Data-driven Optical Fiber Channel Modeling: A Deep Learning Approach
A data-driven fiber channel modeling method based on deep learning (DL) is introduced in an optical communication system. In this study, bidirectional long short-term memory (BiLSTM) is selected from a diverse range of DL algorithms to perform fiber channel modeling for on-off keying and pulse ampli...
Saved in:
Published in | Journal of lightwave technology Vol. 38; no. 17; pp. 4730 - 4743 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A data-driven fiber channel modeling method based on deep learning (DL) is introduced in an optical communication system. In this study, bidirectional long short-term memory (BiLSTM) is selected from a diverse range of DL algorithms to perform fiber channel modeling for on-off keying and pulse amplitude modulation 4 signals. Compared with the conventional model-driven split-step Fourier (SSF)-based method, the proposed method yields similar results based on the comprehensive comparison of multiple characteristics associated with the generated optical signals, including the optical amplitude and phase waveforms in the time domain, optical spectrum components in the frequency domain, and eye diagrams after detection in the electrical domain. Additionally, the effects of multiple factors on the modeled fiber channel have also be investigated, including fiber length, fiber nonlinearity, dispersion, data pattern, pulse shaping, and sample rate. The satisfactory fitting results and acceptable mean square errors indicate that the approximate transfer function of the fiber channel is learned by the BiLSTM. Moreover, compared with repetitive iteration SSF, the computing time is significantly reduced by the BiLSTM owing to its independence on fiber length and insensitivity to data size and launch power. Our aim is to demonstrate the BiLSTM is comparable with the conventional model-driven SSF-based method for direct-detection optical fiber system. We think the proposed method could be a supplementary technique that can be used for the existing simulation system and could also be a potential option for future simulation methods. |
---|---|
AbstractList | A data-driven fiber channel modeling method based on deep learning (DL) is introduced in an optical communication system. In this study, bidirectional long short-term memory (BiLSTM) is selected from a diverse range of DL algorithms to perform fiber channel modeling for on-off keying and pulse amplitude modulation 4 signals. Compared with the conventional model-driven split-step Fourier (SSF)-based method, the proposed method yields similar results based on the comprehensive comparison of multiple characteristics associated with the generated optical signals, including the optical amplitude and phase waveforms in the time domain, optical spectrum components in the frequency domain, and eye diagrams after detection in the electrical domain. Additionally, the effects of multiple factors on the modeled fiber channel have also be investigated, including fiber length, fiber nonlinearity, dispersion, data pattern, pulse shaping, and sample rate. The satisfactory fitting results and acceptable mean square errors indicate that the approximate transfer function of the fiber channel is learned by the BiLSTM. Moreover, compared with repetitive iteration SSF, the computing time is significantly reduced by the BiLSTM owing to its independence on fiber length and insensitivity to data size and launch power. Our aim is to demonstrate the BiLSTM is comparable with the conventional model-driven SSF-based method for direct-detection optical fiber system. We think the proposed method could be a supplementary technique that can be used for the existing simulation system and could also be a potential option for future simulation methods. |
Author | Song, Yuchen Yang, Tao Wang, Danshi Qin, Jun Boucouvalas, Anthony C. Li, Jin Zhang, Min Chen, Xue |
Author_xml | – sequence: 1 givenname: Danshi orcidid: 0000-0001-9815-4013 surname: Wang fullname: Wang, Danshi email: danshi_wang@bupt.edu.cn organization: State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 2 givenname: Yuchen orcidid: 0000-0001-9554-4964 surname: Song fullname: Song, Yuchen email: songyc@bupt.edu.cn organization: State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 3 givenname: Jin orcidid: 0000-0001-9089-6418 surname: Li fullname: Li, Jin email: jinli@bupt.edu.cn organization: State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 4 givenname: Jun surname: Qin fullname: Qin, Jun email: qinjun5566_pek@126.com organization: State Key Laboratory of Advanced Optical Communication Systems and Networks, Peking University, Beijing, China – sequence: 5 givenname: Tao orcidid: 0000-0001-9568-8300 surname: Yang fullname: Yang, Tao email: yangtao@bupt.edu.cn organization: State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 6 givenname: Min surname: Zhang fullname: Zhang, Min email: mzhang@bupt.edu.cn organization: State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 7 givenname: Xue orcidid: 0000-0001-5219-8176 surname: Chen fullname: Chen, Xue email: xuechen@bupt.edu.cn organization: State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 8 givenname: Anthony C. orcidid: 0000-0002-7182-3317 surname: Boucouvalas fullname: Boucouvalas, Anthony C. email: acb@uop.gr organization: Department of Informatics and Telecommunications, University of Peloponnese, Tripoli, Greece |
BookMark | eNp9kM9LwzAYhoNMcJveBS8Bz51fvjRN621szh9UdpnnkKapy6hpTTvB_96ODQ8ePH3w8T7vC8-EjHzjLSHXDGaMQXb3km9mCAgzzDKOkp2RMRMijRAZH5ExSM6jVGJ8QSZdtwNgcZzKMVkuda-jMrgv6-m67Z3RNV25wga62GrvbU1fm9LWzr_f0zldWtvS3Orghwedt21otNlekvNK1529Ot0peVs9bBZPUb5-fF7M88hwIftIQCJFUUqDomBFwTIBMpU8kQlKtCXGZVlZjmAAtYCqimWFrMqk4dKwApBPye2xd5j93NuuV7tmH_wwqTDmSQwCmRxScEyZ0HRdsJVqg_vQ4VsxUAdXanClDq7UydWAJH8Q43rdu8b3Qbv6P_DmCDpr7e9OBhlgmvAfy6h1oQ |
CODEN | JLTEDG |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3413824 crossref_primary_10_1364_OE_522026 crossref_primary_10_1002_lpor_202400234 crossref_primary_10_1364_OL_496973 crossref_primary_10_3390_en15186550 crossref_primary_10_1364_OE_443279 crossref_primary_10_1016_j_optcom_2025_131719 crossref_primary_10_1109_LCOMM_2023_3344996 crossref_primary_10_1016_j_oceaneng_2024_117081 crossref_primary_10_1038_s44172_024_00253_w crossref_primary_10_3390_photonics8060212 crossref_primary_10_1364_JOCN_476195 crossref_primary_10_1364_OE_417353 crossref_primary_10_1371_journal_pone_0311897 crossref_primary_10_55544_jrasb_2_5_33 crossref_primary_10_3788_COL202422_111902 crossref_primary_10_1109_JLT_2024_3403129 crossref_primary_10_3390_qubs7020018 crossref_primary_10_1109_JLT_2022_3213519 crossref_primary_10_1016_j_ins_2023_119899 crossref_primary_10_1109_JLT_2023_3341495 crossref_primary_10_1364_OL_555880 crossref_primary_10_1109_JLT_2022_3148270 crossref_primary_10_3788_CJL230508 crossref_primary_10_1364_OL_491573 crossref_primary_10_1002_lpor_202100483 crossref_primary_10_1016_j_yofte_2021_102610 crossref_primary_10_1109_JLT_2022_3182989 crossref_primary_10_1364_OE_489827 crossref_primary_10_1364_OL_460489 crossref_primary_10_1109_JLT_2022_3168698 crossref_primary_10_1109_JLT_2023_3298881 crossref_primary_10_1364_OL_517041 crossref_primary_10_1109_MCOM_001_2000727 crossref_primary_10_1109_JLT_2022_3205158 crossref_primary_10_1109_JSTQE_2022_3163474 crossref_primary_10_3390_electronics12204234 crossref_primary_10_1109_JLT_2024_3401419 crossref_primary_10_3788_IRLA20230188 crossref_primary_10_1364_OE_549604 crossref_primary_10_1364_JOCN_522761 crossref_primary_10_1109_JLT_2022_3200827 crossref_primary_10_3390_batteries9100508 crossref_primary_10_1016_j_yofte_2022_103072 crossref_primary_10_1364_OE_539845 crossref_primary_10_1016_j_yofte_2021_102540 crossref_primary_10_1016_j_ijleo_2022_169125 crossref_primary_10_1109_JLT_2022_3229015 crossref_primary_10_1109_LPT_2024_3510713 crossref_primary_10_1109_JLT_2022_3195949 crossref_primary_10_1364_OE_502563 crossref_primary_10_1186_s43074_022_00055_3 crossref_primary_10_33317_ssurj_634 crossref_primary_10_1016_j_optcom_2021_127785 crossref_primary_10_1109_JLT_2020_3037905 crossref_primary_10_1109_JLT_2023_3239222 crossref_primary_10_1109_JLT_2021_3139377 crossref_primary_10_1364_JOCN_483600 crossref_primary_10_1364_OE_472981 crossref_primary_10_1109_JLT_2021_3103758 crossref_primary_10_1109_JPHOT_2022_3184354 crossref_primary_10_3389_frcmn_2021_656786 crossref_primary_10_1364_AO_502537 |
Cites_doi | 10.1364/OE.27.009403 10.1109/JLT.2003.808628 10.3115/v1/D14-1003 10.1016/0954-1810(94)00011-S 10.1016/j.neunet.2014.09.003 10.1109/JLT.2018.2888547 10.1109/TCCN.2017.2758370 10.1109/TIE.2017.2653767 10.1109/CC.2017.8233654 10.1016/0893-6080(89)90020-8 10.18653/v1/P16-2067 10.1155/2018/7068349 10.1109/JLT.2019.2910143 10.1016/j.amc.2005.09.016 10.1109/LPT.2017.2755663 10.1109/MCI.2018.2840738 10.1109/JLT.2019.2897313 10.1007/s10772-018-09573-7 10.1109/MWC.2019.1800601 10.1364/AO.58.006079 10.1007/3-540-46629-0_9 10.1109/JLT.2018.2865109 10.1364/JOSAB.28.0000A1 10.1109/COMST.2018.2880039 10.1109/JLT.2007.909861 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1109/JLT.2020.2993271 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1558-2213 |
EndPage | 4743 |
ExternalDocumentID | 10_1109_JLT_2020_2993271 9090286 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 2019RC12 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 61705016; 61871415; 61975020 funderid: 10.13039/501100001809 – fundername: State Key Laboratory of Advanced Optical Communication Systems and Networks funderid: 10.13039/501100011416 |
GroupedDBID | -~X 0R~ 29K 4.4 5GY 6IK 85S 8SL 97E AAJGR AARMG AASAJ AAWJZ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK AEDJG AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATHME ATWAV AYPRP AZSQR BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 D-I DSZJF DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL OFLFD OPJBK P2P RIA RIE RNS ROL ROS TN5 TR6 ZCA AAYXX CITATION 7SP 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c357t-50675bd7c25b1bb19507873676272ed24ddfe320c02a50ff47f21f97c37c1b023 |
IEDL.DBID | RIE |
ISSN | 0733-8724 |
IngestDate | Mon Jun 30 10:21:55 EDT 2025 Thu Apr 24 23:06:50 EDT 2025 Tue Jul 01 01:01:55 EDT 2025 Wed Aug 27 02:50:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-50675bd7c25b1bb19507873676272ed24ddfe320c02a50ff47f21f97c37c1b023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5219-8176 0000-0001-9568-8300 0000-0002-7182-3317 0000-0001-9815-4013 0000-0001-9554-4964 0000-0001-9089-6418 |
PQID | 2436405217 |
PQPubID | 85485 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2436405217 crossref_citationtrail_10_1109_JLT_2020_2993271 ieee_primary_9090286 crossref_primary_10_1109_JLT_2020_2993271 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of lightwave technology |
PublicationTitleAbbrev | JLT |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 kaminow (ref3) 2008 ref30 ref11 ref10 jeruchim (ref1) 2006 ref2 ref17 ref16 ref19 ref18 nair (ref24) 0 ref23 ref26 mikolov (ref21) 2010 ref25 ref20 ref22 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref6 agrawal (ref5) 2012 |
References_xml | – year: 2010 ident: ref21 article-title: Recurrent neural network based language model publication-title: Proc Annu Conf Int Speech Commun Assoc – ident: ref11 doi: 10.1364/OE.27.009403 – year: 2006 ident: ref1 publication-title: Simulation of Communication Systems Modeling Methodology and Techniques – ident: ref19 doi: 10.1109/JLT.2003.808628 – ident: ref27 doi: 10.3115/v1/D14-1003 – ident: ref26 doi: 10.1016/0954-1810(94)00011-S – start-page: 807 year: 0 ident: ref24 article-title: Rectified linear units improve restricted boltzmann machines publication-title: Proc 27th Int Conf Machine Learning – ident: ref8 doi: 10.1016/j.neunet.2014.09.003 – ident: ref30 doi: 10.1109/JLT.2018.2888547 – ident: ref13 doi: 10.1109/TCCN.2017.2758370 – ident: ref17 doi: 10.1109/TIE.2017.2653767 – year: 2008 ident: ref3 publication-title: Optical Fiber Telecommunications VB Systems and Networks – ident: ref2 doi: 10.1109/CC.2017.8233654 – ident: ref16 doi: 10.1016/0893-6080(89)90020-8 – ident: ref23 doi: 10.18653/v1/P16-2067 – ident: ref6 doi: 10.1155/2018/7068349 – ident: ref10 doi: 10.1109/JLT.2019.2910143 – ident: ref25 doi: 10.1016/j.amc.2005.09.016 – ident: ref29 doi: 10.1109/LPT.2017.2755663 – ident: ref7 doi: 10.1109/MCI.2018.2840738 – ident: ref12 doi: 10.1109/JLT.2019.2897313 – ident: ref22 doi: 10.1007/s10772-018-09573-7 – ident: ref15 doi: 10.1109/MWC.2019.1800601 – ident: ref28 doi: 10.1364/AO.58.006079 – ident: ref18 doi: 10.1007/3-540-46629-0_9 – ident: ref14 doi: 10.1109/JLT.2018.2865109 – year: 2012 ident: ref5 publication-title: Fiber-Optic Communication Systems – ident: ref4 doi: 10.1364/JOSAB.28.0000A1 – ident: ref9 doi: 10.1109/COMST.2018.2880039 – ident: ref20 doi: 10.1109/JLT.2007.909861 |
SSID | ssj0014487 |
Score | 2.6156414 |
Snippet | A data-driven fiber channel modeling method based on deep learning (DL) is introduced in an optical communication system. In this study, bidirectional long... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4730 |
SubjectTerms | Algorithms bidirectional long short-term memory (BiLSTM) Communications systems Computer networks Computer simulation Computing time data driven Deep learning fiber channel modeling Iterative methods Keying Machine learning Mathematical model Modelling Optical communication Optical fiber communication Optical fiber dispersion Optical fiber theory Optical fibers Optical transmitters Pulse amplitude modulation Transfer functions Waveforms |
Title | Data-driven Optical Fiber Channel Modeling: A Deep Learning Approach |
URI | https://ieeexplore.ieee.org/document/9090286 https://www.proquest.com/docview/2436405217 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH5UQfDi0irWjRy8CE47k6XpeCvWIuJyqeBtmGwelLbY6cVfb14mLbgg3uaQDOHtL_neewBnVPf6eaa88HpvlvCSlUmpM5sI7X2Hdyi5cAFt8dC7eeK3z-K5ARerWhhrbQCf2Q5-hrd8M9ULvCrr5ggi7PfWYM0nbnWt1urFwKcZoTRaMuY1nPLlk2Sad2_vxj4RpGnHm15GZfbFBYWZKj8McfAuo224X56rBpW8dhaV6uiPby0b_3vwHdiKYSYZ1HKxCw07acJ2DDlJVOh5EzYCAlTPWzAcllWZmHe0fuRxFq64yQjxJAQrECb2jeDcNKxevyQDMrR2RmJz1hcyiJ3J9-BpdD2-ukniiIVEMyGrRGDCoIzUVKhMKZwJ6zUYu7hRSa2h3BhnGU11SkuROselo5nLpWZSZ8r7-31Yn0wn9gCIYU446xnMtOYuy_vGcEsx2S1zJWjZhu6S6oWO_cdxDMZbEfKQNC88nwrkUxH51Ibz1Y5Z3Xvjj7UtJPtqXaR4G46XjC2ics4LylmPY9GyPPx91xFs4r9rKNkxrFfvC3viY49KnQah-wQddNG0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07TyMxEB7xEOIa4HjowtMFDdJtsutHnKWLCFGAAE2Q6FbrFwVRiMimuV9_Hq8T6eCE6LawtZbn8Xnsb2YAzqlud_JMeeX1aJbwkpVJqTObCO2xwwNKLlxgWzy0B0_89lk8r8DvZS6MtTaQz2wTP8NbvnnTc7wqa-VIIuy0V2Hd477I6myt5ZuBDzRCcrRkzNs45YtHyTRv3Q5HPhSkadM7X0Zl9g8Iha4qn1xxwJf-NtwvVlbTSl6b80o19Z8PRRu_u_Qd2IoHTdKtNeMnrNjJLmzHQyeJJj3bhY3AAdWzPej1yqpMzDv6P_I4DZfcpI-MEoI5CBM7Jtg5DfPXL0mX9Kydklie9YV0Y23yfXjqX4-uBklsspBoJmSVCAwZlJGaCpUphV1hvQ1jHTcqqTWUG-Mso6lOaSlS57h0NHO51EzqTHnEP4C1ydvE_gJimBPOehEzrbnL8o4x3FIMd8tcCVo2oLXY9ULHCuTYCGNchEgkzQsvpwLlVEQ5NeBiOWNaV9_4YuwebvtyXNzxBhwvBFtE85wVlLM2x7Rlefj_WWewORjdD4vhzcPdEfzA_9TEsmNYq97n9sSfRCp1GhTwLzwm1P0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+Optical+Fiber+Channel+Modeling%3A+A+Deep+Learning+Approach&rft.jtitle=Journal+of+lightwave+technology&rft.au=Wang%2C+Danshi&rft.au=Song%2C+Yuchen&rft.au=Li%2C+Jin&rft.au=Qin%2C+Jun&rft.date=2020-09-01&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=38&rft.issue=17&rft.spage=4730&rft.epage=4743&rft_id=info:doi/10.1109%2FJLT.2020.2993271&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JLT_2020_2993271 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon |