Data-driven Optical Fiber Channel Modeling: A Deep Learning Approach

A data-driven fiber channel modeling method based on deep learning (DL) is introduced in an optical communication system. In this study, bidirectional long short-term memory (BiLSTM) is selected from a diverse range of DL algorithms to perform fiber channel modeling for on-off keying and pulse ampli...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 38; no. 17; pp. 4730 - 4743
Main Authors Wang, Danshi, Song, Yuchen, Li, Jin, Qin, Jun, Yang, Tao, Zhang, Min, Chen, Xue, Boucouvalas, Anthony C.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A data-driven fiber channel modeling method based on deep learning (DL) is introduced in an optical communication system. In this study, bidirectional long short-term memory (BiLSTM) is selected from a diverse range of DL algorithms to perform fiber channel modeling for on-off keying and pulse amplitude modulation 4 signals. Compared with the conventional model-driven split-step Fourier (SSF)-based method, the proposed method yields similar results based on the comprehensive comparison of multiple characteristics associated with the generated optical signals, including the optical amplitude and phase waveforms in the time domain, optical spectrum components in the frequency domain, and eye diagrams after detection in the electrical domain. Additionally, the effects of multiple factors on the modeled fiber channel have also be investigated, including fiber length, fiber nonlinearity, dispersion, data pattern, pulse shaping, and sample rate. The satisfactory fitting results and acceptable mean square errors indicate that the approximate transfer function of the fiber channel is learned by the BiLSTM. Moreover, compared with repetitive iteration SSF, the computing time is significantly reduced by the BiLSTM owing to its independence on fiber length and insensitivity to data size and launch power. Our aim is to demonstrate the BiLSTM is comparable with the conventional model-driven SSF-based method for direct-detection optical fiber system. We think the proposed method could be a supplementary technique that can be used for the existing simulation system and could also be a potential option for future simulation methods.
AbstractList A data-driven fiber channel modeling method based on deep learning (DL) is introduced in an optical communication system. In this study, bidirectional long short-term memory (BiLSTM) is selected from a diverse range of DL algorithms to perform fiber channel modeling for on-off keying and pulse amplitude modulation 4 signals. Compared with the conventional model-driven split-step Fourier (SSF)-based method, the proposed method yields similar results based on the comprehensive comparison of multiple characteristics associated with the generated optical signals, including the optical amplitude and phase waveforms in the time domain, optical spectrum components in the frequency domain, and eye diagrams after detection in the electrical domain. Additionally, the effects of multiple factors on the modeled fiber channel have also be investigated, including fiber length, fiber nonlinearity, dispersion, data pattern, pulse shaping, and sample rate. The satisfactory fitting results and acceptable mean square errors indicate that the approximate transfer function of the fiber channel is learned by the BiLSTM. Moreover, compared with repetitive iteration SSF, the computing time is significantly reduced by the BiLSTM owing to its independence on fiber length and insensitivity to data size and launch power. Our aim is to demonstrate the BiLSTM is comparable with the conventional model-driven SSF-based method for direct-detection optical fiber system. We think the proposed method could be a supplementary technique that can be used for the existing simulation system and could also be a potential option for future simulation methods.
Author Song, Yuchen
Yang, Tao
Wang, Danshi
Qin, Jun
Boucouvalas, Anthony C.
Li, Jin
Zhang, Min
Chen, Xue
Author_xml – sequence: 1
  givenname: Danshi
  orcidid: 0000-0001-9815-4013
  surname: Wang
  fullname: Wang, Danshi
  email: danshi_wang@bupt.edu.cn
  organization: State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 2
  givenname: Yuchen
  orcidid: 0000-0001-9554-4964
  surname: Song
  fullname: Song, Yuchen
  email: songyc@bupt.edu.cn
  organization: State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 3
  givenname: Jin
  orcidid: 0000-0001-9089-6418
  surname: Li
  fullname: Li, Jin
  email: jinli@bupt.edu.cn
  organization: State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 4
  givenname: Jun
  surname: Qin
  fullname: Qin, Jun
  email: qinjun5566_pek@126.com
  organization: State Key Laboratory of Advanced Optical Communication Systems and Networks, Peking University, Beijing, China
– sequence: 5
  givenname: Tao
  orcidid: 0000-0001-9568-8300
  surname: Yang
  fullname: Yang, Tao
  email: yangtao@bupt.edu.cn
  organization: State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 6
  givenname: Min
  surname: Zhang
  fullname: Zhang, Min
  email: mzhang@bupt.edu.cn
  organization: State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 7
  givenname: Xue
  orcidid: 0000-0001-5219-8176
  surname: Chen
  fullname: Chen, Xue
  email: xuechen@bupt.edu.cn
  organization: State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 8
  givenname: Anthony C.
  orcidid: 0000-0002-7182-3317
  surname: Boucouvalas
  fullname: Boucouvalas, Anthony C.
  email: acb@uop.gr
  organization: Department of Informatics and Telecommunications, University of Peloponnese, Tripoli, Greece
BookMark eNp9kM9LwzAYhoNMcJveBS8Bz51fvjRN621szh9UdpnnkKapy6hpTTvB_96ODQ8ePH3w8T7vC8-EjHzjLSHXDGaMQXb3km9mCAgzzDKOkp2RMRMijRAZH5ExSM6jVGJ8QSZdtwNgcZzKMVkuda-jMrgv6-m67Z3RNV25wga62GrvbU1fm9LWzr_f0zldWtvS3Orghwedt21otNlekvNK1529Ot0peVs9bBZPUb5-fF7M88hwIftIQCJFUUqDomBFwTIBMpU8kQlKtCXGZVlZjmAAtYCqimWFrMqk4dKwApBPye2xd5j93NuuV7tmH_wwqTDmSQwCmRxScEyZ0HRdsJVqg_vQ4VsxUAdXanClDq7UydWAJH8Q43rdu8b3Qbv6P_DmCDpr7e9OBhlgmvAfy6h1oQ
CODEN JLTEDG
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3413824
crossref_primary_10_1364_OE_522026
crossref_primary_10_1002_lpor_202400234
crossref_primary_10_1364_OL_496973
crossref_primary_10_3390_en15186550
crossref_primary_10_1364_OE_443279
crossref_primary_10_1016_j_optcom_2025_131719
crossref_primary_10_1109_LCOMM_2023_3344996
crossref_primary_10_1016_j_oceaneng_2024_117081
crossref_primary_10_1038_s44172_024_00253_w
crossref_primary_10_3390_photonics8060212
crossref_primary_10_1364_JOCN_476195
crossref_primary_10_1364_OE_417353
crossref_primary_10_1371_journal_pone_0311897
crossref_primary_10_55544_jrasb_2_5_33
crossref_primary_10_3788_COL202422_111902
crossref_primary_10_1109_JLT_2024_3403129
crossref_primary_10_3390_qubs7020018
crossref_primary_10_1109_JLT_2022_3213519
crossref_primary_10_1016_j_ins_2023_119899
crossref_primary_10_1109_JLT_2023_3341495
crossref_primary_10_1364_OL_555880
crossref_primary_10_1109_JLT_2022_3148270
crossref_primary_10_3788_CJL230508
crossref_primary_10_1364_OL_491573
crossref_primary_10_1002_lpor_202100483
crossref_primary_10_1016_j_yofte_2021_102610
crossref_primary_10_1109_JLT_2022_3182989
crossref_primary_10_1364_OE_489827
crossref_primary_10_1364_OL_460489
crossref_primary_10_1109_JLT_2022_3168698
crossref_primary_10_1109_JLT_2023_3298881
crossref_primary_10_1364_OL_517041
crossref_primary_10_1109_MCOM_001_2000727
crossref_primary_10_1109_JLT_2022_3205158
crossref_primary_10_1109_JSTQE_2022_3163474
crossref_primary_10_3390_electronics12204234
crossref_primary_10_1109_JLT_2024_3401419
crossref_primary_10_3788_IRLA20230188
crossref_primary_10_1364_OE_549604
crossref_primary_10_1364_JOCN_522761
crossref_primary_10_1109_JLT_2022_3200827
crossref_primary_10_3390_batteries9100508
crossref_primary_10_1016_j_yofte_2022_103072
crossref_primary_10_1364_OE_539845
crossref_primary_10_1016_j_yofte_2021_102540
crossref_primary_10_1016_j_ijleo_2022_169125
crossref_primary_10_1109_JLT_2022_3229015
crossref_primary_10_1109_LPT_2024_3510713
crossref_primary_10_1109_JLT_2022_3195949
crossref_primary_10_1364_OE_502563
crossref_primary_10_1186_s43074_022_00055_3
crossref_primary_10_33317_ssurj_634
crossref_primary_10_1016_j_optcom_2021_127785
crossref_primary_10_1109_JLT_2020_3037905
crossref_primary_10_1109_JLT_2023_3239222
crossref_primary_10_1109_JLT_2021_3139377
crossref_primary_10_1364_JOCN_483600
crossref_primary_10_1364_OE_472981
crossref_primary_10_1109_JLT_2021_3103758
crossref_primary_10_1109_JPHOT_2022_3184354
crossref_primary_10_3389_frcmn_2021_656786
crossref_primary_10_1364_AO_502537
Cites_doi 10.1364/OE.27.009403
10.1109/JLT.2003.808628
10.3115/v1/D14-1003
10.1016/0954-1810(94)00011-S
10.1016/j.neunet.2014.09.003
10.1109/JLT.2018.2888547
10.1109/TCCN.2017.2758370
10.1109/TIE.2017.2653767
10.1109/CC.2017.8233654
10.1016/0893-6080(89)90020-8
10.18653/v1/P16-2067
10.1155/2018/7068349
10.1109/JLT.2019.2910143
10.1016/j.amc.2005.09.016
10.1109/LPT.2017.2755663
10.1109/MCI.2018.2840738
10.1109/JLT.2019.2897313
10.1007/s10772-018-09573-7
10.1109/MWC.2019.1800601
10.1364/AO.58.006079
10.1007/3-540-46629-0_9
10.1109/JLT.2018.2865109
10.1364/JOSAB.28.0000A1
10.1109/COMST.2018.2880039
10.1109/JLT.2007.909861
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1109/JLT.2020.2993271
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1558-2213
EndPage 4743
ExternalDocumentID 10_1109_JLT_2020_2993271
9090286
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 2019RC12
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 61705016; 61871415; 61975020
  funderid: 10.13039/501100001809
– fundername: State Key Laboratory of Advanced Optical Communication Systems and Networks
  funderid: 10.13039/501100011416
GroupedDBID -~X
0R~
29K
4.4
5GY
6IK
85S
8SL
97E
AAJGR
AARMG
AASAJ
AAWJZ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
AEDJG
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
D-I
DSZJF
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OFLFD
OPJBK
P2P
RIA
RIE
RNS
ROL
ROS
TN5
TR6
ZCA
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c357t-50675bd7c25b1bb19507873676272ed24ddfe320c02a50ff47f21f97c37c1b023
IEDL.DBID RIE
ISSN 0733-8724
IngestDate Mon Jun 30 10:21:55 EDT 2025
Thu Apr 24 23:06:50 EDT 2025
Tue Jul 01 01:01:55 EDT 2025
Wed Aug 27 02:50:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-50675bd7c25b1bb19507873676272ed24ddfe320c02a50ff47f21f97c37c1b023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5219-8176
0000-0001-9568-8300
0000-0002-7182-3317
0000-0001-9815-4013
0000-0001-9554-4964
0000-0001-9089-6418
PQID 2436405217
PQPubID 85485
PageCount 14
ParticipantIDs proquest_journals_2436405217
crossref_citationtrail_10_1109_JLT_2020_2993271
ieee_primary_9090286
crossref_primary_10_1109_JLT_2020_2993271
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of lightwave technology
PublicationTitleAbbrev JLT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
kaminow (ref3) 2008
ref30
ref11
ref10
jeruchim (ref1) 2006
ref2
ref17
ref16
ref19
ref18
nair (ref24) 0
ref23
ref26
mikolov (ref21) 2010
ref25
ref20
ref22
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref6
agrawal (ref5) 2012
References_xml – year: 2010
  ident: ref21
  article-title: Recurrent neural network based language model
  publication-title: Proc Annu Conf Int Speech Commun Assoc
– ident: ref11
  doi: 10.1364/OE.27.009403
– year: 2006
  ident: ref1
  publication-title: Simulation of Communication Systems Modeling Methodology and Techniques
– ident: ref19
  doi: 10.1109/JLT.2003.808628
– ident: ref27
  doi: 10.3115/v1/D14-1003
– ident: ref26
  doi: 10.1016/0954-1810(94)00011-S
– start-page: 807
  year: 0
  ident: ref24
  article-title: Rectified linear units improve restricted boltzmann machines
  publication-title: Proc 27th Int Conf Machine Learning
– ident: ref8
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref30
  doi: 10.1109/JLT.2018.2888547
– ident: ref13
  doi: 10.1109/TCCN.2017.2758370
– ident: ref17
  doi: 10.1109/TIE.2017.2653767
– year: 2008
  ident: ref3
  publication-title: Optical Fiber Telecommunications VB Systems and Networks
– ident: ref2
  doi: 10.1109/CC.2017.8233654
– ident: ref16
  doi: 10.1016/0893-6080(89)90020-8
– ident: ref23
  doi: 10.18653/v1/P16-2067
– ident: ref6
  doi: 10.1155/2018/7068349
– ident: ref10
  doi: 10.1109/JLT.2019.2910143
– ident: ref25
  doi: 10.1016/j.amc.2005.09.016
– ident: ref29
  doi: 10.1109/LPT.2017.2755663
– ident: ref7
  doi: 10.1109/MCI.2018.2840738
– ident: ref12
  doi: 10.1109/JLT.2019.2897313
– ident: ref22
  doi: 10.1007/s10772-018-09573-7
– ident: ref15
  doi: 10.1109/MWC.2019.1800601
– ident: ref28
  doi: 10.1364/AO.58.006079
– ident: ref18
  doi: 10.1007/3-540-46629-0_9
– ident: ref14
  doi: 10.1109/JLT.2018.2865109
– year: 2012
  ident: ref5
  publication-title: Fiber-Optic Communication Systems
– ident: ref4
  doi: 10.1364/JOSAB.28.0000A1
– ident: ref9
  doi: 10.1109/COMST.2018.2880039
– ident: ref20
  doi: 10.1109/JLT.2007.909861
SSID ssj0014487
Score 2.6156414
Snippet A data-driven fiber channel modeling method based on deep learning (DL) is introduced in an optical communication system. In this study, bidirectional long...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4730
SubjectTerms Algorithms
bidirectional long short-term memory (BiLSTM)
Communications systems
Computer networks
Computer simulation
Computing time
data driven
Deep learning
fiber channel modeling
Iterative methods
Keying
Machine learning
Mathematical model
Modelling
Optical communication
Optical fiber communication
Optical fiber dispersion
Optical fiber theory
Optical fibers
Optical transmitters
Pulse amplitude modulation
Transfer functions
Waveforms
Title Data-driven Optical Fiber Channel Modeling: A Deep Learning Approach
URI https://ieeexplore.ieee.org/document/9090286
https://www.proquest.com/docview/2436405217
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH5UQfDi0irWjRy8CE47k6XpeCvWIuJyqeBtmGwelLbY6cVfb14mLbgg3uaQDOHtL_neewBnVPf6eaa88HpvlvCSlUmpM5sI7X2Hdyi5cAFt8dC7eeK3z-K5ARerWhhrbQCf2Q5-hrd8M9ULvCrr5ggi7PfWYM0nbnWt1urFwKcZoTRaMuY1nPLlk2Sad2_vxj4RpGnHm15GZfbFBYWZKj8McfAuo224X56rBpW8dhaV6uiPby0b_3vwHdiKYSYZ1HKxCw07acJ2DDlJVOh5EzYCAlTPWzAcllWZmHe0fuRxFq64yQjxJAQrECb2jeDcNKxevyQDMrR2RmJz1hcyiJ3J9-BpdD2-ukniiIVEMyGrRGDCoIzUVKhMKZwJ6zUYu7hRSa2h3BhnGU11SkuROselo5nLpWZSZ8r7-31Yn0wn9gCIYU446xnMtOYuy_vGcEsx2S1zJWjZhu6S6oWO_cdxDMZbEfKQNC88nwrkUxH51Ibz1Y5Z3Xvjj7UtJPtqXaR4G46XjC2ics4LylmPY9GyPPx91xFs4r9rKNkxrFfvC3viY49KnQah-wQddNG0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07TyMxEB7xEOIa4HjowtMFDdJtsutHnKWLCFGAAE2Q6FbrFwVRiMimuV9_Hq8T6eCE6LawtZbn8Xnsb2YAzqlud_JMeeX1aJbwkpVJqTObCO2xwwNKLlxgWzy0B0_89lk8r8DvZS6MtTaQz2wTP8NbvnnTc7wqa-VIIuy0V2Hd477I6myt5ZuBDzRCcrRkzNs45YtHyTRv3Q5HPhSkadM7X0Zl9g8Iha4qn1xxwJf-NtwvVlbTSl6b80o19Z8PRRu_u_Qd2IoHTdKtNeMnrNjJLmzHQyeJJj3bhY3AAdWzPej1yqpMzDv6P_I4DZfcpI-MEoI5CBM7Jtg5DfPXL0mX9Kydklie9YV0Y23yfXjqX4-uBklsspBoJmSVCAwZlJGaCpUphV1hvQ1jHTcqqTWUG-Mso6lOaSlS57h0NHO51EzqTHnEP4C1ydvE_gJimBPOehEzrbnL8o4x3FIMd8tcCVo2oLXY9ULHCuTYCGNchEgkzQsvpwLlVEQ5NeBiOWNaV9_4YuwebvtyXNzxBhwvBFtE85wVlLM2x7Rlefj_WWewORjdD4vhzcPdEfzA_9TEsmNYq97n9sSfRCp1GhTwLzwm1P0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+Optical+Fiber+Channel+Modeling%3A+A+Deep+Learning+Approach&rft.jtitle=Journal+of+lightwave+technology&rft.au=Wang%2C+Danshi&rft.au=Song%2C+Yuchen&rft.au=Li%2C+Jin&rft.au=Qin%2C+Jun&rft.date=2020-09-01&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=38&rft.issue=17&rft.spage=4730&rft.epage=4743&rft_id=info:doi/10.1109%2FJLT.2020.2993271&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JLT_2020_2993271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon