuqaFcjqikJmUF1SXPWQZ6Y1zClopU76JhtyfVV99SpfozK3bR227bqvDXm__l9ed3Iv4C3Vsh-CXagl3Tr8DIbMXrwPlfWmN31g
link.rule.ids 315,786,790,27957,27958
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moir%C3%A9+physics+in+twisted+van+der+Waals+heterostructures+of+2D+materials&rft.jtitle=Emergent+materials+%28Online%29&rft.au=Behura%2C+Sanjay+K.&rft.au=Miranda%2C+Alexis&rft.au=Nayak%2C+Sasmita&rft.au=Johnson%2C+Kayleigh&rft.date=2021-08-01&rft.issn=2522-5731&rft.eissn=2522-574X&rft.volume=4&rft.issue=4&rft.spage=813&rft.epage=826&rft_id=info:doi/10.1007%2Fs42247-021-00270-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42247_021_00270_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-5731&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-5731&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-5731&client=summon